1
|
Zhang B, Zhou Z, Zhang Y, Miu Y, Jin C, Ding W, Zhao G, Xu Y. A sugary solution: Harnessing polysaccharide-based materials for osteoporosis treatment. Carbohydr Polym 2024; 345:122549. [PMID: 39227093 DOI: 10.1016/j.carbpol.2024.122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024]
Abstract
Osteoporosis, a prevalent skeletal disorder characterized by diminished bone density, compromised microstructure, and heightened fracture susceptibility, poses a growing public health concern exacerbated by aging demographics. Polysaccharides-based materials, derived from a diverse range of sources, exhibit exceptional biocompatibility. They possess a structure similar to the extracellular matrix, which can enhance cell adhesion in vivo, and demonstrate superior biological activity compared to artificial materials. This study delved into an in-depth examination of the various biomaterials and polysaccharide families associated with the treatment of osteoporosis. This article elucidates the benefits and attributes of polysaccharide-based materials in contrast to current clinical treatment modalities, delineating how these materials address prevalent challenges in the clinical management of osteoporosis. An overview of the prospective applications of polysaccharide-based materials in the future is also provided, as well as outlines the challenges that should be addressed prior to the clinical implementation of such materials.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Zhiyi Zhou
- Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214061, China
| | - Yige Zhang
- Department of Orthopaedics, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yan Miu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Chenyang Jin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Wenge Ding
- Department of Orthopaedics, Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Gang Zhao
- Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214061, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| |
Collapse
|
2
|
Li J, Yin S, Zhou L, Nezamzadeh-Ejhieh A, Pan Y, Qiu L, Liu J, Zhou Z. Advances in the study of metal-organic frameworks and their biomolecule composites for osteoporosis therapeutic applications. Biomater Sci 2024. [PMID: 39440387 DOI: 10.1039/d4bm01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
With the population aging, osteoporosis (OP) is becoming more and more common, seriously affecting patients' quality of life and their families, and how to prevent and treat osteoporosis has become a hot topic. However, the current conventional method of treating OP is oral anti-osteoporosis medication, which has drawbacks such as first-pass elimination and gastrointestinal adverse effects. At the same time, osteoporosis can lead to microbial infections and the need to promote angiogenesis for bone healing, among other needs that often cannot be met with conventional treatments, and there is a risk of resistance to oral antibiotics for microbial infections. Metal-organic frameworks (MOFs) having a high specific surface area, high porosity, controlled degradation, and variable composition; they can not only be used as a carrier to control drug release, but can also play multiple roles in the treatment of OP and microbial infections by releasing metal ions, etc., so they have inherent advantages for OP, which is a disease that requires long-term treatment. Therefore, this paper reviews the research progress of MOFs and their biomacromolecular composites in therapeutic applications for osteoporosis, categorized by MOF type, and briefly describes the mechanism of osteoporosis, and different synthesis methods of MOFs and MOF-based composites, and finally presents the main existing problems and future perspectives, aiming to make MOFs more helpful for OP treatment.
Collapse
Affiliation(s)
- Jiahui Li
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Shihai Yin
- Hand Surgery Department, Liaobu Hospital, Dongguan, 523400, China
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | | | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Longhai Qiu
- Department of Traumatology and Orthopaedic Surgery, Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Zhikun Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
3
|
Makled S, Abbas H, Ali ME, Zewail M. Melatonin hyalurosomes in collagen thermosensitive gel as a potential repurposing approach for rheumatoid arthritis management via the intra-articular route. Int J Pharm 2024; 661:124449. [PMID: 38992734 DOI: 10.1016/j.ijpharm.2024.124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Despite the fact that several rheumatoid arthritis treatments have been utilized, none of them achieved complete joint healing and has been accompanied by several side effects that compromise patient compliance. This study aims to provide an effective safe RA treatment with minimum side effects through the encapsulation of melatonin (MEL) in hyalurosomes and loading these hyalurosomes in collagen thermos-sensitive poloxamer 407 (PCO) hydrogels, followed by their intra-articular administration in AIA model rats. In vitro characterization of MEL-hyalurosomes and PCO hydrogel along with in vivo evaluation of the selected formulation were conducted. Particle size, PDI and EE % of the selected formulation were 71.5 nm, 0.09 and 90 %. TEM micrographs demonstrated that the particles had spherical shape with no aggregation signs. Loading PCO hydrogels with MEL-hyalurosomes did not cause significant changes in pH although it increased its viscosity and injection time. FTIR analysis showed that no interactions were noted among the delivery system components. In vivo results revealed the superior effect of MEL-hyalurosomes PCO hydrogel over MEL-PCO hydrogel and blank PCO hydrogels in improving joint healing, cartilage repair, pannus formation and cell infiltrations. Also, MEL-hyalurosomes PCO hydrogel group showed comparable levels of TNF-α, IL1, MDA, NRF2 and HO-1 with the negative control group. These findings highlight the MEL encapsulation role in augmenting its pharmacological effects along with the synergistic effect of hyaluronic acid in hyalurosomes and collagen in PCO hydrogel in promoting joint healing.
Collapse
Affiliation(s)
- Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt.
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt
| |
Collapse
|
4
|
Klara J, Onak S, Kowalczyk A, Wójcik K, Lewandowska-Łańcucka J. Photocrosslinked gelatin/chondroitin sulfate/chitosan-based composites with tunable multifunctionality for bone tissue regeneration. Int J Biol Macromol 2024; 271:132675. [PMID: 38845259 DOI: 10.1016/j.ijbiomac.2024.132675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Novel hydrogel-based multifunctional systems prepared utilizing photocrosslinking and freeze-drying processes (PhotoCross/Freeze-dried) dedicated for bone tissue regeneration are presented. Fabricated materials, composed of methacrylated gelatin, chitosan, and chondroitin sulfate, possess interesting features including bioactivity, biocompatibility, as well as antibacterial activity. Importantly, their degradation and swellability might be easily tuned by playing with the biopolymeric content in the photocrosllinked systems. To broaden the potential application and deliver the therapeutic features, mesoporous silica particles functionalized with methacrylate moieties decorated with hydroxyapatite and loaded with the antiosteoporotic drug, alendronate, (MSP-MA-HAp-ALN) were dispersed within the biopolymeric sol and photocrosslinked. It was demonstrated that the obtained composites are characterized by a significantly extended degradation time, ensuring optimal conditions for balancing hybrids removal with the deposition of fresh bone. We have shown that attachment of MSP-MA-HAp-ALN to the polymeric matrix minimizes the initial burst effect and provides a prolonged release of ALN (up to 22 days). Moreover, the biological evaluation in vitro suggested the capability of the resulted systems to promote bone remodeling. Developed materials might potentially serve as scaffolds that after implantation will fill up bone defects of various origin (osteoporosis, tumour resection, accidents) providing the favourable conditions for bone regeneration and supporting the infections' treatment.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Sylwia Onak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Kowalczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
5
|
Jerez HE, Simioni YR, Ghosal K, Morilla MJ, Romero EL. Cholesterol nanoarchaeosomes for alendronate targeted delivery as an anti-endothelial dysfunction agent. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:517-534. [PMID: 38774586 PMCID: PMC11106671 DOI: 10.3762/bjnano.15.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024]
Abstract
Sodium alendronate (ALN) is a very hydrosoluble and poorly permeable molecule used as an antiresorptive agent and with vascular anticalcifying capacity. Loaded into targeted nanovesicles, its anti-inflammatory activity may be amplified towards extra-osseous and noncalcified target cells, such as severely irritated vascular endothelium. Here cytotoxicity, mitochondrial membrane potential, ATP content, and membrane fluidity of human endothelial venous cells (HUVECs) were determined after endocytosis of ALN-loaded nanoarchaeosomes (nanoARC-Chol(ALN), made of polar lipids from Halorubrum tebenquichense: cholesterol 7:3 w/w, 166 ± 5 nm, 0.16 ± 0.02 PDI, -40.8 ± 5.4 mV potential, 84.7 ± 21 µg/mg ALN/total lipids, TL). The effect of nanoARC-Chol(ALN) was further assessed on severely inflamed HUVECs. To that aim, HUVECs were grown on a porous barrier on top of a basal compartment seeded either with macrophages or human foam cells. One lighter and one more pronounced inflammatory context was modelled by adding lipopolysaccharide (LPS) to the apical or the apical and basal compartments. The endocytosis of nanoARC-Chol(ALN), was observed to partly reduce the endothelial-mesenchymal transition of HUVECs. Besides, while 10 mg/mL dexamethasone, 7.6 mM free ALN and ALN-loaded liposomes failed, 50 μg/mL TL + 2.5 μg/mL ALN (i.e., nanoARC-Chol(ALN)) reduced the IL-6 and IL-8 levels by, respectively, 75% and 65% in the mild and by, respectively, 60% and 40% in the pronounced inflammation model. This is the first report showing that the endocytosis of nanoARC-Chol(ALN) by HUVECs magnifies the anti-inflammatory activity of ALN even under conditions of intense irritation, not only surpassing that of free ALN but also that of dexamethasone.
Collapse
Affiliation(s)
- Horacio Emanuel Jerez
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Yamila Roxana Simioni
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
6
|
Klara J, Hinz A, Bzowska M, Horak W, Lewandowska-Łańcucka J. In vitro/ex vivo evaluation of multifunctional collagen/chitosan/hyaluronic acid hydrogel-based alendronate delivery systems. Int J Biol Macromol 2024; 262:130142. [PMID: 38365151 DOI: 10.1016/j.ijbiomac.2024.130142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Injectable hydrogel-based materials have emerged as promising alendronate (ALN) delivery systems for the treatment of osteoporosis. However, their intrinsic permeability limits the sustained delivery of small-molecule drugs. In response to this challenge, we present the multifunctional hybrids composed of mesoporous silica particles decorated with hydroxyapatite and loaded with alendronate (MSP-NH2-HAp-ALN), which are immobilized in collagen/chitosan/hyaluronic acid-based hydrogel. We have mainly focused on the biological in vitro/ex vivo evaluation of developed composites. It was found that the extracts released from tested systems do not exhibit hemolytic properties and are safe for blood elements and the human liver cell model. The resulting materials create an environment conducive to differentiating human bone marrow mesenchymal stem cells and reduce the viability of osteoclast precursors (RAW 264.7). Importantly, even the system with the lowest concentration of ALN caused a substantial cytotoxic effect on RAW 264.7 cells; their viability decreased to 20 % and 10 % of control on 3 and 7 day of culture. Additionally, prolonged ALN release (up to 20 days) with minimized burst release was observed, while material features (wettability, swellability, degradation, mechanical properties) depended on MSP-NH2-HAp-ALN content. The obtained data indicate that developed composites establish a high-potential formulation for safe and effective osteoporosis therapy.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Alicja Hinz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Wojciech Horak
- Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Mickiewicza 30, 30-059 Kraków, Poland
| | | |
Collapse
|
7
|
Wassif RK, Elkheshen SA, Shamma RN, Amer MS, Elhelw R, El-Kayal M. Injectable systems of chitosan in situ forming composite gel incorporating linezolid-loaded biodegradable nanoparticles for long-term treatment of bone infections. Drug Deliv Transl Res 2024; 14:80-102. [PMID: 37542190 PMCID: PMC10746766 DOI: 10.1007/s13346-023-01384-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 08/06/2023]
Abstract
The objective of the current study was to create an efficient, minimally invasive combined system comprising in situ forming hydrogel loaded with both spray-dried polymeric nanoparticles encapsulating linezolid and nanohydroxyapatite for local injection to bones or their close vicinity. The developed system was designed for a dual function namely releasing the drug in a sustained manner for long-term treatment of bone infections and supporting bone proliferation and new tissues generation. To achieve these objectives, two release sustainment systems for linezolid were optimized namely a composite in situ forming chitosan hydrogel and spray-dried PLGA/PLA solid nanoparticles. The composite, in situ forming hydrogel of chitosan was prepared using two different gelling agents namely glycerophosphate (GP) and sodium bicarbonate (NaHCO3) at 3 different concentrations each. The spray-dried linezolid-loaded PLGA/PLA nanoparticles were developed using a water-soluble carrier (PVP K30) and a lipid soluble one (cetyl alcohol) along with 3 types of DL-lactide and/or DL-lactide-co-glycolide copolymer using nano-spray-drying technique. Finally, the optimized spray-dried linezolid nanoparticles were incorporated into the optimized composite hydrogel containing nanohydroxy apatite (nHA). The combined hydrogel/nanoparticle systems displayed reasonable injectability with excellent gelation time at 37 °C. The optimum formulae sustained the release of linezolid for 7-10 days, which reveals its ability to reduce the frequency of injection during the course of treatment of bones infections and increase the patients' compliance. They succeeded to alleviate the bone infections and the associated clinical, biochemical, radiological, and histopathological changes within 2-4 weeks of injection. As to the state of art in this study and to the best of our knowledge, no such complete and systematic study on this type of combined in situ forming hydrogel loaded with spray-dried nanoparticles of linezolid is available yet in literatures.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Elini Street, Cairo, 11562, Egypt.
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Elini Street, Cairo, 11562, Egypt
| | - Mohammed S Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rehab Elhelw
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha El-Kayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
8
|
Yuan W, Xu J, Yang N, Wang H, Li J, Zhang M, Zhu M. Engineered Dynamic Hydrogel Niches for the Regulation of Redox Homeostasis in Osteoporosis and Degenerative Endocrine Diseases. Gels 2023; 10:31. [PMID: 38247755 PMCID: PMC10815676 DOI: 10.3390/gels10010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Osteoporosis and degenerative endocrine diseases are some of the major causes of disability in the elderly. The feedback loop in the endocrine system works to control the release of hormones and maintain the homeostasis of metabolism, thereby regulating the function of target organs. The breakdown of this feedback loop results in various endocrine and metabolic disorders, such as osteoporosis, type II diabetes, hyperlipidemia, etc. The direct regulation of redox homeostasis is one of the most attractive strategies to redress the imbalance of the feedback loop. The biophysical regulation of redox homeostasis can be achieved through engineered dynamic hydrogel niches, with which cellular mechanics and redox homeostasis are intrinsically connected. Mechanotransduction-dependent redox signaling is initiated by cell surface protein assemblies, cadherins for cell-cell junctions, and integrins for cell-ECM interactions. In this review, we focused on the biophysical regulation of redox homeostasis via the tunable cell-ECM interactions in the engineered dynamic hydrogel niches. We elucidate processes from the rational design of the hydrogel matrix to the mechano-signaling initiation and then to the redox response of the encapsulated cells. We also gave a comprehensive summary of the current biomedical applications of this strategy in several degenerative endocrine disease models.
Collapse
Affiliation(s)
- Weihao Yuan
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China; (N.Y.)
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Jiankun Xu
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Na Yang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Han Wang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jinteng Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Mengyao Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Meiling Zhu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
9
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Borse K, Shende P. 3D-to-4D Structures: an Exploration in Biomedical Applications. AAPS PharmSciTech 2023; 24:163. [PMID: 37537517 DOI: 10.1208/s12249-023-02626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
3D printing is a cutting-edge technique for manufacturing pharmaceutical drugs (Spritam), polypills (guaifenesin), nanosuspension (folic acid), and hydrogels (ibuprofen) with limitations like the choice of materials, restricted size of manufacturing, and design errors at lower and higher dimensions. In contrast, 4D printing represents an advancement on 3D printing, incorporating active materials like shape memory polymers and liquid crystal elastomers enabling printed objects to change shape in response to stimuli. 4D printing offers numerous benefits, including greater printing capacity, higher manufacturing efficiency, improved quality, lower production costs, reduced carbon footprint, and the ability to produce a wider range of products with greater potential. Recent examples of 4D printing advancements in the clinical setting include the development of artificial intravesicular implants for bladder disorders, 4D-printed hearts for transplant, splints for tracheobronchomalacia, microneedles for tissue wound healing, hydrogel capsules for ulcers, and theragrippers for anticancer drug delivery. This review highlights the advantages of 4D printing over 3D printing, recent applications in manufacturing smart pharmaceutical drug delivery systems with localized action, lower incidence of drug administration, and better patient compliance. It is recommended to conduct substantial research to further investigate the development and applicability of 4D printing in the future.
Collapse
Affiliation(s)
- Kadambari Borse
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
11
|
Luo J, Zhao X, Guo B, Han Y. Preparation, thermal response mechanisms and biomedical applications of thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 2023; 20:641-672. [PMID: 37218585 DOI: 10.1080/17425247.2023.2217377] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Drug treatment is one of the main ways of coping with disease today. For the disadvantages of drug management, thermosensitive hydrogel is used as a countermeasure, which can realize the simple sustained release of drugs and the controlled release of drugs in complex physiological environments. AREAS COVERED This paper talks about thermosensitive hydrogels that can be used as drug carriers. The common preparation materials, material forms, thermal response mechanisms, characteristics of thermosensitive hydrogels for drug release and main disease treatment applications are reviewed. EXPERT OPINION When thermosensitive hydrogels are used as drug loading and delivery platforms, desired drug release patterns and release profiles can be tailored by selecting raw materials, thermal response mechanisms, and material forms. The properties of hydrogels prepared from synthetic polymers will be more stable than natural polymers. Integrating multiple thermosensitive mechanisms or different kinds of thermosensitive mechanisms on the same hydrogel is expected to realize the spatiotemporal differential delivery of multiple drugs under temperature stimulation. The industrial transformation of thermosensitive hydrogels as drug delivery platforms needs to meet some important conditions.
Collapse
Affiliation(s)
- Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Klara J, Onak S, Kowalczyk A, Horak W, Wójcik K, Lewandowska-Łańcucka J. Towards Controlling the Local Bone Tissue Remodeling-Multifunctional Injectable Composites for Osteoporosis Treatment. Int J Mol Sci 2023; 24:ijms24054959. [PMID: 36902390 PMCID: PMC10002562 DOI: 10.3390/ijms24054959] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alendronate (ALN) is the most commonly prescribed oral nitrogen-containing bisphosphonate for osteoporosis therapy. However, its administration is associated with serious side effects. Therefore, the drug delivery systems (DDS) enabling local administration and localized action of that drug are still of great importance. Herein, a novel multifunctional DDS system based on the hydroxyapatite-decorated mesoporous silica particles (MSP-NH2-HAp-ALN) embedded into collagen/chitosan/chondroitin sulfate hydrogel for simultaneous osteoporosis treatment and bone regeneration is proposed. In such a system, the hydrogel serves as a carrier for the controlled delivery of ALN at the site of implantation, thus limiting potential adverse effects. The involvement of MSP-NH2-HAp-ALN in the crosslinking process was established, as well as the ability of hybrids to be used as injectable systems. We have shown that the attachment of MSP-NH2-HAp-ALN to the polymeric matrix provides a prolonged ALN release (up to 20 days) and minimizes the initial burst effect. It was revealed that obtained composites are effective osteoconductive materials capable of supporting the osteoblast-like cell (MG-63) functions and inhibiting osteoclast-like cell (J7741.A) proliferation in vitro. The purposely selected biomimetic composition of these materials (biopolymer hydrogel enriched with the mineral phase) allows their biointegration (in vitro study in the simulated body fluid) and delivers the desired physicochemical features (mechanical, wettability, swellability). Furthermore, the antibacterial activity of the composites in in vitro experiments was also demonstrated.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sylwia Onak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Kowalczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Wojciech Horak
- Department of Machine Design and Technology, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
13
|
Klara J, Lewandowska-Łańcucka J. How Efficient are Alendronate-Nano/Biomaterial Combinations for Anti-Osteoporosis Therapy? An Evidence-Based Review of the Literature. Int J Nanomedicine 2022; 17:6065-6094. [PMID: 36510618 PMCID: PMC9738991 DOI: 10.2147/ijn.s388430] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Because of the systemic nature of osteoporosis, the associated escalation in fracture risk affects virtually all skeletal sites. The problem is serious since it is estimated that more than 23 million men and women are at high risk of osteoporotic-like breakages in the European Union. Alendronate (ALN) is the most commonly prescribed oral nitrogen-containing bisphosphonate (BP) for the prevention and the therapy of osteoporosis. This is also one of the most intensely studied drugs in this field. However, ALN is characterized by restricted oral absorption and bioavailability and simultaneously its administration has serious side-effects (jaw osteonecrosis, irritation of the gastrointestinal system, nausea, musculoskeletal pain, and cardiovascular risks). Therefore, delivery systems enabling controlled release and local action of this drug are of great interest, being widely researched and presented in the literature. In this review, we discuss the current trends in the design of various types of alendronate carriers. Our paper is focused on the most recent developments in the field of nano/biomaterials-based systems for ALN delivery, including nano/microformulations, synthetic/natural polymeric and inorganic materials, hydrogel-based materials, scaffolds, coated-like structures, as well as organic-inorganic hybrids. Topics related to the treatment of complex bone diseases including osteoporosis have been covered in several more general reviews; however, the systems for this particular drug have not yet been discussed in detail.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Kraków, 30-387, Poland
| | | |
Collapse
|
14
|
Song P, Cui Z, Hu L. Applications and prospects of intra-articular drug delivery system in arthritis therapeutics. J Control Release 2022; 352:946-960. [PMID: 36375618 DOI: 10.1016/j.jconrel.2022.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Arthritis is a kind of chronic disease that affects joints and muscles with the symptoms of joint pain, inflammation and limited movement of joints. Among various clinical therapies, drug therapy has been extensively applied because of its accessibility, safety and effectiveness. In recent years, the intra-articular injection has dramatic therapeutic effects in treating arthritis with high patient compliance and low side effects. In this review, we will introduce pathology of arthritis, along with the accessible treatment and diagnosis methods, then we will summarize major advances of current hopeful intra-articular delivery systems such as microspheres, hydrogels, nanoparticles and liposomes. At last, some safety assessments in the preclinical work and the main challenges for the further development of intra-articular treatment were also discussed.
Collapse
Affiliation(s)
- Pengjin Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding 071000, China
| | - Zhe Cui
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding 071000, China.
| | - Liandong Hu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding 071000, China.
| |
Collapse
|
15
|
Gong Y, Bu Y, Li Y, Hao D, He B, Kong L, Huang W, Gao X, Zhang B, Qu Z, Wang D, Yan L. Hydrogel-based delivery system applied in the local anti-osteoporotic bone defects. Front Bioeng Biotechnol 2022; 10:1058300. [PMID: 36440439 PMCID: PMC9691673 DOI: 10.3389/fbioe.2022.1058300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is an age-related systemic skeletal disease leading to bone mass loss and microarchitectural deterioration. It affects a large number of patients, thereby economically burdening healthcare systems worldwide. The low bioavailability and complications, associated with systemic drug consumption, limit the efficacy of anti-osteoporosis drugs currently available. Thus, a combination of therapies, including local treatment and systemic intervention, may be more beneficial over a singular pharmacological treatment. Hydrogels are attractive materials as fillers for bone injuries with irregular shapes and as carriers for local therapeutic treatments. They exhibit low cytotoxicity, excellent biocompatibility, and biodegradability, and some with excellent mechanical and swelling properties, and a controlled degradation rate. This review reports the advantages of hydrogels for adjuvants loading, including nature-based, synthetic, and composite hydrogels. In addition, we discuss functional adjuvants loaded with hydrogels, primarily focusing on drugs and cells that inhibit osteoclast and promote osteoblast. Selecting appropriate hydrogels and adjuvants is the key to successful treatment. We hope this review serves as a reference for subsequent research and clinical application of hydrogel-based delivery systems in osteoporosis therapy.
Collapse
Affiliation(s)
- Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yazhong Bu
- Department of Biophysics, Institute of Medical Engineering, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yongliang Li
- Department of Rehabilitation, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wangli Huang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zechao Qu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dong Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
16
|
Current Status of the Diagnosis and Management of Osteoporosis. Int J Mol Sci 2022; 23:ijms23169465. [PMID: 36012730 PMCID: PMC9408932 DOI: 10.3390/ijms23169465] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis has been defined as the silent disease of the 21st century, becoming a public health risk due to its severity, chronicity and progression and affecting mainly postmenopausal women and older adults. Osteoporosis is characterized by an imbalance between bone resorption and bone production. It is diagnosed through different methods such as bone densitometry and dual X-rays. The treatment of this pathology focuses on different aspects. On the one hand, pharmacological treatments are characterized by the use of anti-resorptive drugs, as well as emerging regenerative medicine treatments such as cell therapies and the use of bioactive hydrogels. On the other hand, non-pharmacological treatments are associated with lifestyle habits that should be incorporated, such as physical activity, diet and the cessation of harmful habits such as a high consumption of alcohol or smoking. This review seeks to provide an overview of the theoretical basis in relation to bone biology, the existing methods for diagnosis and the treatments of osteoporosis, including the development of new strategies.
Collapse
|
17
|
Chang S, Wang S, Liu Z, Wang X. Advances of Stimulus-Responsive Hydrogels for Bone Defects Repair in Tissue Engineering. Gels 2022; 8:gels8060389. [PMID: 35735733 PMCID: PMC9222548 DOI: 10.3390/gels8060389] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/16/2022] Open
Abstract
Bone defects, as one of the most urgent problems in the orthopedic clinic, have attracted much attention from the biomedical community and society. Hydrogels have been widely used in the biomedical field for tissue engineering research because of their excellent hydrophilicity, biocompatibility, and degradability. Stimulus-responsive hydrogels, as a new type of smart biomaterial, have more advantages in sensing external physical (light, temperature, pressure, electric field, magnetic field, etc.), chemical (pH, redox reaction, ions, etc.), biochemical (glucose, enzymes, etc.) and other different stimuli. They can respond to stimuli such as the characteristics of the 3D shape and solid-liquid phase state, and exhibit special properties (injection ability, self-repair, shape memory, etc.), thus becoming an ideal material to provide cell adhesion, proliferation, and differentiation, and achieve precise bone defect repair. This review is focused on the classification, design concepts, and research progress of stimulus-responsive hydrogels based on different types of external environmental stimuli, aiming at introducing new ideas and methods for repairing complex bone defects.
Collapse
Affiliation(s)
- Shuai Chang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (S.C.); (S.W.)
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Shaobo Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (S.C.); (S.W.)
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (S.C.); (S.W.)
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (Z.L.); (X.W.)
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.L.); (X.W.)
| |
Collapse
|
18
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
19
|
Shar A, Aboutalebianaraki N, Misiti K, Sip YYL, Zhai L, Razavi M. A novel ultrasound-mediated nanodroplet-based gene delivery system for osteoporosis treatment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102530. [PMID: 35104672 DOI: 10.1016/j.nano.2022.102530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/30/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
This project aimed to develop, optimize, and test an ultrasound-responsive targeted nanodroplet system for the delivery of osteoporosis-related silencing gene Cathepsin K small interfering RNA (CTSK siRNA) for osteoporosis treatment. The nanodroplet (ND) is composed of a gas core made from perfluorocarbon, stabilized with albumin, encapsulated with CTSK siRNA, and embedded with alendronate (AL) for bone targeting (CTSK siRNA-ND-AL). Following the development, the responsiveness of CTSK siRNA-ND-AL to a therapeutic ultrasound probe was examined. The results of biocompatibility tests with human bone marrow-derived mesenchymal stem cells proved no significant cell death (P > 0.05). When the CTSK siRNA-ND-AL was supplemented with human osteoclast precursors, they suppressed osteoclastogenesis. Thus, this project establishes the potential of nanotechnology and ultrasound to deliver genes into the osteoclasts. This research also presents a novel ultrasound responsive and targeted nanodroplet platform that can be used as a gene and drug delivery system for various diseases including cancer.
Collapse
Affiliation(s)
- Angela Shar
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Nadia Aboutalebianaraki
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA; Department of Material Sciences and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Kaylee Misiti
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Yuen Yee Li Sip
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, Florida, USA; Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Lei Zhai
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA; Department of Chemistry, University of Central Florida, Orlando, Florida, USA
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA; Department of Material Sciences and Engineering, University of Central Florida, Orlando, Florida, USA.
| |
Collapse
|
20
|
Gilarska A, Hinz A, Bzowska M, Dyduch G, Kamiński K, Nowakowska M, Lewandowska-Łańcucka J. Addressing the Osteoporosis Problem-Multifunctional Injectable Hybrid Materials for Controlling Local Bone Tissue Remodeling. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49762-49779. [PMID: 34643364 PMCID: PMC8554765 DOI: 10.1021/acsami.1c17472] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 05/08/2023]
Abstract
Novel multifunctional biomimetic injectable hybrid systems were synthesized. The physicochemical as well as biological in vitro and in vivo tests demonstrated that they are promising candidates for bone tissue regeneration. The hybrids are composed of a biopolymeric collagen/chitosan/hyaluronic acid matrix and amine group-functionalized silica particles decorated with apatite to which the alendronate molecules were coordinated. The components of these systems were integrated and stabilized by cross-linking with genipin, a compound of natural origin. They can be precisely injected into the diseased tissue in the form of a viscous sol or a partially cross-linked hydrogel, where they can serve as scaffolds for locally controlled bone tissue regeneration/remodeling by supporting the osteoblast formation/proliferation and maintaining the optimal osteoclast level. These materials lack systemic toxicity. They can be particularly useful for the repair of small osteoporotic bone defects.
Collapse
Affiliation(s)
- Adriana Gilarska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Faculty
of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Alicja Hinz
- Department
of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Monika Bzowska
- Department
of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Grzegorz Dyduch
- Department
of Pathomorphology, Jagiellonian University
Medical College, 30-387 Kraków, Poland
| | - Kamil Kamiński
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | |
Collapse
|
21
|
Sukpaita T, Chirachanchai S, Pimkhaokham A, Ampornaramveth RS. Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Mar Drugs 2021; 19:551. [PMID: 34677450 PMCID: PMC8540467 DOI: 10.3390/md19100551] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
Conventional bone grafting procedures used to treat bone defects have several limitations. An important aspect of bone tissue engineering is developing novel bone substitute biomaterials for bone grafts to repair orthopedic defects. Considerable attention has been given to chitosan, a natural biopolymer primarily extracted from crustacean shells, which offers desirable characteristics, such as being biocompatible, biodegradable, and osteoconductive. This review presents an overview of the chitosan-based biomaterials for bone tissue engineering (BTE). It covers the basic knowledge of chitosan in terms of biomaterials, the traditional and novel strategies of the chitosan scaffold fabrication process, and their advantages and disadvantages. Furthermore, this paper integrates the relevant contributions in giving a brief insight into the recent research development of chitosan-based scaffolds and their limitations in BTE. The last part of the review discusses the next-generation smart chitosan-based scaffold and current applications in regenerative dentistry and future directions in the field of mineralized tissue regeneration.
Collapse
Affiliation(s)
- Teerawat Sukpaita
- Research Unit on Oral Microbiology and Immunology, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Suwabun Chirachanchai
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand;
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Atiphan Pimkhaokham
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
22
|
Taymouri S, Amirkhani S, Mirian M. Fabrication and characterization of injectable thermosensitive hydrogel containing dipyridamole loaded polycaprolactone nanoparticles for bone tissue engineering. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Samirah, Budiatin AS, Mahyudin F, Khotib J. Fabrication and characterization of bovine hydroxyapatite-gelatin-alendronate scaffold cross-linked by glutaraldehyde for bone regeneration. J Basic Clin Physiol Pharmacol 2021; 32:555-560. [PMID: 34214349 DOI: 10.1515/jbcpp-2020-0422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Alendronate are widely used in the treatment of bone disorders characterized by inhibit osteoclast-mediated bone resorption such as Paget's disease, fibrous dysplasia, myeloma, bone metastases and osteoporosis. In recent studies alendronate improves proliferation and differentiation of osteoblasts, thereby facilitating for bone regeneration. The disadvantages of this class are their poor bioavailability and side effects on oral and intravenous application such as stomach irritation and osteonecrosis in jaw. Thus, local treatment of alendronate is needed in order to achieve high concentration of drug. Bovine hydroxyapatite-gelatin scaffold with alendronate was studied. Glutaraldehyde was used as cross-linking agent, increase the characteristics of this scaffold. The objectives of this study were to manufacture and characterize alendronate scaffold using bovine hydroxyapatite-gelatin and crosslinked by glutaraldehyde. METHODS Preparation of cross-linked bovine hydroxyapatite-gelatin and alendronate scaffold with different concentration of glutaraldehyde (0.00, 0.50, 0.75, and 1.00%). The scaffolds were characterized for compressive strength, porosity, density, swelling ratio, in vitro degradation, and cytotoxicity (the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, shorted as MTT assay). RESULTS Bovine hydroxyapatite-gelatin-alendronate scaffold cross-linked with glutaraldehyde showed lower density than without glutaraldehyde. As glutaraldehyde concentration increased, porosity also increased. Eventually, it reduced compressive strength. Swelling ratio and in vitro degradation was negatively dependent on glutaraldehyde concentration. In addition, the scaffold has a good safety by MTT assay. CONCLUSIONS Bovine hydroxyapatite-gelatin-alendronate scaffold was fabricated with various concentrations of glutaraldehyde. The presence of glutaraldehyde on bovine hydroxyapatite-gelatin-alendronate is safe and suitable candidate scaffold for bone regeneration.
Collapse
Affiliation(s)
- Samirah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic and Traumatology, Faculty of Medicines, Airlangga University, Surabaya, Indonesia
| | - Junaidi Khotib
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
24
|
Adel IM, ElMeligy MF, Abdelkhalek AA, Elkasabgy NA. Design and characterization of highly porous curcumin loaded freeze-dried wafers for wound healing. Eur J Pharm Sci 2021; 164:105888. [PMID: 34044118 DOI: 10.1016/j.ejps.2021.105888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
The goal of this research was to evaluate the beneficial effects of topical curcumin loaded freeze-dried wafers in wound healing. Curcumin wafers were fabricated by cross-linking of chitosan with beta glycerophosphate under magnetic stirring. Composite wafers were prepared by the addition of sodium hyaluronate. Wafers were fabricated by freeze-drying technique. The resulted wafers were examined by naked eye and their dimensions were measured using a caliper. % Drug content, in-vitro release and % water uptake tests were conducted to characterize the fabricated wafers. Porosity testing, compressive mechanical behavior, morphological examination using scanning electron microscopy, thermal behavior using differential scanning calorimetry and Fourier transform infrared spectroscopy were all carried out on the optimized cross-linked wafers followed by their microbiological assays and cytotoxicity studies. The results showed that the optimized wafers possessed high water uptake capabilities while entertaining very high porosity levels (86-89%). Microbiological assay revealed the superiority of the selected curcumin wafers versus free curcumin in bacterial growth inhibition against Staphylococcus epidermidis and Staphylococcus aureus (MRSA) bacteria. The anti-inflammatory effects of the selected curcumin wafers were evaluated against pro-inflammatory cytokines. The results suggested that they were significantly better than free curcumin in lowering cytokines levels. To conclude, the obtained findings revealed that curcumin wafers offered a promising solution in the field of wound healing.
Collapse
Affiliation(s)
- Islam M Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Mohamed F ElMeligy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - AbdelFattah A Abdelkhalek
- Department of Microbiology of Supplementary General Science, Faculty of Oral & Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
25
|
Diacerein-Loaded Hyaluosomes as a Dual-Function Platform for Osteoarthritis Management via Intra-Articular Injection: In Vitro Characterization and In Vivo Assessment in a Rat Model. Pharmaceutics 2021; 13:pharmaceutics13060765. [PMID: 34063749 PMCID: PMC8223785 DOI: 10.3390/pharmaceutics13060765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
The application of intra-articular injections in osteoarthritis management has gained great attention lately. In this work, novel intra-articular injectable hyaluronic acid gel-core vesicles (hyaluosomes) loaded with diacerein (DCN), a structural modifying osteoarthritis drug, were developed. A full factorial design was employed to study the effect of different formulation parameters on the drug entrapment efficiency, particle size, and zeta potential. Results showed that the prepared optimized DCN- loaded hyaluosomes were able to achieve high entrapment (90.7%) with a small size (310 nm). The morphology of the optimized hyaluosomes was further examined using TEM, and revealed spherical shaped vesicles with hyaluronic acid in the core. Furthermore, the ability of the prepared DCN-loaded hyaluosomes to improve the in vivo inflammatory condition, and deterioration of cartilage in rats (injected with antigen to induce arthritis) following intra-articular injection was assessed, and revealed superior function on preventing cartilage damage, and inflammation. The inflammatory activity assessed by measuring the rat’s plasma TNF-α and IL-1b levels, revealed significant elevation in the untreated group as compared to the treated groups. The obtained results show that the prepared DCN-loaded hyaluosomes would represent a step forward in the design of novel intra articular injection for management of osteoarthritis.
Collapse
|
26
|
Zewail M, Nafee N, Boraie N. Intra-Articular Dual Drug Delivery for Synergistic Rheumatoid Arthritis Treatment. J Pharm Sci 2021; 110:2808-2822. [PMID: 33848528 DOI: 10.1016/j.xphs.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Systemic rheumatoid arthritis (RA) regimens fail to attain effective drug level at the affected joints and are associated with serious side effects. Herein, an attempt made to improve therapeutic outcomes of both leflunomide (LEF) which is a disease modifying antirheumatic and dexamethasone (Dex) through local delivery of combination therapy by intra-articular route. LEF and Dex were encapsulated in nanostructured lipid carriers (NLCs) and PLGA nanoparticles (NPs), respectively. Both nanocarriers were loaded into chitosan/β glycerophosphate (CS/βGP) thermo-sensitive hydrogels and injected intra-articularly in adjuvant induced RA rat model. Particle size of LEF NLCs and selected Dex NPs formulations were 200 and 119 nm, respectively. Dex NPs and LEF NLCs showed a sustained release profile for up to 58 and 17 days, respectively. After 14 days of treatment remarkable joint healing was observed for groups treated with Dex NPs in combination with either free LEF or LEF NLCs in CS/βGP hydrogel. Joint diameter measurements, TNF α levels and histopathological examination of dissected joints showed comparable values to the negative control group. This might be attributed to the synergistic effect of drug combination besides the ability of nanocarriers loaded hydrogel to prolong joint residence time and enhance joint healing potential.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, El Gomhoria Street, Damanhour, Egypt.
| | - Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
27
|
Wu H, Luo Y, Xu D, Ke X, Ci T. Low molecular weight heparin modified bone targeting liposomes for orthotopic osteosarcoma and breast cancer bone metastatic tumors. Int J Biol Macromol 2020; 164:2583-2597. [DOI: 10.1016/j.ijbiomac.2020.08.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
|
28
|
Nafee N, Ameen AER, Abdallah OY. Patient-Friendly, Olfactory-Targeted, Stimuli-Responsive Hydrogels for Cerebral Degenerative Disorders Ensured > 400% Brain Targeting Efficiency in Rats. AAPS PharmSciTech 2020; 22:6. [PMID: 33222021 DOI: 10.1208/s12249-020-01872-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023] Open
Abstract
Non-invasive brain therapy for chronic neurological disorders is in high demand. Vinpocetine (VIN) tablets for cerebrovascular degenerative disorders ensued < 7% oral bioavailability. The olfactory pathway (providing direct brain access) can improve VIN pharmacokinetic/pharmacodynamic profile. In this context, VIN hydrogels based on temperature-, pH-, and ion-triggered gelation in physiological milieu were formulated. Poloxamer-chitosan (PLX-CS) and carbopol-HPMC-alginate (CP-HPMC-SA) systems were optimized for appropriate gelation time, temperature, and pH. PLX-CS-hydrogels exhibited strong mucoadhesion for > 8 h, while CP-HPMC-SA hydrogels were mucoadhesive in simulated nasal fluid, owing to pH and ion-activated gelation. Along with prolonged mucosal residence, hydrogels confirmed sustained VIN release (> 24 h), especially from CP-HPMC-SA hydrogels. As proof of concept, brain exposure of intranasal VIN hydrogels was investigated in rats versus VIN-IV bolus. PLX-CS provided 146% increase in AUC0-30 and 3-fold maximum brain concentration (BCmax) relative to IV bolus. BCmax was reached after 4 h versus 1 h (IV bolus). CP-HPMC-SA hydrogel showed superior brain targeting efficiency (460%) and brain direct transport percentage (78.23%). VIN plasma pharmacokinetics confirmed 45-60% reduction in AUCplasma versus IV bolus, while PCmax of CP-HPMC-SA and PLX-CS represented 17 and 28% that of IV bolus, respectively. Olfactory-targeted hydrogels grant effective, sustainable VIN brain level with minimal systemic exposure, thus, assuring lower dose, dose frequency, side effects, and per se better patient compliance.
Collapse
|
29
|
Fadera S, Cheng NC, Young TH, Lee IC. In vitro study of SDF-1α-loaded injectable and thermally responsive hydrogels for adipose stem cell therapy by SDF-1/CXCR4 axis. J Mater Chem B 2020; 8:10360-10372. [PMID: 33108417 DOI: 10.1039/d0tb01961e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cell-based approaches have become a promising therapeutic strategy for treating ischemic diseases. The aim of this study was to develop injectable hydrogel systems for the local release of stromal cell-derived factor-1α (SDF-1α) to recruit adipose stem cells (ASCs) that express CXCR4 to achieve stem cell therapy and therapeutic angiogenesis. Thermoresponsive and injectable chitosan (CS)/β-glycerophosphate disodium salt pentahydrate (βGP) hydrogels with different concentrations of hyaluronic acid (HA) were designed and fabricated to achieve local and sustained release of SDF-1α for ASC recruitment. Herein, the material structures, physical properties, gelation temperature, and gelation time of hydrogels with different compositions were determined. The incorporation of 0.9% HA in CS-based hydrogels not only enhanced the gelation time but also increased the strength of the hydrogels. In addition, the results revealed that the thermoresponsive and injectable CS/βGP/HA hydrogels showed good biocompatibility. In addition, the in vitro release profiles showed that the hydrogels achieved sustained release of SDF-1α over 7 days and enhanced ASC migration. The results revealed that the hydrogels with HA enhanced the sustained release effect compared with the hydrogel without HA, indicating that the HA content regulated the physical and release properties of the injectable hydrogels. Therefore, thermoresponsive and injectable CS/βGP/HA hydrogels may provide an alternative for treating ischemic diseases via SDF-1/CXCR4 axis for ASC recruitment and retention.
Collapse
Affiliation(s)
- Siaka Fadera
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S Rd, Taipei 100, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 1 Jen-Ai Rd, Taipei 100, Taiwan.
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
30
|
Zheng Z, Yu C, Wei H. Injectable Hydrogels as Three-Dimensional Network Reservoirs for Osteoporosis Treatment. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:430-454. [PMID: 33086984 DOI: 10.1089/ten.teb.2020.0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite tremendous progresses made in the field of tissue engineering over the past several decades, it remains a significant challenge for the treatment of osteoporosis (OP) due to the lack of appropriate carriers to improve the bioavailability of therapeutic agents and the unavailability of artificial bone matrix with desired properties for the replacement of damaged bone regions. Encouragingly, the development of injectable hydrogels for the treatment of OP has attracted increasing attention in recent years because they can serve either as a reservoir for various therapeutic species or as a perfect filler for bone injuries with irregular shapes. However, the relationship between the complicated pathological mechanism of OP and the properties of diverse polymeric materials lacks elucidation, which clearly hampers the clinical application of injectable hydrogels for the efficient treatment of OP. To clarify this relationship, this article summarized both localized and systematic treatment of OP using an injectable hydrogel-based strategy. Specifically, the pathogenesis of OP and the limitations of current treatment approaches were first analyzed. We further focused on the use of hydrogels loaded with various therapeutic substances following a classification standard of the encapsulated cargoes for OP treatment with an emphasis on the application and precautions of each category. A concluding remark on existing challenges and future directions of this rapidly developing research area was finally made. Impact statement Effective osteoporosis (OP) treatment remains a significant challenge due substantially to the unavailability of appropriate drug carriers and artificial matrices with desired properties to promote bone repair and replace damaged regions. For this purpose, this review focused on the development of diverse injectable hydrogel systems for the delivery of various therapeutic agents, including drugs, stem cells, and nucleic acids, for effective increase in bone mass and favorable osteogenesis. The summarized important guidelines are believed to promote clinical development and translation of hydrogels for the efficient treatment of OP and OP-related bone damages toward improved life quality of millions of patients.
Collapse
Affiliation(s)
- Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| |
Collapse
|
31
|
Tang G, Tan Z, Zeng W, Wang X, Shi C, Liu Y, He H, Chen R, Ye X. Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:587658. [PMID: 33042982 PMCID: PMC7527831 DOI: 10.3389/fbioe.2020.587658] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
Traditional strategies of bone repair include autografts, allografts and surgical reconstructions, but they may bring about potential hazard of donor site morbidity, rejection, risk of disease transmission and repetitive surgery. Bone tissue engineering (BTE) is a multidisciplinary field that offers promising substitutes in biopharmaceutical applications, and chitosan (CS)-based bone reconstructions can be a potential candidate in regenerative tissue fields owing to its low immunogenicity, biodegradability, bioresorbable features, low-cost and economic nature. Formulations of CS-based injectable hydrogels with thermo/pH-response are advantageous in terms of their high-water imbibing capability, minimal invasiveness, porous networks, and ability to mold perfectly into an irregular defect. Additionally, CS combined with other naturally-derived or synthetic polymers and bioactive agents has proven to be an effective alternative to autologous bone and dental grafts. In this review, we will highlight the current progress in the development of preparation methods, physicochemical properties and applications of CS-based injectable hydrogels and their perspectives in bone and dental regeneration. We believe this review is intended as starting point and inspiration for future research effort to develop the next generation of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Tan
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Wusi Zeng
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong He
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Zameer S, Ali J, Vohora D, Najmi AK, Akhtar M. Development, optimisation and evaluation of chitosan nanoparticles of alendronate against Alzheimer's disease in intracerebroventricular streptozotocin model for brain delivery. J Drug Target 2020; 29:199-216. [PMID: 32876502 DOI: 10.1080/1061186x.2020.1817041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current study aimed to develop alendronate (ALN)-loaded chitosan nanoparticles (CS-ALN-NPs) for brain delivery via intranasal route. These CS-ALN-NPs reduced the peripheral side effects and released ALN directly to brain. These NPs were formulated through ionic gelation technique by mixing sodium tripolyphosphate (1.5 mg/ml) in ALN-CS (1.75 mg/ml) solution. CS-ALN-NPs attained 135.75 ± 5.80 nm, 0.21 ± 0.013, 23.8 ± 3.69 mV, 72.46 ± 0.879% and 30.92 ± 0.375% mean particle size, PDI, zeta potential, entrapment efficiency and loading capacity, respectively. Furthermore, the TEM and SEM analysis of CS-ALN-NPs, respectively, revealed the particle size in 200 nm range and spherical shape. The in vitro and ex vivo release profile revealed a sustained drug release through CS-ALN-NPs as compared to pure drug solution. Also these NPs acquired a high concentration in mice brain and better pharmacokinetic profile than ALN solution (intranasal) CS-ALN-NPs were then evaluated against intracerebroventricular-streptozotocin (ICV-STZ) induced Alzheimer's disease (AD)-like pathologies in mice. The intranasal CS-ALN-NP altered the ICV-STZ induced neurobehavioral, neurochemical and histopathological changes in mice. These effects were significant to those of ALN solution (intranasal). The neuroprotective potential of CS-ALN-NPs observed in ICV-STZ mice model of AD may be a promising brain-targeted delivery system for AD treatment along with further extensive exploration at both pre-clinical and clinical edge. HIGHLIGHTS CS-ALN-NPs were developed and optimised to overcome the poor pharmacokinetic profile and associated side effects of ALN CS-ALN-NPs showed particle size within 200 nm range as well as controlled and sustained release in in vitro release study These optimised NPs of ALN attained higher brain:blood ratio and better pharmacokinetic profile (Cmax, tmax, AUC) CS-ALN-NPs markedly altered ICV STZ induced impairment in cognitive functions of mice and changes in APP processing, neuroinflammatory cytokines and other biochemical parameters in mice hippocampus.
Collapse
Affiliation(s)
- Saima Zameer
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
33
|
Ashe S, Behera S, Dash P, Nayak D, Nayak B. Gelatin carrageenan sericin hydrogel composites improves cell viability of cryopreserved SaOS-2 cells. Int J Biol Macromol 2020; 154:606-620. [PMID: 32156543 DOI: 10.1016/j.ijbiomac.2020.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Cryopreservation and the low revival rate of cryopreserved cells remains a major challenge in cell based bone regeneration therapies. In our current study we aimed to develop a sericin based hydrogel composite incorporating various drugs and growth factors to enhance cell attachment, cryopreservation to increase the cellular viability upon revival. Sericin, gelatin and carrageenan blended hydrogel composites were prepared and explored for their physicochemical properties. The hydrogels prepared were porous and showed higher biocompatibility. Further, silver nanoparticles, alendronate and insulin like growth factor (IGF-1) were incorporated into the hybrid hydrogels individually and checked for sustained drug release profile. IGF-1 incorporated hydrogels composites showed better osteogenic cell attachment, proliferation and cell revival upon cryopreservation. The clonogenic potential of seeded cells upon 30 days of cryopreservation was also evaluated which was 55% in IGF-1 incorporated scaffold cells. A flow cytometry based staining protocol using Annexin V was developed which showed a live cell population up to 80% even after 30 days of crypreservation. These results validate the potential of our formulated hydrogels as cell based systems aimed for increasing cell survival upon cryopreservation and thus has a great potential for bone repair and regeneration.
Collapse
Affiliation(s)
- Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science National Institute of Technology Rourkela, Odisha 769008, India
| | - Sashikant Behera
- Immunology and Molecular Medicine Laboratory, Department of Life Science National Institute of Technology Rourkela, Odisha 769008, India
| | - Priyanka Dash
- Immunology and Molecular Medicine Laboratory, Department of Life Science National Institute of Technology Rourkela, Odisha 769008, India
| | - Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science National Institute of Technology Rourkela, Odisha 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
34
|
Lavanya K, Chandran SV, Balagangadharan K, Selvamurugan N. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110862. [DOI: 10.1016/j.msec.2020.110862] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023]
|
35
|
Li D, Zhou J, Zhang M, Ma Y, Yang Y, Han X, Wang X. Long-term delivery of alendronate through an injectable tetra-PEG hydrogel to promote osteoporosis therapy. Biomater Sci 2020; 8:3138-3146. [PMID: 32352105 DOI: 10.1039/d0bm00376j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pharmacotherapy for hypercalcemia, which is mainly caused by osteoporosis, is an effective method to regulate the in vivo calcium equilibrium. From this perspective, the development of a minimally invasive gelling system for the prolonged local delivery of bisphosphonates has practical significance in the clinical therapy of bone osteoporosis. Here, a biocompatible and injectable hydrogel based on a uniform tetra-PEG network carrying a PEG-modified alendronate (ALN) prodrug for the localized elution and long-term sustained release of anti-osteoporotic small molecule drugs is reported. The obtained ALN-based tetra-PEG hydrogels exhibit rapid gel formation and excellent injectability, thereby allowing for the easy injection and consequent adaptation of hydrogels into the bone defects with irregular shapes, which promotes the ALN-based tetra-PEG hydrogels with depot formulation capacity for governing the on-demand release of ALN drugs and local reinforcement of bone osteoporosis at the implantation sites of animals. The findings imply that these injectable hydrogels mediate the optimized release of therapeutic cargoes and effectively promote in situ bone regeneration via minimally invasive procedures, which is effective for clinical osteoporosis therapy.
Collapse
Affiliation(s)
- Dawei Li
- The 8th Medical Center of Chinese PLA General Hospital, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater 2020; 101:26-42. [PMID: 31672585 DOI: 10.1016/j.actbio.2019.10.038] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Four-dimensional (4D) bioprinting, in which the concept of time is integrated with three-dimensional (3D) bioprinting as the fourth dimension, has currently emerged as the next-generation solution of tissue engineering as it presents the possibility of constructing complex, functional structures. 4D bioprinting can be used to fabricate dynamic 3D-patterned biological architectures that will change their shapes under various stimuli by employing stimuli-responsive materials. The functional transformation and maturation of printed cell-laden constructs over time are also regarded as 4D bioprinting, providing unprecedented potential for bone tissue engineering. The shape memory properties of printed structures cater to the need for personalized bone defect repair and the functional maturation procedures promote the osteogenic differentiation of stem cells. In this review, we introduce the application of different stimuli-responsive biomaterials in tissue engineering and a series of 4D bioprinting strategies based on functional transformation of printed structures. Furthermore, we discuss the application of 4D bioprinting in bone tissue engineering, as well as the current challenges and future perspectives. STATEMENTS OF SIGNIFICANCE: In this review, we have demonstrated the 4D bioprinting technologies, which integrate the concept of time within the traditional 3D bioprinting technology as the fourth dimension and facilitate the fabrications of complex, functional biological architectures. These 4D bioprinting structures could go through shape or functional transformation over time via using different stimuli-responsive biomaterials and a series of 4D bioprinting strategies. Moreover, by summarizing potential applications of 4D bioprinting in the field of bone tissue engineering, these emerging technologies could fulfill unaddressed medical requirements. The further discussions about future challenges and perspectives will give us more inspirations about widespread applications of this emerging technology for tissue engineering in biomedical field.
Collapse
Affiliation(s)
- Zhuqing Wan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
37
|
Scalzone A, Ferreira AM, Tonda-Turo C, Ciardelli G, Dalgarno K, Gentile P. The interplay between chondrocyte spheroids and mesenchymal stem cells boosts cartilage regeneration within a 3D natural-based hydrogel. Sci Rep 2019; 9:14630. [PMID: 31601910 PMCID: PMC6787336 DOI: 10.1038/s41598-019-51070-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
Articular cartilage (AC) lacks the ability to self-repair and cell-based approaches, primarily based on using chondrocytes and mesenchymal stem cells (MSCs), are emerging as effective technology to restore cartilage functionality, because cells synergic functionality may support the maintenance of chondrogenic phenotype and promote extracellular matrix regeneration. This work aims to develop a more physiologically representative co-culture system to investigate the influence of MSCs on the activity of chondrocytes. A thermo-sensitive chitosan-based hydrogel, ionically crosslinked with β-glycerophosphate, is optimised to obtain sol/gel transition at physiological conditions within 5 minutes, high porosity with pores diameter <30 µm, and in vitro mechanical integrity with compressive and equilibrium Young's moduli of 37 kPa and 17 kPa, respectively. Live/dead staining showed that after 1 and 3 days in culture, the encapsulated MSCs into the hydrogels are viable and characterised by round-like morphology. Furthermore chondrocyte spheroids, seeded on top of gels that contained either MSCs or no cells, show that the encapsulated MSCs stimulate chondrocyte activity within a gel co-culture, both in terms of maintaining the coherence of chondrocyte spheroids, leading to a larger quantity of CD44 (by immunofluorescence) and a higher production of collagen and glycosaminoglycans (by histology) compared with the mono-culture.
Collapse
Affiliation(s)
- Annachiara Scalzone
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Ana M Ferreira
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino Corso Duca degli Abruzzi 29, Turin, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino Corso Duca degli Abruzzi 29, Turin, 10129, Italy
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
38
|
Yao S, Lin X, Xu Y, Chen Y, Qiu P, Shao C, Jin B, Mu Z, Sommerdijk NAJM, Tang R. Osteoporotic Bone Recovery by a Highly Bone-Inductive Calcium Phosphate Polymer-Induced Liquid-Precursor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900683. [PMID: 31592093 PMCID: PMC6774089 DOI: 10.1002/advs.201900683] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/28/2019] [Indexed: 05/17/2023]
Abstract
Osteoporosis is an incurable chronic disease characterized by a lack of mineral mass in the bones. Here, the full recovery of osteoporotic bone is achieved by using a calcium phosphate polymer-induced liquid-precursor (CaP-PILP). This free-flowing CaP-PILP material displays excellent bone inductivity and is able to readily penetrate into collagen fibrils and form intrafibrillar hydroxyapatite crystals oriented along the c-axis. This ability is attributed to the microstructure of the material, which consists of homogeneously distributed ultrasmall (≈1 nm) amorphous calcium phosphate clusters. In vitro study shows the strong affinity of CaP-PILP to osteoporotic bone, which can be uniformly distributed throughout the bone tissue to significantly increase the bone density. In vivo experiments show that the repaired bones exhibit satisfactory mechanical performance comparable with normal ones, following a promising treatment of osteoporosis by using CaP-PILP. The discovery provides insight into the structure and property of biological nanocluster materials and their potential for hard tissue repair.
Collapse
Affiliation(s)
- Shasha Yao
- Center for Biomaterials and BiopathwaysDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| | - Xianfeng Lin
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouZhejiang310016China
| | - Yifei Xu
- Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron MicroscopyDepartment of Chemical Engineering and ChemistryEindhoven University of Technology, EindhovenPO box 5135600 MBEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of Technology, EindhovenPO box 5135600 MBEindhovenThe Netherlands
| | - Yangwu Chen
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouZhejiang310016China
- Department of Orthopedic SurgerySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310012China
| | - Pengcheng Qiu
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouZhejiang310016China
| | - Changyu Shao
- Center for Biomaterials and BiopathwaysDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| | - Biao Jin
- Center for Biomaterials and BiopathwaysDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| | - Zhao Mu
- Center for Biomaterials and BiopathwaysDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| | - Nico A. J. M. Sommerdijk
- Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron MicroscopyDepartment of Chemical Engineering and ChemistryEindhoven University of Technology, EindhovenPO box 5135600 MBEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of Technology, EindhovenPO box 5135600 MBEindhovenThe Netherlands
| | - Ruikang Tang
- Center for Biomaterials and BiopathwaysDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
39
|
Rahimi M, Ahmadi R, Samadi Kafil H, Shafiei-Irannejad V. A novel bioactive quaternized chitosan and its silver-containing nanocomposites as a potent antimicrobial wound dressing: Structural and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:360-369. [DOI: 10.1016/j.msec.2019.03.092] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/23/2019] [Accepted: 03/24/2019] [Indexed: 01/09/2023]
|
40
|
Koulouktsi C, Nanaki S, Barmpalexis P, Kostoglou M, Bikiaris D. Preparation and characterization of Alendronate depot microspheres based on novel poly(-ε-caprolactone)/Vitamin E TPGS copolymers. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100014. [PMID: 31517279 PMCID: PMC6733287 DOI: 10.1016/j.ijpx.2019.100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
Abstract
In the present study, new aledronate (AL) loaded microspheres were prepared with the use of polycaprolactone (PCL)/Vitamin E d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) copolymers. Specifically, PCL-TPGS copolymers, prepared at several PCL to TPGS ratios (namely, 90/10, 80/20, 70/30 and 60/40 w/w) via a ring opening polymerization process, were characterized by intrinsic viscosity, proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and enzymatic hydrolysis. Results showed that as TPGS content increases the intrinsic viscosity of the copolymer (and hence, the viscosity-average molecular weight) is decreasing, while FTIR analysis showed the formation of hydrogen bonds between the —C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>O of PCL and the —OH of TPGS. Additionally, XRD analysis indicated that the prepared copolymers were semi-crystalline in nature, while enzymatic hydrolysis studies showed that increasing TGPS content led to increasing copolymer hydrolysis. In the following step, AL drug-loaded microspheres were prepared via single emulsification process. Scanning electron microscopy (SEM) revealed the formation of coarse drug-loaded microspheres with particle size close to 5 μm, while XRD analysis showed that the API was amorphously dispersed only in the cases of high TPGS content. Furthermore, FTIR analysis showed that the API did not interact with the copolymer components, while in vitro drug release studies showed that increasing PCL content led to decreasing API release rate. Finally, analysis of the drug release profiles suggested that the API release mechanism was solely governed by the polymer matrix erosion.
Collapse
Affiliation(s)
- Christina Koulouktsi
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| |
Collapse
|
41
|
Morsi NM, Shamma RN, Eladawy NO, Abdelkhalek AA. Risedronate-Loaded Macroporous Gel Foam Enriched with Nanohydroxyapatite: Preparation, Characterization, and Osteogenic Activity Evaluation Using Saos-2 Cells. AAPS PharmSciTech 2019; 20:104. [PMID: 30737611 DOI: 10.1208/s12249-019-1292-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022] Open
Abstract
The application of minimally invasive surgical techniques in the field of orthopedic surgery has created a growing need for new injectable synthetic materials that can be used for bone grafting. In this work, novel injectable thermosensitive foam was developed by mixing nHAP powder with a thermosensitive polymer with foaming power (Pluronic F-127) and loaded with a water-soluble bisphosphonate drug (risedronate) to promote osteogenesis. The foam was able to retain the porous structure after injection and set through temperature change of PF-127 solution to form gel inside the body. The effect of different formulation parameters on the gelation time, porosity, foamability, injectability, and in vitro degradation in addition to drug release from the prepared foams were analyzed using a full factorial design. The addition of a co-polymer like methylcellulose or sodium alginate into the foam was also studied. Results showed that the prepared optimized thermosensitive foam was able to gel within 1 min at 37°C, and sustain the release of drug for 72 h. The optimized formulation was further tested for any interactions using DSC and IR, and revealed no interactions between the drug and the used excipients in the prepared foam. Furthermore, the ability of the pre-set foam to support osteoblastic-like Saos-2-cell proliferation and differentiation was assessed, and revealed superior function on promoting cellular proliferation as confirmed by fluorescence microscope compared to the plain drug solution. The activity of the foam treated cells was also assessed by measuring the alkaline phosphatase activity and calcium deposition, and confirmed that the cellular activity was greatly enhanced in foam treated cells compared to those treated with the plain drug solution only. The obtained results show that the prepared risedronate-loaded thermosensitive foam would represent a step forward in the design of new materials for minimally invasive bone regeneration.
Collapse
|
42
|
Kowalczewski CJ, Saul JM. Biomaterials for the Delivery of Growth Factors and Other Therapeutic Agents in Tissue Engineering Approaches to Bone Regeneration. Front Pharmacol 2018; 9:513. [PMID: 29896102 PMCID: PMC5986909 DOI: 10.3389/fphar.2018.00513] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022] Open
Abstract
Bone fracture followed by delayed or non-union typically requires bone graft intervention. Autologous bone grafts remain the clinical "gold standard". Recently, synthetic bone grafts such as Medtronic's Infuse Bone Graft have opened the possibility to pharmacological and tissue engineering strategies to bone repair following fracture. This clinically-available strategy uses an absorbable collagen sponge as a carrier material for recombinant human bone morphogenetic protein 2 (rhBMP-2) and a similar strategy has been employed by Stryker with BMP-7, also known as osteogenic protein-1 (OP-1). A key advantage to this approach is its "off-the-shelf" nature, but there are clear drawbacks to these products such as edema, inflammation, and ectopic bone growth. While there are clinical challenges associated with a lack of controlled release of rhBMP-2 and OP-1, these are among the first clinical examples to wed understanding of biological principles with biochemical production of proteins and pharmacological principles to promote tissue regeneration (known as regenerative pharmacology). After considering the clinical challenges with such synthetic bone grafts, this review considers the various biomaterial carriers under investigation to promote bone regeneration. This is followed by a survey of the literature where various pharmacological approaches and molecular targets are considered as future strategies to promote more rapid and mature bone regeneration. From the review, it should be clear that pharmacological understanding is a key aspect to developing these strategies.
Collapse
Affiliation(s)
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States
| |
Collapse
|