1
|
Abd-Elhafeez HH, Massoud D, Mahmoud MS, Abdellah N, Salah AS, Mohamed NE, Sayed MAA, Shaalan M, Rutland CS, Abu-ELhamed AS, Soliman SA, Mustafa FEZA. Microstructural architecture of the bony scutes, spine, and rays of the bony fins in the common pleco (Hypostomus plecostomus). Int J Vet Sci Med 2024; 12:101-124. [PMID: 39239634 PMCID: PMC11376312 DOI: 10.1080/23144599.2024.2374201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
Studying scute and fin morphology are advantageous approaches for phylogenetic identification and provide information on biological linkages and evolutionary history that are essential for deciphering the fossil record. Despite this, no prior research has precisely characterized the histological structures of scutes in the common pleco. Therefore, this research investigated the microstructure and organization of bone tissue within the dermal skeleton, including the scutes and fins, in the common pleco, using light microscopy, stereomicroscopy, and scanning electron microscopy. The dermal scutes were organized in a pentagonal shape with denticular coverage and were obliquely aligned with the caudal portion pointing dorsally. The dermal scutes consisted of three distinct portions: the central, preterminal, and terminal portions. Each portion comprised three layers: a superficial bony plate, a basal bony plate, and a mid-plate. Both the superficial and basal bony plates were composed of lamellar bone and lamellar zonal bone, whilst the mid-plate consisted of secondary osteons and woven bone. In the terminal portion, the superficial and basal bony plates became thinner. The pectoral fin consists of spines and rays composed of lepidotrichium (two symmetrical hemi-rays). The spine contained centrifugal and centripetal lamellar and trabecular bones. A centripetal fibrous bone was implanted between the lamellar bones. Besides being oriented in a V shape, the hemi-rays were also composed of thin centrifugal and centripetal lamellar bones and trabecular bones. A fibrous bone was identified between the centrifugal and centripetal bones. The trabecular bone and lamellar bone were made up of bone spicules.
Collapse
Affiliation(s)
- Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Mohammed S Mahmoud
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Nada Abdellah
- Department of Histology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assiut, New Nasser City, Egypt
| | - Abdallah S Salah
- Institute of Aquaculture, University of Stirling, Stirling, UK
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nor-Elhoda Mohamed
- Faculty of Science, Biomedicine Branch, University of Science & Technology, Zewail, Egypt
| | | | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Caio University, Giza, Egypt
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Catrin S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Alaa Sayed Abu-ELhamed
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Respiratory Therapy, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
2
|
Jenkins KM, Foster W, Napoli JG, Meyer DL, Bever GS, Bhullar BAS. Cranial anatomy and phylogenetic affinities of Bolosaurus major, with new information on the unique bolosaurid feeding apparatus and evolution of the impedance-matching ear. Anat Rec (Hoboken) 2024. [PMID: 39072999 DOI: 10.1002/ar.25546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Resolving the phylogenetic relationships of early amniotes, in particular stem reptiles, remains a difficult problem. Three-dimensional morphological analysis of well-preserved stem-reptile specimens can reveal important anatomical data and clarify regions of phylogeny. Here, we present the first thorough description of the unusual early Permian stem reptile Bolosaurus major, including the first comprehensive description of a bolosaurid braincase. We describe previously obscured details of the palate, allowing for insight into bolosaurid feeding mechanics. Aspects of the rostrum, palate, mandible, and neurocranium suggest that B. major had a particularly strong bite. We additionally found B. major has a surprisingly slender stapes, similar to that of the middle Permian stem reptile Macroleter poezicus, which may suggest enhanced hearing abilities compared to other Paleozoic amniotes (e.g., captorhinids). We incorporated our new anatomical information into a large phylogenetic matrix (150 OTUs, 590 characters) to explore the relationship of Bolosauridae among stem reptiles. Our analyses generally recovered a paraphyletic "Parareptilia," and found Bolosauridae to diverge after Captorhinidae + Araeoscelidia. We also included B. major within a smaller matrix (10 OTUs, 27 characters) designed to explore the interrelationships of Bolosauridae and found all species of Bolosaurus to be monophyletic. While reptile relationships still require further investigation, our phylogeny suggests repeated evolution of impedance-matching ears in Paleozoic stem reptiles.
Collapse
Affiliation(s)
- Kelsey M Jenkins
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Yale Peabody Museum, New Haven, Connecticut, USA
| | - William Foster
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James G Napoli
- Division of Paleontology, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Division of Paleontology, American Museum of Natural History, New York, New York, USA
| | - Dalton L Meyer
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Gabriel S Bever
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Yale Peabody Museum, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Mauel C, Leicht L, Broshko Y, Yaryhin O, Werneburg I. Chondrocranial anatomy of Testudo hermanni (Testudinidae, Testudines) with a comparison to other turtles. J Morphol 2024; 285:e21747. [PMID: 38956884 DOI: 10.1002/jmor.21747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Using histological cross-sections, the chondrocranium anatomy was reconstructed for two developmental stages of Hermann's tortoise (Testudo hermanni). The morphology differs from the chondrocrania of most other turtles by a process above the ectochoanal cartilage with Pelodiscus sinensis being the only other known species with such a structure. The anterior and posterior processes of the tectum synoticum are better developed than in most other turtles and an ascending process of the palatoquadrate is missing, which is otherwise only the case in pleurodiran turtles. The nasal region gets proportionally larger during development. We interpret the enlargement of the nasal capsules as an adaption to increase the surface area of the olfactory epithelium for better perception of volant odors. Elongation of the nasal capsules in trionychids, in contrast, is unlikely to be related to olfaction, while it is ambiguous in the case of Sternotherus odoratus. However, we have to conclude that research on chondrocranium anatomy is still at its beginning and more comprehensive detailed descriptions in relation to other parts of the anatomy are needed before providing broad-scale ecological and phylogenetic interpretations.
Collapse
Affiliation(s)
- Carola Mauel
- Fachbereich Biologie, Universität Tübingen, Tübingen, Germany
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, Bonn, Germany
| | - Luca Leicht
- Fachbereich Biologie, Universität Tübingen, Tübingen, Germany
- Senckenberg Center for Human Evolution and Palaeoenvironment (SHEP), Universität Tübingen, Tübingen, Germany
| | - Yevhenii Broshko
- Faculty of Natural Sciences, Faculty of Natural Sciences, Kryvyi Rih State Pedagogical University, Kryvyi Rih, Ukraine
| | - Oleksandr Yaryhin
- Schmalhausen Institute of Zoology NAS of Ukraine, Department of Evolutionary Morphology, Kyiv, Ukraine
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment (SHEP), Universität Tübingen, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
de Araújo Sena MV, Cubo J. Inferring the lifestyles of extinct Crocodyliformes using osteoderm ornamentation. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:41. [PMID: 37548714 DOI: 10.1007/s00114-023-01871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Osteoderms are bony plates formed within the dermis of diverse vertebrate groups. They are present in all crocodylomorphs but Metriorhynchidae. Most of them show typical bone ornamentation consisting of pits and ridges on their outer surface. The most widely discussed functional hypothesis suggests that the ornamentation of osteoderms influences heat exchange with the environment through the adjacent vascular network, facilitating the absorption of solar radiation. This process allows semiaquatic crocodiles to compensate for heat loss resulting from the high thermal conductivity of surrounding water. In order to test this assertion, we conducted a phylogenetic logistic regression analysis to evaluate the relationship between osteoderm relative area of pits (RAP) and lifestyle (terrestrial versus aquatic) in a sample of crocodyliforms. Our results revealed that lifestyle is significantly explained by RAP: the lower the degree of ornamentation (RAP), the higher the probability of a terrestrial lifestyle. We used this model to infer the lifestyle of two extinct taxa, Peirosaurus torminni and Microsuchus schilleri. We concluded that terrestrial notosuchians may have lost osteoderm ornamentation due to the lower thermal conductivity of air and reduced heat loss in a terrestrial environment compared to what happens in water. Among these notosuchians, we hypothesize that large terrestrial baurusuchids maintained a stable body temperature due to thermal inertia, whereas small notosuchians took advantage of the early morning sun exposure to warm up and stayed in terrestrial burrows during periods of intense solar radiation. Finally, unlike the almost motionless behavior of freshwater crocodiles, fully marine Metriorhynchidae probably lost osteoderms because they constantly swim, generating heat by muscular contraction, so osteoderms with a thermoregulatory function for heat absorption were no longer positively selected.
Collapse
Affiliation(s)
- Mariana Valéria de Araújo Sena
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P, UMR 7207), 4 Place Jussieu, 104, 75005, Paris, BC, France.
- Museu de Paleontologia Plácido Cidade Nuvens, Rua Plácido Cidade Nuvens, 326, Santana do Cariri, Ceará, 63190-000, Brazil.
| | - Jorge Cubo
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie-Paris (CR2P, UMR 7207), 4 Place Jussieu, 104, 75005, Paris, BC, France
| |
Collapse
|
5
|
Maden M, Polvadore T, Polanco A, Barbazuk WB, Stanley E. Osteoderms in a mammal the spiny mouse Acomys and the independent evolution of dermal armor. iScience 2023; 26:106779. [PMID: 37378333 PMCID: PMC10291248 DOI: 10.1016/j.isci.2023.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 04/25/2023] [Indexed: 06/29/2023] Open
Abstract
Osteoderms are bony plates found in the skin of vertebrates, mostly commonly in reptiles where they have evolved independently multiple times, suggesting the presence of a gene regulatory network that is readily activated and inactivated. They are absent in birds and mammals except for the armadillo. However, we have discovered that in one subfamily of rodents, the Deomyinae, there are osteoderms in the skin of their tails. Osteoderm development begins in the proximal tail skin and is complete 6 weeks after birth. RNA sequencing has identified the gene networks involved in their differentiation. There is a widespread down-regulation of keratin genes and an up-regulation of osteoblast genes and a finely balanced expression of signaling pathways as the osteoderms differentiate. Future comparisons with reptilian osteoderms may allow us to understand how these structures have evolved and why they are so rare in mammals.
Collapse
Affiliation(s)
- Malcolm Maden
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Trey Polvadore
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Arod Polanco
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - W. Brad Barbazuk
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Edward Stanley
- Florida Museum of Natural History, University of Florida, Museum Road, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Frýdlová P, Janovská V, Mrzílková J, Halašková M, Riegerová M, Dudák J, Tymlová V, Žemlička J, Zach P, Frynta D. The first description of dermal armour in snakes. Sci Rep 2023; 13:6405. [PMID: 37076516 PMCID: PMC10115820 DOI: 10.1038/s41598-023-33244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
Osteoderms, also called dermal armour, often play a role in predator defence. The presence of osteoderms is highly irregularly distributed across the squamate phylogeny and they have not been found in snakes. In this study, we searched for candidate snake species that would benefit from such armour to protect their body, focusing primarily on fossorial species with defensive tail displays. We examined the tail morphology of 27 snake species from different families using micro-computed tomography (µCT) and micro- radiography. We discovered dermal armour in four species of sand boas (Erycidae) that also feature enlarged and highly modified caudal vertebrae. This is the first description of dermal armour in snakes. Ancestral state reconstructions revealed that osteoderms likely evolved once or multiple times in Erycidae. We have not found osteoderms in any other examined snake species. Nevertheless, similar structures are known from unrelated squamate clades, such as gerrhosaurids and geckos. This supports the idea of underlying deep developmental homology. We propose the hypothesis that osteoderms protect sand boas like the "brigandine armour" of medieval warriors. We interpret it as another component of the sand boas' rich defence strategy.
Collapse
Affiliation(s)
- Petra Frýdlová
- Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic
- Department of Anatomy, Third Faculty of Medicine, Charles University, 100 00, Prague, Czech Republic
| | - Veronika Janovská
- Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic
| | - Jana Mrzílková
- Department of Anatomy, Third Faculty of Medicine, Charles University, 100 00, Prague, Czech Republic
| | - Milada Halašková
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, 100 00, Prague, Czech Republic
| | - Markéta Riegerová
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, 100 00, Prague, Czech Republic
| | - Jan Dudák
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, 110 00, Prague, Czech Republic
| | - Veronika Tymlová
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, 110 00, Prague, Czech Republic
| | - Jan Žemlička
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, 110 00, Prague, Czech Republic
| | - Petr Zach
- Department of Anatomy, Third Faculty of Medicine, Charles University, 100 00, Prague, Czech Republic
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, 128 43, Prague, Czech Republic.
| |
Collapse
|
7
|
Singh YP, Sharma KM, Tiwari RP, Patnaik R, Singh NA, Singh NP. Lepidosauromorphs and associated vertebrate fauna from the Late Triassic Tiki Formation, South Rewa, Gondwana basin, India: implication for paleoenvironment and paleobiogeography. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2023. [DOI: 10.1007/s43538-023-00162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Sena MVDA, Marinho TDS, Montefeltro FC, Langer MC, Fachini TS, Nava WR, Pinheiro AEP, de Araújo EV, Aubier P, de Andrade RCLP, Sayão JM, de Oliveira GR, Cubo J. Osteohistological characterization of notosuchian osteoderms: Evidence for an overlying thick leathery layer of skin. J Morphol 2023; 284:e21536. [PMID: 36394285 PMCID: PMC10107732 DOI: 10.1002/jmor.21536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Osteoderms are mineralized structures embedded in the dermis, known for nonavian archosaurs, squamates, xenarthrans, and amphibians. Herein, we compared the osteoderm histology of Brazilian Notosuchia of Cretaceous age using three neosuchians for comparative purposes. Microanatomical analyses showed that most of them present a diploe structure similar to those of other pseudosuchians, lizards, and turtles. This structure contains two cortices (the external cortex composed of an outer and an inner layers, and the basal cortex) and a core in-between them. Notosuchian osteoderms show high bone compactness (>0.85) with varying degrees of cancellous bone in the core. The neosuchian Guarinisuchus shows the lowest bone compactness with a well-developed cancellous layer. From an ontogenetic perspective, most tissues are formed through periosteal ossification, although the mineralized tissues observed in baurusuchid LPRP/USP 0634 suggest a late metaplastic development. Histology suggests that the ossification center of notosuchian osteoderm is located at the keel. Interestingly, we identified Sharpey's fibers running perpendicularly to the outer layer of the external cortex in Armadillosuchus arrudai, Itasuchus jesuinoi, and Baurusuchidae (LPRP/USP 0642). This feature indicates a tight attachment within the dermis, and it is evidence for the presence of an overlying thick leathery layer of skin over these osteoderms. These data allow a better understanding of the osteohistological structure of crocodylomorph dermal bones, and highlight their structural diversity. We suggest that the vascular canals present in some sampled osteoderms connecting the inner layer of the external cortex and the core with the external surface may increase osteoderm surface and the capacity of heat transfer in terrestrial notosuchians.
Collapse
Affiliation(s)
- Mariana Valéria de Araújo Sena
- Centre de Recherche en Paléontologie Paris (CR2P, UMR 7207), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Paris, France.,Centro de Ciências Biológicas e da Saúde, Laboratório de Paleontologia da URCA, Universidade Regional do Cariri, Rua Carolino Sucupira-Pimenta, Crato, Ceará, Brazil
| | - Thiago da Silva Marinho
- Centro de Pesquisas Paleontológicas "Llewellyn Ivor Price", Complexo Cultural e Científico Peirópolis, Pró-Reitoria de Extensão Universitária, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.,Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Felipe Chinaglia Montefeltro
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo, Brazil
| | - Max Cardoso Langer
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Laboratório de Paleontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago Schineider Fachini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Laboratório de Paleontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - William Roberto Nava
- Museu de Paleontologia de Marília, Prefeitura Municipal de Marília, Marília, São Paulo, Brazil
| | | | - Esaú Victor de Araújo
- Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul Aubier
- Centre de Recherche en Paléontologie Paris (CR2P, UMR 7207), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Paris, France
| | - Rafael César Lima Pedroso de Andrade
- Centro de Ciências Biológicas e da Saúde, Laboratório de Paleontologia da URCA, Universidade Regional do Cariri, Rua Carolino Sucupira-Pimenta, Crato, Ceará, Brazil
| | - Juliana Manso Sayão
- Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Ribeiro de Oliveira
- Laboratório de Paleontologia e Sistemática (LAPASI), Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Jorge Cubo
- Centre de Recherche en Paléontologie Paris (CR2P, UMR 7207), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Simões TR, Kammerer CF, Caldwell MW, Pierce SE. Successive climate crises in the deep past drove the early evolution and radiation of reptiles. SCIENCE ADVANCES 2022; 8:eabq1898. [PMID: 35984885 PMCID: PMC9390993 DOI: 10.1126/sciadv.abq1898] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Climate change-induced mass extinctions provide unique opportunities to explore the impacts of global environmental disturbances on organismal evolution. However, their influence on terrestrial ecosystems remains poorly understood. Here, we provide a new time tree for the early evolution of reptiles and their closest relatives to reconstruct how the Permian-Triassic climatic crises shaped their long-term evolutionary trajectory. By combining rates of phenotypic evolution, mode of selection, body size, and global temperature data, we reveal an intimate association between reptile evolutionary dynamics and climate change in the deep past. We show that the origin and phenotypic radiation of reptiles was not solely driven by ecological opportunity following the end-Permian extinction as previously thought but also the result of multiple adaptive responses to climatic shifts spanning 57 million years.
Collapse
Affiliation(s)
- Tiago R. Simões
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
- Corresponding author.
| | - Christian F. Kammerer
- North Carolina Museum of Natural Sciences, 11 W. Jones Street, Raleigh, NC 27601, USA
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC 27695, USA
| | - Michael W. Caldwell
- Department of Biological Sciences, University of Alberta, 11645 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, 11645 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Williams C, Kirby A, Marghoub A, Kéver L, Ostashevskaya-Gohstand S, Bertazzo S, Moazen M, Abzhanov A, Herrel A, Evans SE, Vickaryous M. A review of the osteoderms of lizards (Reptilia: Squamata). Biol Rev Camb Philos Soc 2021; 97:1-19. [PMID: 34397141 PMCID: PMC9292694 DOI: 10.1111/brv.12788] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Osteoderms are mineralised structures consisting mainly of calcium phosphate and collagen. They form directly within the skin, with or without physical contact with the skeleton. Osteoderms, in some form, may be primitive for tetrapods as a whole, and are found in representatives of most major living lineages including turtles, crocodilians, lizards, armadillos, and some frogs, as well as extinct taxa ranging from early tetrapods to dinosaurs. However, their distribution in time and space raises questions about their evolution and homology in individual groups. Among lizards and their relatives, osteoderms may be completely absent; present only on the head or dorsum; or present all over the body in one of several arrangements, including non-overlapping mineralised clusters, a continuous covering of overlapping plates, or as spicular mineralisations that thicken with age. This diversity makes lizards an excellent focal group in which to study osteoderm structure, function, development and evolution. In the past, the focus of researchers was primarily on the histological structure and/or the gross anatomy of individual osteoderms in a limited sample of taxa. Those studies demonstrated that lizard osteoderms are sometimes two-layered structures, with a vitreous, avascular layer just below the epidermis and a deeper internal layer with abundant collagen within the deep dermis. However, there is considerable variation on this model, in terms of the arrangement of collagen fibres, presence of extra tissues, and/or a cancellous bone core bordered by cortices. Moreover, there is a lack of consensus on the contribution, if any, of osteoblasts in osteoderm development, despite research describing patterns of resorption and replacement that would suggest both osteoclast and osteoblast involvement. Key to this is information on development, but our understanding of the genetic and skeletogenic processes involved in osteoderm development and patterning remains minimal. The most common proposition for the presence of osteoderms is that they provide a protective armour. However, the large morphological and distributional diversity in lizard osteoderms raises the possibility that they may have other roles such as biomechanical reinforcement in response to ecological or functional constraints. If lizard osteoderms are primarily for defence, whether against predators or conspecifics, then this 'bony armour' might be predicted to have different structural and/or mechanical properties compared to other hard tissues (generally intended for support and locomotion). The cellular and biomineralisation mechanisms by which osteoderms are formed could also be different from those of other hard tissues, as reflected in their material composition and nanostructure. Material properties, especially the combination of malleability and resistance to impact, are of interest to the biomimetics and bioinspired material communities in the development of protective clothing and body armour. Currently, the literature on osteoderms is patchy and is distributed across a wide range of journals. Herein we present a synthesis of current knowledge on lizard osteoderm evolution and distribution, micro- and macrostructure, development, and function, with a view to stimulating further work.
Collapse
Affiliation(s)
- Catherine Williams
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.,Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus C, DK-8000, Denmark
| | - Alexander Kirby
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, U.K.,Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, U.K
| | - Arsalan Marghoub
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, U.K
| | - Loïc Kéver
- Département Adaptations du Vivant, UMR 7179 MECADEV C.N.R.S/M.N.H.N., Bâtiment d'Anatomie Comparée, 55 rue Buffon, Paris, 75005, France
| | - Sonya Ostashevskaya-Gohstand
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Berkshire, SL5 7PY, U.K
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, U.K
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, U.K
| | - Arkhat Abzhanov
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Berkshire, SL5 7PY, U.K
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 MECADEV C.N.R.S/M.N.H.N., Bâtiment d'Anatomie Comparée, 55 rue Buffon, Paris, 75005, France
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, U.K
| | - Matt Vickaryous
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
11
|
Starck JM, Stewart JR, Blackburn DG. Phylogeny and evolutionary history of the amniote egg. J Morphol 2021; 282:1080-1122. [PMID: 33991358 DOI: 10.1002/jmor.21380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
We review morphological features of the amniote egg and embryos in a comparative phylogenetic framework, including all major clades of extant vertebrates. We discuss 40 characters that are relevant for an analysis of the evolutionary history of the vertebrate egg. Special attention is given to the morphology of the cellular yolk sac, the eggshell, and extraembryonic membranes. Many features that are typically assigned to amniotes, such as a large yolk sac, delayed egg deposition, and terrestrial reproduction have evolved independently and convergently in numerous clades of vertebrates. We use phylogenetic character mapping and ancestral character state reconstruction as tools to recognize sequence, order, and patterns of morphological evolution and deduce a hypothesis of the evolutionary history of the amniote egg. Besides amnion and chorioallantois, amniotes ancestrally possess copulatory organs (secondarily reduced in most birds), internal fertilization, and delayed deposition of eggs that contain an embryo in the primitive streak or early somite stage. Except for the amnion, chorioallantois, and amniote type of eggshell, these features evolved convergently in almost all major clades of aquatic vertebrates possibly in response to selective factors such as egg predation, hostile environmental conditions for egg development, or to adjust hatching of young to favorable season. A functionally important feature of the amnion membrane is its myogenic contractility that moves the (early) embryo and prevents adhering of the growing embryo to extraembryonic materials. This function of the amnion membrane and the liquid-filled amnion cavity may have evolved under the requirements of delayed deposition of eggs that contain developing embryos. The chorioallantois is a temporary embryonic exchange organ that supports embryonic development. A possible evolutionary scenario is that the amniote egg presents an exaptation that paved the evolutionary pathway for reproduction on land. As shown by numerous examples from anamniotes, reproduction on land has occurred multiple times among vertebrates-the amniote egg presenting one "solution" that enabled the conquest of land for reproduction.
Collapse
Affiliation(s)
- J Matthias Starck
- Department of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - James R Stewart
- Department of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | | |
Collapse
|
12
|
Lyson TR, Bever GS. Origin and Evolution of the Turtle Body Plan. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of turtles and their uniquely shelled body plan is one of the longest standing problems in vertebrate biology. The unfulfilled need for a hypothesis that both explains the derived nature of turtle anatomy and resolves their unclear phylogenetic position among reptiles largely reflects the absence of a transitional fossil record. Recent discoveries have dramatically improved this situation, providing an integrated, time-calibrated model of the morphological, developmental, and ecological transformations responsible for the modern turtle body plan. This evolutionary trajectory was initiated in the Permian (>260 million years ago) when a turtle ancestor with a diapsid skull evolved a novel mechanism for lung ventilation. This key innovation permitted the torso to become apomorphically stiff, most likely as an adaption for digging and a fossorial ecology. The construction of the modern turtle body plan then proceeded over the next 100 million years following a largely stepwise model of osteological innovation.
Collapse
Affiliation(s)
- Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
| | - Gabriel S. Bever
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
13
|
Iacoviello F, Kirby AC, Javanmardi Y, Moeendarbary E, Shabanli M, Tsolaki E, Sharp AC, Hayes MJ, Keevend K, Li JH, Brett DJL, Shearing PR, Olivo A, Herrmann IK, Evans SE, Moazen M, Bertazzo S. The multiscale hierarchical structure of Heloderma suspectum osteoderms and their mechanical properties. Acta Biomater 2020; 107:194-203. [PMID: 32109598 DOI: 10.1016/j.actbio.2020.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Osteoderms are hard tissues embedded in the dermis of vertebrates and have been suggested to be formed from several different mineralized regions. However, their nano architecture and micro mechanical properties had not been fully characterized. Here, using electron microscopy, µ-CT, atomic force microscopy and finite element simulation, an in-depth characterization of osteoderms from the lizard Heloderma suspectum, is presented. Results show that osteoderms are made of three different mineralized regions: a dense apex, a fibre-enforced region comprising the majority of the osteoderm, and a bone-like region surrounding the vasculature. The dense apex is stiff, the fibre-enforced region is flexible and the mechanical properties of the bone-like region fall somewhere between the other two regions. Our finite element analyses suggest that when combined into the osteoderm structure, the distinct tissue regions are able to shield the body of the animal by bearing the external forces. These findings reveal the structure-function relationship of the Heloderma suspectum osteoderm in unprecedented detail. STATEMENT OF SIGNIFICANCE: The structures of bone and teeth have been thoroughly investigated. They provide a basis not only for understanding the mechanical properties and functions of these hard tissues, but also for the de novo design of composite materials. Osteoderms, however, are hard tissues that must possess mechanical properties distinct from teeth and bone to function as a protective armour. Here we provide a detailed analysis of the nanostructure of vertebrate osteoderms from Heloderma suspectum, and show that their mechanical properties are determined by their multiscale hierarchical tissue. We believe this study contributes to advance the current knowledge of the structure-function relationship of the hierarchical structures in the Heloderma suspectum osteoderm. This knowledge might in turn provide a source of inspiration for the design of bioinspired and biomimetic materials.
Collapse
Affiliation(s)
- Francesco Iacoviello
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Alexander C Kirby
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Murad Shabanli
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Elena Tsolaki
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Alana C Sharp
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Matthew J Hayes
- Department of Ophthalmology, University College London, London WC1E 6BT, UK
| | - Kerda Keevend
- Department of Materials, Meet Life, Swiss Federal Laboratories for Materials Science and Technology, (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Jian-Hao Li
- Department of Materials, Meet Life, Swiss Federal Laboratories for Materials Science and Technology, (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Daniel J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Inge K Herrmann
- Department of Materials, Meet Life, Swiss Federal Laboratories for Materials Science and Technology, (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Laver RJ, Morales CH, Heinicke MP, Gamble T, Longoria K, Bauer AM, Daza JD. The development of cephalic armor in the tokay gecko (Squamata: Gekkonidae:
Gekko gecko
). J Morphol 2019; 281:213-228. [DOI: 10.1002/jmor.21092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Rebecca J. Laver
- Research School of Biology Australian National University Canberra Australia
| | - Cristian H. Morales
- Department of Biological Sciences Sam Houston State University Huntsville Texas
- Department of Biology University of Texas at Arlington Arlington Texas
| | - Matthew P. Heinicke
- Department of Natural Sciences University of Michigan‐Dearborn Dearborn Michigan
| | - Tony Gamble
- Department of Biological Sciences Marquette University Milwaukee Wisconsin
- Milwaukee Public Museum Milwaukee Wisconsin
- Bell Museum of Natural History University of Minnesota Saint Paul Minnesota
| | - Kristin Longoria
- Department of Biological Sciences Sam Houston State University Huntsville Texas
| | - Aaron M. Bauer
- Department of Biology Villanova University Villanova Pennsylvania
| | - Juan D. Daza
- Department of Biological Sciences Sam Houston State University Huntsville Texas
| |
Collapse
|
15
|
Scarano AC, Ciancio MR, Barbeito-Andrés J, Barbeito CG, Krmpotic CM. Micromorphology of osteoderms in Dasypodidae (Cingulata, Mammalia): Characterization and 3D-reconstructions. J Morphol 2019; 281:258-272. [PMID: 31880831 DOI: 10.1002/jmor.21096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 12/11/2019] [Indexed: 11/08/2022]
Abstract
Osteoderms are present in a variety of extinct and extant vertebrates, but among mammals, the presence of osteoderms is essentially restricted to armadillos (Cingulata, Dasypodidae). Osteoderms have been proposed to exhibit a variety of functionalities in Dasypodidae, mainly protection and thermoregulation, and they have been considered as one of the synapomorphies of this group. In this study, we use high-resolution microcomputed tomography to describe the osteoderm micromorphology of several extant species of Dasypodidae in a comparative context. This study allowed the identification, 3D-reconstruction and volume quantification of different internal structures of osteoderms as well as their interrelations. This detailed characterization of the internal osteoderm morphology was compared in a phylogenetic context to assess the evolutionary trends of the species involved. This enables the identification of distinctive patterns for the most widely recognized clades, the Dasypodinae and Euphractinae with a morphological homogeneity in the microstructure of their osteoderms, in comparison with Tolypeutinae where it has not been possible to establish a common morphological pattern. The most important features for linage differentiation is the degree of compaction of the osteoderms, the number of cavities and the development of hairs. It is likely that the differential development of the various structures occurred as adaptive response to climate changes.
Collapse
Affiliation(s)
- Alejo C Scarano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.,Laboratorio de Morfología Evolutiva y Desarrollo (MORPHOS), Museo de la Plata, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina.,Universidad Nacional de Avellaneda (UNDAV), Avellaneda, Buenos Aires, Argentina
| | - Martin R Ciancio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.,Laboratorio de Morfología Evolutiva y Desarrollo (MORPHOS), Museo de la Plata, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Jimena Barbeito-Andrés
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.,ENyS, Estudios en Neurociencias y Sistemas Complejos, CONICET, Hospital El Cruce Dr, "Néstor C. Kirchner", Universidad Arturo Jauretche, Buenos Aires, Argentina
| | - Claudio G Barbeito
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.,Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, UNLP, La Plata, Provincia de Buenos Aires, Argentina
| | - Cecilia M Krmpotic
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina.,Laboratorio de Morfología Evolutiva y Desarrollo (MORPHOS), Museo de la Plata, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| |
Collapse
|
16
|
Ford DP, Benson RBJ. The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nat Ecol Evol 2019; 4:57-65. [DOI: 10.1038/s41559-019-1047-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
|
17
|
Botha AE, Botha J. Ontogenetic and inter-elemental osteohistological variability in the leopard tortoise Stigmochelys pardalis. PeerJ 2019; 7:e8030. [PMID: 31871831 PMCID: PMC6924341 DOI: 10.7717/peerj.8030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022] Open
Abstract
Testudines are a group of reptiles characterized by the presence of a shell covered by keratinous shields. Stigmochelys pardalis is the most widely distributed terrestrial testudine in southern Africa. Although relatively common with some life history traits being well known, the growth of this species has yet to be studied in any detail. The bone microanatomy of this clade differs from that found in other amniotes, where terrestrial species tend to display characteristics normally seen in aquatic species and vice versa. A detailed histological analysis of the limb bones of S. pardalis reveals extensive variation through ontogeny. Cortical bone becomes increasingly thicker through ontogeny and is finally resorbed in the late sub-adult stage, resulting in a thin cortex and a large infilled medullary cavity. The predominant bone tissues are parallel-fibred and lamellar-zonal for the forelimbs and hind limbs respectively. The oldest individual displayed an External Fundamental System indicating that the growth rate had decreased substantially by this stage. Variability is prevalent between the forelimb and hind limb as well as between early and late sub-adults Forelimb elements exhibit characteristics such as faster growing parallel-fibered bone tissue, slightly higher vascularization and a predominance of annuli over Lines of Arrested Growth (LAG) compared to the hind limb which exhibits poorly vascularized, slower growing lamellar-zonal bone interrupted by LAGs. These differences indicate that the forelimb grew more rapidly than the hind limb, possibly due to the method of locomotion seen in terrestrial species. The extensive bone resorption that occurs from the early sub-adult stage destroys much of the primary cortex and results in a significantly different ratio of inner and outer bone diameter (p = 3.59 × 10--5; df = 28.04) as well as compactness (p = 2.91 × 10--5; df = 31.27) between early and late sub-adults. The extensive bone resorption seen also destroys the ecological signal and infers an aquatic lifestyle for this species despite it being clearly terrestrial. This supports the results of other studies that have found that using bone microanatomy to determine lifestyle in testudines does not produce accurate results.
Collapse
Affiliation(s)
- Alexander Edward Botha
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| | - Jennifer Botha
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa.,Department of Karoo Palaeontology, National Museum, Bloemfontein, Free State, South Africa
| |
Collapse
|
18
|
Sobral G, Müller J. The braincase of Mesosuchus browni (Reptilia, Archosauromorpha) with information on the inner ear and description of a pneumatic sinus. PeerJ 2019; 7:e6798. [PMID: 31198620 PMCID: PMC6535042 DOI: 10.7717/peerj.6798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/17/2019] [Indexed: 12/21/2022] Open
Abstract
Rhynchosauria is a group of archosauromorph reptiles abundant in terrestrial ecosystems of the Middle Triassic. Mesosuchus is one of the earliest and basalmost rhynchosaurs, playing an important role not only for the understanding of the evolution of the group as a whole, but also of archosauromorphs in general. The braincase of Mesosuchus has been previously described, albeit not in detail, and the middle and inner ears were missing. Here, we provide new information based on micro-computed tomography scanning of the best-preserved specimen of Mesosuchus, SAM-PK-6536. Contrary to what has been stated previously, the braincase of Mesosuchus is dorso-ventrally tall. The trigeminal foramen lies in a deep recess on the prootic whose flat ventral rim could indicate the articulation surface to the laterosphenoid, although no such element was found. The middle ear of Mesosuchus shows a small and deeply recessed fenestra ovalis, with the right stapes preserved in situ. It has a rather stout, imperforated and posteriorly directed shaft with a small footplate. These features suggest that the ear of Mesosuchus was well-suited for the detection of low-frequency sounds. The semicircular canals are slender and elongate and the floccular fossa is well-developed. This is indicative of a refined mechanism for gaze stabilization, which is usually related to non-sprawling postures. The most striking feature of the Mesosuchus braincase is, however, the presence of a pneumatic sinus in the basal tubera. The sinus is identified as originating from the pharyngotympanic system, implying ossified Eustachian tubes. Braincase pneumatization has not yet been a recognized feature of stem-archosaurs, but the potential presence of pneumatic foramina in an array of taxa, recognized here as such for the first time, suggests braincase sinuses could be present in many other archosauromorphs.
Collapse
Affiliation(s)
- Gabriela Sobral
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Johannes Müller
- Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
19
|
Song N, Zhang H, Zhao T. Insights into the phylogeny of Hemiptera from increased mitogenomic taxon sampling. Mol Phylogenet Evol 2019; 137:236-249. [PMID: 31121308 DOI: 10.1016/j.ympev.2019.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Although reconstruction of the phylogeny of Hemiptera has progressed tremendously over the past two decades, some higher-level relationships remain poorly resolved. Here, we investigated the Hemiptera higher-level relationships using full mitochondrial genome data from 357 ingroup species, representing the most comprehensive sampling yet undertaken for reconstructing the phylogeny of this group. In this study, 92 mitochondrial genomes were newly determined. Various data treatment methods and substitution models were applied to tree reconstructions. Effects of compositional heterogeneity, rate heterogeneity, model adequacy and taxon sampling on support values and topological stability were explored. Phylogenetic analyses (1) confirmed the monophyly of Hemiptera under site-heterogeneous model, (2) placed Sternorrhyncha as sister to all other Hemiptera, (3) recovered Coccoidea as the sister taxon of Aphidoidea, followed successively by Aleyrodoidea and Psylloidea, and (4) indicated that the grouping of Coleorrhyncha and Fulgoromorpha was the result of long-branch attraction effect.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hao Zhang
- Henan Vocational and Technological College of Communication, Zhengzhou 450015, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
20
|
Dahdul W, Manda P, Cui H, Balhoff JP, Dececchi TA, Ibrahim N, Lapp H, Vision T, Mabee PM. Annotation of phenotypes using ontologies: a gold standard for the training and evaluation of natural language processing systems. Database (Oxford) 2018; 2018:5255130. [PMID: 30576485 PMCID: PMC6301375 DOI: 10.1093/database/bay110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/22/2018] [Accepted: 09/24/2018] [Indexed: 11/12/2022]
Abstract
Natural language descriptions of organismal phenotypes, a principal object of study in biology, are abundant in the biological literature. Expressing these phenotypes as logical statements using ontologies would enable large-scale analysis on phenotypic information from diverse systems. However, considerable human effort is required to make these phenotype descriptions amenable to machine reasoning. Natural language processing tools have been developed to facilitate this task, and the training and evaluation of these tools depend on the availability of high quality, manually annotated gold standard data sets. We describe the development of an expert-curated gold standard data set of annotated phenotypes for evolutionary biology. The gold standard was developed for the curation of complex comparative phenotypes for the Phenoscape project. It was created by consensus among three curators and consists of entity-quality expressions of varying complexity. We use the gold standard to evaluate annotations created by human curators and those generated by the Semantic CharaParser tool. Using four annotation accuracy metrics that can account for any level of relationship between terms from two phenotype annotations, we found that machine-human consistency, or similarity, was significantly lower than inter-curator (human-human) consistency. Surprisingly, allowing curatorsaccess to external information did not significantly increase the similarity of their annotations to the gold standard or have a significant effect on inter-curator consistency. We found that the similarity of machine annotations to the gold standard increased after new relevant ontology terms had been added. Evaluation by the original authors of the character descriptions indicated that the gold standard annotations came closer to representing their intended meaning than did either the curator or machine annotations. These findings point toward ways to better design software to augment human curators and the use of the gold standard corpus will allow training and assessment of new tools to improve phenotype annotation accuracy at scale.
Collapse
Affiliation(s)
| | - Prashanti Manda
- University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Hong Cui
- University of Arizona, Tucson, AZ, USA
| | - James P Balhoff
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T Alexander Dececchi
- University of South Dakota, Vermillion, SD, USA
- Current affiliation: University of Pittsburgh at Johnstown, Johnstown, PA, USA
| | - Nizar Ibrahim
- University of Chicago, Chicago, IL, USA
- Current affiliation: University of Detroit Mercy, Detroit, MI, USA & University of Portsmouth, Portsmouth, UK
| | | | - Todd Vision
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
21
|
Sansom RS, Wills MA. Differences between hard and soft phylogenetic data. Proc Biol Sci 2017; 284:20172150. [PMID: 29237859 PMCID: PMC5745416 DOI: 10.1098/rspb.2017.2150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022] Open
Abstract
When building the tree of life, variability of phylogenetic signal is often accounted for by partitioning gene sequences and testing for differences. The same considerations, however, are rarely applied to morphological data, potentially undermining its use in evolutionary contexts. Here, we apply partition heterogeneity tests to 59 animal datasets to demonstrate that significant differences exist between the phylogenetic signal conveyed by 'hard' and 'soft' characters (bones, teeth and shells versus myology, integument etc). Furthermore, the morphological partitions differ significantly in their consistency relative to independent molecular trees. The observed morphological differences correspond with missing data biases, and as such their existence presents a problem not only for phylogeny reconstruction, but also for interpretations of fossil data. Evolutionary inferences drawn from clades in which hard, readily fossilizable characters are relatively less consistent and different from other morphology (mammals, bivalves) may be less secure. More secure inferences might be drawn from the fossil record of clades that exhibit fewer differences, or exhibit more consistent hard characters (fishes, birds). In all cases, it will be necessary to consider the impact of missing data on empirical data, and the differences that exist between morphological modules.
Collapse
Affiliation(s)
- Robert S Sansom
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Matthew A Wills
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
22
|
Gee BM, Haridy Y, Reisz RR. Histological characterization of denticulate palatal plates in an Early Permian dissorophoid. PeerJ 2017; 5:e3727. [PMID: 28848692 PMCID: PMC5571816 DOI: 10.7717/peerj.3727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/02/2017] [Indexed: 11/24/2022] Open
Abstract
Denticles are small, tooth-like protrusions that are commonly found on the palate of early tetrapods. Despite their widespread taxonomic occurrence and similar external morphology to marginal teeth, it has not been rigorously tested whether denticles are structurally homologous to true teeth with features such as a pulp cavity, dentine, and enamel, or if they are bony, tooth-like protrusions. Additionally, the denticles are known to occur not only on the palatal bones but also on a mosaic of small palatal plates that is thought to have covered the interpterygoid vacuities of temnospondyls through implantation in a soft tissue covering; however, these plates have never been examined beyond a simple description of their position and external morphology. Accordingly, we performed a histological analysis of these denticulate palatal plates in a dissorophoid temnospondyl in order to characterize their microanatomy and histology. The dentition on these palatal plates has been found to be homologous with true teeth on the basis of both external morphology and histological data through the identification of features such as enamel and a pulp cavity surrounded by dentine. In addition, patterns of tooth replacement and ankylosis support the hypothesis of structural homology between these tiny teeth on the palatal plates and the much larger marginal dentition. We also provide the first histological characterization of the palatal plates, including documentation of abundant Sharpey’s fibres that provide a direct line of evidence to support the hypothesis of soft tissue implantation. Finally, we conducted a survey of the literature to determine the taxonomic distribution of these plates within Temnospondyli, providing a broader context for the presence of palatal plates and illustrating the importance of maintaining consistency in nomenclature.
Collapse
Affiliation(s)
- Bryan M Gee
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Yara Haridy
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Robert R Reisz
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| |
Collapse
|
23
|
Internal Morphology of Osteoderms of Extinct Armadillos and Its Relationship with Environmental Conditions. J MAMM EVOL 2017. [DOI: 10.1007/s10914-017-9404-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Paluh DJ, Griffing AH, Bauer AM. Sheddable armour: identification of osteoderms in the integument of Geckolepis maculata (Gekkota). AFR J HERPETOL 2017. [DOI: 10.1080/21564574.2017.1281172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daniel J. Paluh
- Villanova University, Department of Biology, Villanova, PA 19085, USA
- Department of Biology and Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Aaron H. Griffing
- Villanova University, Department of Biology, Villanova, PA 19085, USA
- Marquette University, Department of Biological Sciences, Milwaukee, WI 53233, USA
| | - Aaron M. Bauer
- Villanova University, Department of Biology, Villanova, PA 19085, USA
| |
Collapse
|
25
|
Godoy PL, Bronzati M, Eltink E, Marsola JCDA, Cidade GM, Langer MC, Montefeltro FC. Postcranial anatomy of Pissarrachampsa sera (Crocodyliformes, Baurusuchidae) from the Late Cretaceous of Brazil: insights on lifestyle and phylogenetic significance. PeerJ 2016; 4:e2075. [PMID: 27257551 PMCID: PMC4888301 DOI: 10.7717/peerj.2075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
The postcranial anatomy of Crocodyliformes has historically been neglected, as most descriptions are based solely on skulls. Yet, the significance of the postcranium in crocodyliforms evolution is reflected in the great lifestyle diversity exhibited by the group, with members ranging from terrestrial animals to semi-aquatic and fully marine forms. Recently, studies have emphasized the importance of the postcranium. Following this trend, here we present a detailed description of the postcranial elements of Pissarrachampsa sera (Mesoeucrocodylia, Baurusuchidae), from the Adamantina Formation (Bauru Group, Late Cretaceous of Brazil). The preserved elements include dorsal vertebrae, partial forelimb, pelvic girdle, and hindlimbs. Comparisons with the postcranial anatomy of baurusuchids and other crocodyliforms, together with body-size and mass estimates, lead to a better understanding of the paleobiology of Pissarrachampsa sera, including its terrestrial lifestyle and its role as a top predator. Furthermore, the complete absence of osteoderms in P. sera, a condition previously known only in marine crocodyliforms, suggests osteoderms very likely played a minor role in locomotion of baurusuchids, unlike other groups of terrestrial crocodyliforms. Finally, a phylogenetic analysis including the newly recognized postcranial features was carried out, and exploratory analyses were performed to investigate the influence of both cranial and postcranial characters in the phylogeny of Crocodyliformes. Our results suggest that crocodyliform relationships are mainly determined by cranial characters. However, this seems to be a consequence of the great number of missing entries in the data set with only postcranial characters and not of the lack of potential (or synapomorphies) for this kind of data to reflect the evolutionary history of Crocodyliformes.
Collapse
Affiliation(s)
- Pedro L. Godoy
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mario Bronzati
- Bayerische Staatssammlung für Paläontologie und Geologie, Staatlichen Naturwissenschaftlichen Sammlungen Bayerns, Munich, Germany
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Estevan Eltink
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Júlio C. de A. Marsola
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Giovanne M. Cidade
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Max C. Langer
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Felipe C. Montefeltro
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista (UNESP), Ilha Solteira, Brazil
| |
Collapse
|
26
|
Vieira LG, Santos AL, Moura LR, Orpinelli SR, Pereira KF, Lima FC. Morphology, development and heterochrony of the carapace of Giant Amazon River Turtle Podocnemis expansa (Testudines, Podocnemidae). PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000500014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: With aim to report the ontogeny of the osseous elements of the carapace in Peurodiras, 62 embryos and 43 nestlings of Podocnemis expansa were collected and submitted to the clearing and staining technique of bones and cartilages and study of serial histological slices. The carapace has mixed osseous structure of endo and exoskeleton, formed by 8 pairs of costal bones associated with ribs, 7 neural bones associated with neural arches, 11 pairs of peripheral bones, 1 nuchal, 1 pygal and 1 suprapygal. This structure begins its formation in the beginning of stage 16 with the ossification of the periosteal collar of the ribs. With exception of the peripheral bones, the other ones begin their ossification during the embrionary period. In histologic investigation it was found that the costal bones and neural bones have a close relation to the endoskeleton components, originating themselves as intramembranous expansions of the periosteal collar of the ribs and neural arches, respectively. The condensation of the mesenchyme adjacent to the periosteal collar induces the formation of spikes that grow in trabeculae permeated by fibroblasts below the dermis. The nuchal bone also ossifies in an intramembranous way, but does not show direct relation to the endoskeleton. Such information confirms those related to the other Pleurodira, mainly with Podocnemis unifilis, sometimes with conspicuous variations in the chronology of the ossification events. The formation of dermal plates in the carapace of Pleurodira and Criptodira follow the same pattern.
Collapse
|
27
|
Mounce RCP, Sansom R, Wills MA. Sampling diverse characters improves phylogenies: Craniodental and postcranial characters of vertebrates often imply different trees. Evolution 2016; 70:666-86. [PMID: 26899622 DOI: 10.1111/evo.12884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/23/2015] [Accepted: 01/15/2016] [Indexed: 12/30/2022]
Abstract
Morphological cladograms of vertebrates are often inferred from greater numbers of characters describing the skull and teeth than from postcranial characters. This is either because the skull is believed to yield characters with a stronger phylogenetic signal (i.e., contain less homoplasy), because morphological variation therein is more readily atomized, or because craniodental material is more widely available (particularly in the palaeontological case). An analysis of 85 vertebrate datasets published between 2000 and 2013 confirms that craniodental characters are significantly more numerous than postcranial characters, but finds no evidence that levels of homoplasy differ in the two partitions. However, a new partition test, based on tree-to-tree distances (as measured by the Robinson Foulds metric) rather than tree length, reveals that relationships inferred from the partitions are significantly different about one time in three, much more often than expected. Such differences may reflect divergent selective pressures in different body regions, resulting in different localized patterns of homoplasy. Most systematists attempt to sample characters broadly across body regions, but this is not always possible. We conclude that trees inferred largely from either craniodental or postcranial characters in isolation may differ significantly from those that would result from a more holistic approach. We urge the latter.
Collapse
Affiliation(s)
- Ross C P Mounce
- The Milner Centre for Evolution, Department of Biology and Biochemistry, The University of Bath, The Avenue, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Robert Sansom
- Department of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Matthew A Wills
- The Milner Centre for Evolution, Department of Biology and Biochemistry, The University of Bath, The Avenue, Claverton Down, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
28
|
Parker WG. Revised phylogenetic analysis of the Aetosauria (Archosauria: Pseudosuchia); assessing the effects of incongruent morphological character sets. PeerJ 2016; 4:e1583. [PMID: 26819845 PMCID: PMC4727975 DOI: 10.7717/peerj.1583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022] Open
Abstract
Aetosauria is an early-diverging clade of pseudosuchians (crocodile-line archosaurs) that had a global distribution and high species diversity as a key component of various Late Triassic terrestrial faunas. It is one of only two Late Triassic clades of large herbivorous archosaurs, and thus served a critical ecological role. Nonetheless, aetosaur phylogenetic relationships are still poorly understood, owing to an overreliance on osteoderm characters, which are often poorly constructed and suspected to be highly homoplastic. A new phylogenetic analysis of the Aetosauria, comprising 27 taxa and 83 characters, includes more than 40 new characters that focus on better sampling the cranial and endoskeletal regions, and represents the most comprenhensive phylogeny of the clade to date. Parsimony analysis recovered three most parsimonious trees; the strict consensus of these trees finds an Aetosauria that is divided into two main clades: Desmatosuchia, which includes the Desmatosuchinae and the Stagonolepidinae, and Aetosaurinae, which includes the Typothoracinae. As defined Desmatosuchinae now contains Neoaetosauroides engaeus and several taxa that were previously referred to the genus Stagonolepis, and a new clade, Desmatosuchini, is erected for taxa more closely related to Desmatosuchus. Overall support for some clades is still weak, and Partitioned Bremer Support (PBS) is applied for the first time to a strictly morphological dataset demonstrating that this weak support is in part because of conflict in the phylogenetic signals of cranial versus postcranial characters. PBS helps identify homoplasy among characters from various body regions, presumably the result of convergent evolution within discrete anatomical modules. It is likely that at least some of this character conflict results from different body regions evolving at different rates, which may have been under different selective pressures.
Collapse
Affiliation(s)
- William G. Parker
- Division of Resource Management, Petrified Forest National Park, Arizona, United States
- Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
29
|
Dececchi TA, Balhoff JP, Lapp H, Mabee PM. Toward Synthesizing Our Knowledge of Morphology: Using Ontologies and Machine Reasoning to Extract Presence/Absence Evolutionary Phenotypes across Studies. Syst Biol 2015; 64:936-52. [PMID: 26018570 PMCID: PMC4604830 DOI: 10.1093/sysbio/syv031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/20/2015] [Indexed: 02/02/2023] Open
Abstract
The reality of larger and larger molecular databases and the need to integrate data scalably have presented a major challenge for the use of phenotypic data. Morphology is currently primarily described in discrete publications, entrenched in noncomputer readable text, and requires enormous investments of time and resources to integrate across large numbers of taxa and studies. Here we present a new methodology, using ontology-based reasoning systems working with the Phenoscape Knowledgebase (KB; kb.phenoscape.org), to automatically integrate large amounts of evolutionary character state descriptions into a synthetic character matrix of neomorphic (presence/absence) data. Using the KB, which includes more than 55 studies of sarcopterygian taxa, we generated a synthetic supermatrix of 639 variable characters scored for 1051 taxa, resulting in over 145,000 populated cells. Of these characters, over 76% were made variable through the addition of inferred presence/absence states derived by machine reasoning over the formal semantics of the source ontologies. Inferred data reduced the missing data in the variable character-subset from 98.5% to 78.2%. Machine reasoning also enables the isolation of conflicts in the data, that is, cells where both presence and absence are indicated; reports regarding conflicting data provenance can be generated automatically. Further, reasoning enables quantification and new visualizations of the data, here for example, allowing identification of character space that has been undersampled across the fin-to-limb transition. The approach and methods demonstrated here to compute synthetic presence/absence supermatrices are applicable to any taxonomic and phenotypic slice across the tree of life, providing the data are semantically annotated. Because such data can also be linked to model organism genetics through computational scoring of phenotypic similarity, they open a rich set of future research questions into phenotype-to-genome relationships.
Collapse
Affiliation(s)
| | - James P Balhoff
- National Evolutionary Synthesis Center, Durham, NC 27705, USA; University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hilmar Lapp
- National Evolutionary Synthesis Center, Durham, NC 27705, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Paula M Mabee
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA;
| |
Collapse
|
30
|
Vickaryous MK, Meldrum G, Russell AP. Armored geckos: A histological investigation of osteoderm development in Tarentola (Phyllodactylidae) and Gekko (Gekkonidae) with comments on their regeneration and inferred function. J Morphol 2015; 276:1345-57. [PMID: 26248595 DOI: 10.1002/jmor.20422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 11/12/2022]
Abstract
Osteoderms are bone-rich organs found in the dermis of many scleroglossan lizards sensu lato, but are only known for two genera of gekkotans (geckos): Tarentola and Gekko. Here, we investigate their sequence of appearance, mode of development, structural diversity and ability to regenerate following tail loss. Osteoderms were present in all species of Tarentola sampled (Tarentola annularis, T. mauritanica, T. americana, T. crombei, T. chazaliae) as well as Gekko gecko, but not G. smithii. Gekkotan osteoderms first appear within the integument dorsal to the frontal bone or within the supraocular scales. They then manifest as mineralized structures in other positions across the head. In Tarentola and G. gecko, discontinuous clusters subsequently form dorsal to the pelvis/base of the tail, and then dorsal to the pectoral apparatus. Gekkotan osteoderm formation begins once the dermis is fully formed. Early bone deposition appears to involve populations of fibroblast-like cells, which are gradually replaced by more rounded osteoblasts. In T. annularis and T. mauritanica, an additional skeletal tissue is deposited across the superficial surface of the osteoderm. This tissue is vitreous, avascular, cell-poor, lacks intrinsic collagen, and is herein identified as osteodermine. We also report that following tail loss, both T. annularis and T. mauritanica are capable of regenerating osteoderms, including osteodermine, in the regenerated part of the tail. We propose that osteoderms serve roles in defense against combative prey and intraspecific aggression, along with anti-predation functions.
Collapse
Affiliation(s)
- M K Vickaryous
- Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W, Calgary, Alberta, T2N 1N4, Canada.,Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road, Guelph, Ontario, N1G 2W1, Canada
| | - G Meldrum
- Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W, Calgary, Alberta, T2N 1N4, Canada
| | - A P Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
31
|
Hirasawa T, Kuratani S. Evolution of the vertebrate skeleton: morphology, embryology, and development. ZOOLOGICAL LETTERS 2015; 1:2. [PMID: 26605047 PMCID: PMC4604106 DOI: 10.1186/s40851-014-0007-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/19/2014] [Indexed: 05/08/2023]
Abstract
Two major skeletal systems-the endoskeleton and exoskeleton-are recognized in vertebrate evolution. Here, we propose that these two systems are distinguished primarily by their relative positions, not by differences in embryonic histogenesis or cell lineage of origin. Comparative embryologic analyses have shown that both types of skeleton have changed their mode of histogenesis during evolution. Although exoskeletons were thought to arise exclusively from the neural crest, recent experiments in teleosts have shown that exoskeletons in the trunk are mesodermal in origin. The enameloid and dentine-coated postcranial exoskeleton seen in many vertebrates does not appear to represent an ancestral condition, as previously hypothesized, but rather a derived condition, in which the enameloid and dentine tissues became accreted to bones. Recent data from placoderm fossils are compatible with this scenario. In contrast, the skull contains neural crest-derived bones in its rostral part. Recent developmental studies suggest that the boundary between neural crest- and mesoderm-derived bones may not be consistent throughout evolution. Rather, the relative positions of bony elements may be conserved, and homologies of bony elements have been retained, with opportunistic changes in the mechanisms and cell lineages of development.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
32
|
Brink KS, LeBlanc ARH, Reisz RR. First record of plicidentine in Synapsida and patterns of tooth root shape change in Early Permian sphenacodontians. Naturwissenschaften 2014; 101:883-92. [DOI: 10.1007/s00114-014-1228-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/14/2014] [Accepted: 08/16/2014] [Indexed: 11/29/2022]
|
33
|
Nagashima H, Sugahara F, Takechi M, Sato N, Kuratani S. On the homology of the shoulder girdle in turtles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:244-54. [PMID: 25052382 DOI: 10.1002/jez.b.22584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 12/15/2022]
Abstract
The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In particular, the ventrorostral process has been compared to a clavicle, an acromion, and a procoracoid based on its morphology, its connectivity to the rest of the skeleton and to muscles, as well as with its ossification center, cell lineage, and gene expression. In making these comparisons, the shoulder girdle skeleton of anurans has often been used as a reference. This review traces the history of the debate on the homology of the shoulder girdle in turtles. And based on the integrative aspects of developmental biology, comparative morphology, and paleontology, we suggest acromion and procoracoid identities for the two ventral processes.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | |
Collapse
|
34
|
Nakajima Y, Hirayama R, Endo H. Turtle humeral microanatomy and its relationship to lifestyle. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12336] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuhisa Nakajima
- Steinmann Institute for Geology, Mineralogy and Paleontology; University of Bonn; Nussallee 8 53115 Bonn Germany
| | - Ren Hirayama
- School of International Liberal Studies; Waseda University; Nishiwaseda 1-6-1 Shinjuku-ku Tokyo Japan
| | - Hideki Endo
- The University Museum; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| |
Collapse
|
35
|
Hirasawa T, Pascual-Anaya J, Kamezaki N, Taniguchi M, Mine K, Kuratani S. The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:194-207. [PMID: 24898540 DOI: 10.1002/jez.b.22579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
Abstract
Turtles are characterized by their possession of a shell with dorsal and ventral moieties: the carapace and the plastron, respectively. In this review, we try to provide answers to the question of the evolutionary origin of the carapace, by revising morphological, developmental, and paleontological comparative analyses. The turtle carapace is formed through modification of the thoracic ribs and vertebrae, which undergo extensive ossification to form a solid bony structure. Except for peripheral dermal elements, there are no signs of exoskeletal components ontogenetically added to the costal and neural bones, and thus the carapace is predominantly of endoskeletal nature. Due to the axial arrest of turtle rib growth, the axial part of the embryo expands laterally and the shoulder girdle becomes encapsulated in the rib cage, together with the inward folding of the lateral body wall in the late phase of embryogenesis. Along the line of this folding develops a ridge called the carapacial ridge (CR), a turtle-specific embryonic structure. The CR functions in the marginal growth of the carapacial primordium, in which Wnt signaling pathway might play a crucial role. Both paleontological and genomic evidence suggest that the axial arrest is the first step toward acquisition of the turtle body plan, which is estimated to have taken place after the divergence of a clade including turtles from archosaurs. The developmental relationship between the CR and the axial arrest remains a central issue to be solved in future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
36
|
MacDougall MJ, LeBlanc ARH, Reisz RR. Plicidentine in the Early Permian parareptile Colobomycter pholeter, and its phylogenetic and functional significance among coeval members of the clade. PLoS One 2014; 9:e96559. [PMID: 24804680 PMCID: PMC4013015 DOI: 10.1371/journal.pone.0096559] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
Once thought to be an exclusively anamniote characteristic, plicidentine, a pattern of infolding of dentine, is now known to be found in various amniote clades, including Parareptilia. In the absence of detailed analyses of parareptilian dentition, most parareptiles were assumed to lack plicidentine due to the absence of external indicators, such as plications on the tooth base. The clear presence of this dentinal feature in the largest premaxillary and maxillary teeth of Colobomycter pholeter, led us to the present detailed study within the dentition of this unusual parareptile, and those of coeval members of this clade. Our study reveals that there is large variability in the degree of dentine infolding within C. pholeter dentition, as well as within those of closely related parareptiles. This variability ranges from a lack of plications, to very complex anamniote-like plicidentine. Utilizing computed tomography scans in conjunction with histological sections we also demonstrate the utility of computed tomography scans in conducting non-destructive sampling in the identification of plicidentine. Given the variability of plicidentine in this sample of parareptiles, we hypothesize that one function of parareptilian plicidentine is to increase the surface area for attachment tissues, and we suggest that the use of plicidentine as a character in phylogenetic analyses of parareptiles may be misleading.
Collapse
Affiliation(s)
- Mark J. MacDougall
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- * E-mail:
| | - Aaron R. H. LeBlanc
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Robert R. Reisz
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
37
|
Sensale S, Jones W, Blanco RE. Does osteoderm growth follow energy minimization principles? J Morphol 2014; 275:923-32. [PMID: 24634089 DOI: 10.1002/jmor.20273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/16/2013] [Indexed: 11/08/2022]
Abstract
Although the growth and development of tissues and organs of extinct species cannot be directly observed, their fossils can record and preserve evidence of these mechanisms. It is generally accepted that bone architecture is the result of genetically based biomechanical constraints, but what about osteoderms? In this article, the influence of physical constraints on cranial osteoderms growth is assessed. Comparisons among lepidosaurs, synapsids, and archosaurs are performed; according to these analyses, lepidosaur osteoderms growth is predicted to be less energy demanding than that of synapsids and archosaurs. Obtained results also show that, from an energetic viewpoint, ankylosaurid osteoderms growth resembles more that of mammals than the one of reptilians, adding evidence to debate whether dinosaurs were hot or cold blooded.
Collapse
Affiliation(s)
- Sebastián Sensale
- Núcleo de Biomecánica, Espacio Interdiscipinario, Universidad de la República, Montevideo, 11200, Uruguay; Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, 11300, Uruguay
| | | | | |
Collapse
|
38
|
Ezcurra MD, Scheyer TM, Butler RJ. The origin and early evolution of Sauria: reassessing the permian Saurian fossil record and the timing of the crocodile-lizard divergence. PLoS One 2014; 9:e89165. [PMID: 24586565 PMCID: PMC3937355 DOI: 10.1371/journal.pone.0089165] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/14/2014] [Indexed: 11/19/2022] Open
Abstract
Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth strategies appear to be more diverse than previously suggested based on new data on the osteohistology of Aenigmastropheus.
Collapse
Affiliation(s)
- Martín D. Ezcurra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- GeoBio-Center, Ludwig-Maximilian-Universität München, Munich, Germany
| | - Torsten M. Scheyer
- Paläontologisches Institut und Museum, Universität Zürich, Zurich, Switzerland
| | - Richard J. Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- GeoBio-Center, Ludwig-Maximilian-Universität München, Munich, Germany
| |
Collapse
|
39
|
Abstract
The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endoskeletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell. The evolutionary origins of the costal and neural bony plates of the turtle shell have long remained elusive. Here the authors show, through comparative morphological and embryological analyses, that the most of the carapace is derived from endoskeletal ribs.
Collapse
|
40
|
Scheyer TM, Desojo JB, Cerda IA. Bone Histology of Phytosaur, Aetosaur, and Other Archosauriform Osteoderms (Eureptilia, Archosauromorpha). Anat Rec (Hoboken) 2013; 297:240-60. [DOI: 10.1002/ar.22849] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/22/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Torsten M. Scheyer
- Paläontologisches Institut und Museum der Universität Zürich; Karl Schmid-Strasse 4, CH-8006 Zürich Switzerland
| | - Julia B. Desojo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Sección Paleontología Vertebrados; Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; Ángel Gallardo 470 C1405DJR Buenos Aires Argentina
| | - Ignacio A. Cerda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Instituto de Investigación en Paleobiología y Geología; Universidad Nacional de Río Negro; Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca (predio Marabunta), 8300 Cipolletti Río Negro Argentina
| |
Collapse
|
41
|
Lu B, Yang W, Dai Q, Fu J. Using genes as characters and a parsimony analysis to explore the phylogenetic position of turtles. PLoS One 2013; 8:e79348. [PMID: 24278129 PMCID: PMC3836853 DOI: 10.1371/journal.pone.0079348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
The phylogenetic position of turtles within the vertebrate tree of life remains controversial. Conflicting conclusions from different studies are likely a consequence of systematic error in the tree construction process, rather than random error from small amounts of data. Using genomic data, we evaluate the phylogenetic position of turtles with both conventional concatenated data analysis and a "genes as characters" approach. Two datasets were constructed, one with seven species (human, opossum, zebra finch, chicken, green anole, Chinese pond turtle, and western clawed frog) and 4584 orthologous genes, and the second with four additional species (soft-shelled turtle, Nile crocodile, royal python, and tuatara) but only 1638 genes. Our concatenated data analysis strongly supported turtle as the sister-group to archosaurs (the archosaur hypothesis), similar to several recent genomic data based studies using similar methods. When using genes as characters and gene trees as character-state trees with equal weighting for each gene, however, our parsimony analysis suggested that turtles are possibly sister-group to diapsids, archosaurs, or lepidosaurs. None of these resolutions were strongly supported by bootstraps. Furthermore, our incongruence analysis clearly demonstrated that there is a large amount of inconsistency among genes and most of the conflict relates to the placement of turtles. We conclude that the uncertain placement of turtles is a reflection of the true state of nature. Concatenated data analysis of large and heterogeneous datasets likely suffers from systematic error and over-estimates of confidence as a consequence of a large number of characters. Using genes as characters offers an alternative for phylogenomic analysis. It has potential to reduce systematic error, such as data heterogeneity and long-branch attraction, and it can also avoid problems associated with computation time and model selection. Finally, treating genes as characters provides a convenient method for examining gene and genome evolution.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
42
|
Arbour VM, Burns ME, Bell PR, Currie PJ. Epidermal and dermal integumentary structures of ankylosaurian dinosaurs. J Morphol 2013; 275:39-50. [DOI: 10.1002/jmor.20194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/14/2013] [Accepted: 08/09/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Victoria M. Arbour
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| | - Michael E. Burns
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| | - Phil R. Bell
- Pipestone Creek Dinosaur Initiative; Clairmont Alberta T0H 0W0 Canada
| | - Philip J. Currie
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
43
|
Lyson TR, Bhullar BAS, Bever GS, Joyce WG, de Queiroz K, Abzhanov A, Gauthier JA. Homology of the enigmatic nuchal bone reveals novel reorganization of the shoulder girdle in the evolution of the turtle shell. Evol Dev 2013; 15:317-25. [DOI: 10.1111/ede.12041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tyler R. Lyson
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
- Department of Vertebrate Zoology; National Museum of Natural History, Smithsonian Institution; Washington DC 20560 USA
| | - Bhart-Anjan S. Bhullar
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - Gabe S. Bever
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Department of Anatomy; New York Institute of Technology, College of Osteopathic Medicine; New York NY USA
- Division of Paleontology; American Museum of Natural History; New York NY USA
| | - Walter G. Joyce
- Department of Geosciences; University of Tübingen; 72074 Tübingen Germany
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology; National Museum of Natural History, Smithsonian Institution; Washington DC 20560 USA
| | - Arhat Abzhanov
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - Jacques A. Gauthier
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
| |
Collapse
|
44
|
Tokita M, Chaeychomsri W, Siruntawineti J. Skeletal gene expression in the temporal region of the reptilian embryos: implications for the evolution of reptilian skull morphology. SPRINGERPLUS 2013; 2:336. [PMID: 24711977 PMCID: PMC3970585 DOI: 10.1186/2193-1801-2-336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
Reptiles have achieved highly diverse morphological and physiological traits that allow them to exploit various ecological niches and resources. Morphology of the temporal region of the reptilian skull is highly diverse and historically it has been treated as an important character for classifying reptiles and has helped us understand the ecology and physiology of each species. However, the developmental mechanism that generates diversity of reptilian skull morphology is poorly understood. We reveal a potential developmental basis that generates morphological diversity in the temporal region of the reptilian skull by performing a comparative analysis of gene expression in the embryos of reptile species with different skull morphology. By investigating genes known to regulate early osteoblast development, we find dorsoventrally broadened unique expression of the early osteoblast marker, Runx2, in the temporal region of the head of turtle embryos that do not form temporal fenestrae. We also observe that Msx2 is also uniquely expressed in the mesenchymal cells distributed at the temporal region of the head of turtle embryos. Furthermore, through comparison of gene expression pattern in the embryos of turtle, crocodile, and snake species, we find a possible correlation between the spatial patterns of Runx2 and Msx2 expression in cranial mesenchymal cells and skull morphology of each reptilian lineage. Regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal region of the reptilian skull.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan ; Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138 USA
| | - Win Chaeychomsri
- Department of Zoology, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900 Thailand
| | - Jindawan Siruntawineti
- Department of Zoology, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900 Thailand
| |
Collapse
|
45
|
Evolutionary Origin of the Turtle Shell. Curr Biol 2013; 23:1113-9. [DOI: 10.1016/j.cub.2013.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/03/2013] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
|
46
|
Burns ME, Vickaryous MK, Currie PJ. Histological variability in fossil and recent alligatoroid osteoderms: systematic and functional implications. J Morphol 2013; 274:676-86. [PMID: 23381912 DOI: 10.1002/jmor.20125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/12/2012] [Accepted: 12/08/2012] [Indexed: 11/08/2022]
Abstract
Statements about morphological variation in extinct taxa often suffer from insufficient sampling that can be remedied by taking advantage of larger sample sizes provided by related, extant taxa. This analysis quantitatively and qualitatively examines histological and morphological variation of osteoderms from extant and extinct alligatoroid specimens. Statistically significant differences were correlated with changes in osteoderm size and shape. These differences are independent of position on the body, taxonomy, or evolution. Histological variation in alligatoroid osteoderms is due to morphological constraints on the elements themselves, and not taxonomic differences. This has implications for the recognition of histological characters in the osteoderms of extinct archosaur groups that lack extant representatives.
Collapse
Affiliation(s)
- Michael E Burns
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
47
|
Nesbitt SJ, Brusatte SL, Desojo JB, Liparini A, De França MAG, Weinbaum JC, Gower DJ. Rauisuchia. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp379.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract‘Rauisuchia’ comprises Triassic pseudosuchians that ranged greatly in body size, locomotor styles and feeding ecologies. Our concept of what constitutes a rauisuchian is changing as a result of discoveries over the last 15 years. New evidence has shown that rauisuchians are probably not a natural (monophyletic) group, but instead are a number of smaller clades (e.g. Rauisuchidae, Ctenosauriscidae, Shuvosauridae) that may not be each other's closest relatives within Pseudosuchia. Here, we acknowledge that there are still large gaps in the basic understanding in the alpha-level taxonomy and relationships of these groups, but good progress is being made. As a result of renewed interest in rauisuchians, an expanding number of recent studies have focused on the growth, locomotor habits, and biomechanics of these animals, and we review these studies here. We are clearly in the midst of a renaissance in our understanding of rauisuchian evolution and the continuation of detailed descriptions, the development of explicit phylogenetic hypotheses, and explicit palaeobiological studies are essential in advancing our knowledge of these extinct animals.
Collapse
Affiliation(s)
- Sterling J. Nesbitt
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Stephen L. Brusatte
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
| | - Julia B. Desojo
- CONICET, Comisión Nacional de Investigación Científica y Técnica, Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia, Av. Angel Gallardo 470, C1405DRJ, Buenos Aires, Argentina
| | - Alexandre Liparini
- Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Cx.P. 15001, 91540-970, Porto Alegre, RS, Brazil
| | - Marco A. G. De França
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14040-901, Brazil
| | - Jonathan C. Weinbaum
- Biology Department, Southern Connecticut State University, New Haven, CT 06515, USA
| | - David J. Gower
- Department of Zoology, The Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
48
|
Rieppel O. The Evolution of the Turtle Shell. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Three Ways to Tackle the Turtle: Integrating Fossils, Comparative Embryology, and Microanatomy. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Jones MEH, Werneburg I, Curtis N, Penrose R, O'Higgins P, Fagan MJ, Evans SE. The head and neck anatomy of sea turtles (Cryptodira: Chelonioidea) and skull shape in Testudines. PLoS One 2012; 7:e47852. [PMID: 23144831 PMCID: PMC3492385 DOI: 10.1371/journal.pone.0047852] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/19/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Sea turtles (Chelonoidea) are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known. METHODOLOGY/PRINCIPAL FINDINGS Using computed tomography and classical comparative anatomy we describe the cranial anatomy in two sea turtles, the loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii), for a better understanding of sea turtle functional anatomy and morphological variation. In both taxa the temporal region of the skull is enclosed by bone and the jaw joint structure and muscle arrangement indicate that palinal jaw movement is possible. The tongue is relatively small, and the hyoid apparatus is not as conspicuous as in some freshwater aquatic turtles. We find several similarities between the muscles of C. caretta and L. kempii, but comparison with other turtles suggests only one of these characters may be derived: connection of the m. adductor mandibulae internus into the Pars intramandibularis via the Zwischensehne. The large fleshy origin of the m. adductor mandibulae externus Pars superficialis from the jugal seems to be a characteristic feature of sea turtles. CONCLUSIONS/SIGNIFICANCE In C. caretta and L. kempii the ability to suction feed does not seem to be as well developed as that found in some freshwater aquatic turtles. Instead both have skulls suited to forceful biting. This is consistent with the observation that both taxa tend to feed on relatively slow moving but sometimes armoured prey. The broad fleshy origin of the m. adductor mandibulae externus Pars superficialis may be linked to thecheek region being almost fully enclosed in bone but the relationship is complex.
Collapse
Affiliation(s)
- Marc E H Jones
- Research Department of Cell and Developmental Biology, UCL, University College London, London, England, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|