1
|
Dickinson E, Young MW, Tanis D, Granatosky MC. Patterns and Factors Influencing Parrot (Order: Psittaciformes) Success in Establishing Thriving Naturalized Populations within the Contiguous United States. Animals (Basel) 2023; 13:2101. [PMID: 37443899 DOI: 10.3390/ani13132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Parrots (Order: Psittaciformes) represent one of the most striking and ecomorphologically diverse avian clades, spanning more than two orders of magnitude in body size with populations occupying six continents. The worldwide diaspora of parrots is largely due to the pet trade, driven by human desire for bright, colorful, and intelligent animals as companions. Some introduced species have aptly inserted themselves into the local ecosystem and established successful breeding colonies all around the globe. Notably, the United States is home to several thriving populations of introduced species including red-masked parakeets (Psittacara erythrogenys), monk parakeets (Myiopsitta monachus), nanday conures (Aratinga nenday), and red-crowned amazons (Amazona viridigenalis). Their incredible success globally begs the question as to how these birds adapt so readily to novel environments. In this commentary, we trace parrots through evolutionary history, contextualize existent naturalized parrot populations within the contiguous United States, and provide a phylogenetic regression analysis of body mass and brain size based on success in establishing breeding populations. The propensity for a parrot species to become established appears to be phylogenetically driven. Notably, parrots in the family Cacatuidae and Neotropical Pyrrhua appear to be poor at establishing themselves in the United States once released. Although brain size among Psittaciformes did not show a significant impact on successful breeding in the continental United States, we propose that the success of parrots can be attributed to their charismatic nature, significant intelligence relative to other avian lineages, and behavioral flexibility.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Melody W Young
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Daniel Tanis
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Michael C Granatosky
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
2
|
Carotti E, Tittarelli E, Canapa A, Biscotti MA, Carducci F, Barucca M. LTR Retroelements and Bird Adaptation to Arid Environments. Int J Mol Sci 2023; 24:ijms24076332. [PMID: 37047324 PMCID: PMC10094322 DOI: 10.3390/ijms24076332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
TEs are known to be among the main drivers in genome evolution, leading to the generation of evolutionary advantages that favor the success of organisms. The aim of this work was to investigate the TE landscape in bird genomes to look for a possible relationship between the amount of specific TE types and environmental changes that characterized the Oligocene era in Australia. Therefore, the mobilome of 29 bird species, belonging to a total of 11 orders, was analyzed. Our results confirmed that LINE retroelements are not predominant in all species of this evolutionary lineage and highlighted an LTR retroelement dominance in species with an Australian-related evolutionary history. The bird LTR retroelement expansion might have happened in response to the Earth’s dramatic climate changes that occurred about 30 Mya, followed by a progressive aridification across most of Australian landmasses. Therefore, in birds, LTR retroelement burst might have represented an evolutionary advantage in the adaptation to arid/drought environments.
Collapse
|
3
|
Host-Parasite Relationships of Quill Mites (Syringophilidae) and Parrots (Psittaciformes). DIVERSITY 2022. [DOI: 10.3390/d15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The family Syringophilidae (Acari: Prostigmata) includes obligatory ectoparasites, which occupy feather quills from various parts of avian plumage, where they feed and reproduce. Our study was concerned with the global fauna of syringophilid mites associated with Psittaciformes, as well as host-parasite specificity and evolution. We assumed that the system composed of quill mites and parrots represents a model group that can be used in a broader study of the relationships between parasites and hosts. In total, we examined 1524 host individuals of parrots belonging to 195 species, 73 genera, and 4 families (which constitute ca. 50% of global parrot fauna) from all zoogeographical regions where Psittaciformes occur. Among them, 89 individuals representing 81 species have been infested by quill mites belonging to 45 species and 8 genera. The prevalence of host infestations by syringophilid mites varied from 2.8% to 100% (95% confidence interval (CI Sterne method) = 0.1–100). We applied a bipartite analysis to determine the parasite-host interaction, network indices, and host specificity at the species and whole network levels. The Syringophilidae-Psittaciformes network was composed of 24 mite species and 47 host species. The bipartite network was characterized by a high network level specialization H2′ = 0.98, connectance C = 0.89, and high modularity Q = 0.90, with 23 modules, but low nestedness N = 0.0333. Moreover, we reconstructed the phylogeny of the quill mites on the generic level, and this analysis shows two distinct clades: Psittaciphilus (Peristerophila + Terratosyringophilus) (among Syringophilinae subfamily) and Lawrencipicobia (Pipicobia + Rafapicobia) (among Picobiinae). Finally, the distributions and host-parasite relationships in the system composed of syringophilid mites and parrots are discussed.
Collapse
|
4
|
Marciniak-Musial N, Sikora B. Quill Mites of the Family Syringophilidae (Acariformes: Prostigmata) Associated With the New World and African Parrots (Psittaciformes: Psittacidae) With the Description of Eight New Species. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1562-1588. [PMID: 35964241 DOI: 10.1093/jme/tjac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 06/15/2023]
Abstract
In this paper, we review the quill mite fauna of the family Syringophilidae Lavoipierre, 1953 (Acariformes: Prostigmata) associated with New World and African parrots (Aves: Psittaciformes: Psittacidae), and describe eight new species including: Neoaulobia unsoeldi Marciniak-Musial & Sikora sp. nov. from the Burrowing Parakeet Cyanoliseus patagonus in Argentina; Lawrencipicobia arini Marciniak-Musial & Sikora sp. nov. from the Black-headed Parrot Pionites melanocephalus in Surinam; L. ararauna Marciniak-Musial & Sikora sp. nov. from the Black-headed Parrot Ara ararauna in Brazil; L. touiti Marciniak-Musial & Sikora sp. nov. from the Golden-tailed Parrotlet Touit surdus in Brazil; Rafapicobia valdiviana Marciniak-Musial & Sikora sp. nov. from the Burrowing Parrot Cyanoliseus patagonus in Brazil; R. pyrrhura Marciniak-Musial & Sikora sp. nov. from the Green-cheeked Parakeet Pyrrhura molinae in Bolivia; R. xanthopterygius Marciniak-Musial & Sikora sp. nov. from the Blue-winged Parrotlet Forpus xanthopterygius in Brazil; and R. trainidadi Marciniak-Musial & Sikora sp. nov. from the Lilac-tailed Parrotlet Touit batavicus in Trinidad and Tobago. Additionally, we note fifteen new host species and many new locality records for the previously described taxa, and provide the keys for all species associated with psittaciform birds. Finally, we discuss the host-parasite relationships between syringophilid mites and parrots.
Collapse
Affiliation(s)
- Natalia Marciniak-Musial
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Bozena Sikora
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
5
|
Smith BT, Merwin J, Provost KL, Thom G, Brumfield RT, Ferreira M, Mauck Iii WM, Moyle RG, Wright T, Joseph L. Phylogenomic analysis of the parrots of the world distinguishes artifactual from biological sources of gene tree discordance. Syst Biol 2022; 72:228-241. [PMID: 35916751 DOI: 10.1093/sysbio/syac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/22/2022] [Accepted: 07/22/2022] [Indexed: 11/14/2022] Open
Abstract
Gene tree discordance is expected in phylogenomic trees and biological processes are often invoked to explain it. However, heterogeneous levels of phylogenetic signal among individuals within datasets may cause artifactual sources of topological discordance. We examined how the information content in tips and subclades impacts topological discordance in the parrots (Order: Psittaciformes), a diverse and highly threatened clade of nearly 400 species. Using ultraconserved elements from 96% of the clade's species-level diversity, we estimated concatenated and species trees for 382 ingroup taxa. We found that discordance among tree topologies was most common at nodes dating between the late Miocene and Pliocene, and often at the taxonomic level of genus. Accordingly, we used two metrics to characterize information content in tips and assess the degree to which conflict between trees was being driven by lower quality samples. Most instances of topological conflict and non-monophyletic genera in the species tree could be objectively identified using these metrics. For subclades still discordant after tip-based filtering, we used a machine learning approach to determine whether phylogenetic signal or noise was the more important predictor of metrics supporting the alternative topologies. We found that when signal favored one of the topologies, noise was the most important variable in poorly performing models that favored the alternative topology. In sum, we show that artifactual sources of gene tree discordance, which are likely a common phenomenon in many datasets, can be distinguished from biological sources by quantifying the information content in each tip and modeling which factors support each topology.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Jon Merwin
- Department of Ornithology, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA 19103, USA
| | - Kaiya L Provost
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Gregory Thom
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Robb T Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mateus Ferreira
- Centro de Estudos da Biodiversidade, Universidade Federal de Roraima, Av. Cap. Ene Garcez, 2413, Boa Vista, RR, Brazil
| | - William M Mauck Iii
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Robert G Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, KS 66045, USA
| | - Timothy Wright
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Leo Joseph
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
6
|
Marciniak-Musial N, Hromada M, Sikora B. Taxonomic Diversity of the Quill Mites of the Family Syringophilidae (Acariformes: Prostigmata) Associated With Old World Parrots (Psittaciformes: Psittaculidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:213-232. [PMID: 34543429 DOI: 10.1093/jme/tjab144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The quill mite fauna of the family Syringophilidae Lavoipierre, 1953 (Acariformes: Prostigmata) associated with parrots (Aves: Psittaciformes) are reviewed. Seven new species are described: Pipicobia cyclopsitta Marciniak-Musial, Hromada & Sikora sp. nov. from the Double-Eyed Fig-Parrot Cyclopsitta diophthalma in Papua New Guinea; P. fuscata Marciniak-Musial, Hromada & Sikora sp. nov. from the Dusky Lory Pseudeos fuscata in Papua New Guinea; P. tahitiana Marciniak-Musial, Hromada & Sikora sp. nov. from the Blue Lorikeet Vini peruviana in Tahiti (French Polynesia); P. malherbi Marciniak-Musial, Hromada & Sikora sp. nov. from the Malherbe's Parakeet Cyanoramphus malherbi in New Zealand; Lawrencipicobia eclectus Marciniak-Musial, Hromada & Sikora sp. nov. from the Eclectus Parrot Eclectus roratus in Papua New Guinea; Neoaulobia pseudeos Marciniak-Musial, Hromada & Sikora sp. nov. from the Dusky Lory Pseudeos fuscata in Papua New Guinea; and N. Skorackii Marciniak-Musial, Hromada & Sikora sp. nov. from the Eastern Rosella Platycercus eximius in Australia.
Collapse
Affiliation(s)
- Natalia Marciniak-Musial
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Martin Hromada
- Laboratory and Museum of Evolutionary Ecology, Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, Prešov, Slovakia
- Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | - Bozena Sikora
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
7
|
Furo IDO, Kretschmer R, O'Brien PC, Pereira JC, Garnero ADV, Gunski RJ, O'Connor RE, Griffin DK, Gomes AJB, Ferguson-Smith MA, de Oliveira EHC. Chromosomal Evolution in the Phylogenetic Context: A Remarkable Karyotype Reorganization in Neotropical Parrot Myiopsitta monachus (Psittacidae). Front Genet 2020; 11:721. [PMID: 32754200 PMCID: PMC7366516 DOI: 10.3389/fgene.2020.00721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Myiopsitta monachus is a small Neotropical parrot (Psittaciformes: Arini Tribe) from subtropical and temperate regions of South America. It has a diploid chromosome number 2n = 48, different from other members of the Arini Tribe that have usually 70 chromosomes. The species has the lowest 2n within the Arini Tribe. In this study, we combined comparative chromosome painting with probes generated from chromosomes of Gallus gallus and Leucopternis albicollis, and FISH with bacterial artificial chromosomes (BACs) selected from the genome library of G. gallus with the aim to shed light on the dynamics of genome reorganization in M. monachus in the phylogenetic context. The homology maps showed a great number of fissions in macrochromosomes, and many fusions between microchromosomes and fragments of macrochromosomes. Our phylogenetic analysis by Maximum Parsimony agree with molecular data, placing M. monachus in a basal position within the Arini Tribe, together with Amazona aestiva (short tailed species). In M. monachus many chromosome rearrangements were found to represent autopomorphic characters, indicating that after this species split as an independent branch, an intensive karyotype reorganization took place. In addition, our results show that M. monachus probes generated by flow cytometry provide novel cytogenetic tools for the detection of avian chromosome rearrangements, since this species presents breakpoints that have not been described in other species.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Brazil.,Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Rafael Kretschmer
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Patricia Caroline O'Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge C Pereira
- Animal and Veterinary Research Centre (CEVAV), University of Tràs-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | | | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | | | | | | | - Malcolm Andrew Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Edivaldo Herculano Correa de Oliveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Brazil.,Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
8
|
Carril J, Chiale MC, Barbeito CG. The uropygial gland of the monk parakeet Myiopsitta monachus: Histology, morphogenesis, and evolution within Psittaciformes (Aves). Evol Dev 2019; 22:269-282. [PMID: 31682321 DOI: 10.1111/ede.12327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We describe the morphology, histology, and histochemical characteristics of the uropygial gland (UG) of the monk parakeet Myiopsitta monachus. The UG has a heart-shape external appearance and adenomers extensively branched with a convoluted path, covered by a stratified epithelium formed by different cellular strata and divided into three zones (based on the epithelial height and lumen width), a cylindrical papilla with an internal structure of delicate type and two excretory pores surrounded by a feather tuft. Histochemical and lectin-histochemical techniques performed showed positivity against PAS, AB pH 2.5, AB-PAS, and some lectines, likely related to the granivorous feeding habits. Also, we describe the morphogenesis of the UG of the monk parakeet, which appears at embryological stage 34 as a pair of ectodermal invaginations. Heterochronic events in the onset development of the UG when compared with other birds could be recognized. Finally, to examine the phylogenetic occurrence of the UG within the Psittaciformes and infer its evolutionary history, we mapped its presence/absence over a molecular phylogeny. The reconstruction of the characters states at ancestral nodes revealed that the presence of the UG was the plesiomorphic feature for Psittaciformes and its loss evolved independently more than once.
Collapse
Affiliation(s)
- Julieta Carril
- Laboratory of Histology and Descriptive, Experimental and Comparative Embryology, Faculty of Veterinary Sciences, National University of La Plata, National Scientific and Technical Research Council (CONICET), La Plata, Buenos Aires, Argentina
| | - María C Chiale
- Laboratory of Histology and Descriptive, Experimental and Comparative Embryology, Faculty of Veterinary Sciences, National University of La Plata, National Scientific and Technical Research Council (CONICET), La Plata, Buenos Aires, Argentina
| | - Claudio G Barbeito
- Laboratory of Histology and Descriptive, Experimental and Comparative Embryology, Faculty of Veterinary Sciences, National University of La Plata, National Scientific and Technical Research Council (CONICET), La Plata, Buenos Aires, Argentina
| |
Collapse
|
9
|
Chromosome Painting in Neotropical Long- and Short-Tailed Parrots (Aves, Psittaciformes): Phylogeny and Proposal for a Putative Ancestral Karyotype for Tribe Arini. Genes (Basel) 2018; 9:genes9100491. [PMID: 30309041 PMCID: PMC6210594 DOI: 10.3390/genes9100491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022] Open
Abstract
Most Neotropical Psittacidae have a diploid number of 2n = 70, and a dichotomy in chromosome patterns. Long-tailed species have biarmed macrochromosomes, while short-tailed species have telo/acrocentric macrochromosomes. However, the use of chromosome painting has demonstrated that karyotype evolution in Psittacidae includes a high number of inter/intrachromosomal rearrangements. To determine the phylogeny of long- and short-tailed species, and to propose a putative ancestral karyotype for this group, we constructed homology maps of Pyrrhura frontalis (PFR) and Amazona aestiva (AAE), belonging to the long- and short-tailed groups, respectively. Chromosomes were analyzed by conventional staining and fluorescent in situ hybridization using whole chromosome paints of Gallusgallus and Leucopternis albicollis. Conventional staining showed a karyotype with 2n = 70 in both species, with biarmed macrochromosomes in PFR and telo/acrocentric chromosomes in AAE. Comparison of the results with the putative avian ancestral karyotype (PAK) showed fusions in PFR of PAK1p/PAK4q (PFR1) and PAK6/PAK7 (PFR6) with a paracentric inversion in PFR6. However, in AAE, there was only the fusion between PAK6/7 (AAE7) with a paracentric inversion. Our results indicate that PFR retained a more basal karyotype than long-tailed species previously studied, and AAE a more basal karyotype for Neotropical Psittacidae analyzed so far.
Collapse
|
10
|
Lima NCB, Soares AER, Almeida LGDP, Costa IRD, Sato FM, Schneider P, Aleixo A, Schneider MP, Santos FR, Mello CV, Miyaki C, Vasconcelos ATR, Prosdocimi F. Comparative mitogenomic analyses of Amazona parrots and Psittaciformes. Genet Mol Biol 2018; 41:593-604. [PMID: 30235395 PMCID: PMC6136379 DOI: 10.1590/1678-4685-gmb-2017-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Amazon parrots are long-lived birds with highly developed cognitive skills, including vocal learning. Several parrot mitogenomes have been sequenced, but important aspects of their organization and evolution are not fully understood or have limited experimental support. The main aim of the present study was to describe the mitogenome of the blue-fronted Amazon, Amazona aestiva, and compare it to other mitogenomes from the genus Amazona and the order Psittaciformes. We observed that mitogenomes are highly conserved among Amazon parrots, and a detailed analysis of their duplicated control regions revealed conserved blocks. Population level analyses indicated that the specimen analyzed here seems to be close to A. aestiva individuals from Bahia state. Evolutionary relationships of 41 Psittaciformes species and three outgroups were inferred by BEAST. All relationships were retrieved with high support.
Collapse
Affiliation(s)
- Nicholas Costa Barroso Lima
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil.,Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | | | - Igor Rodrigues da Costa
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda Midori Sato
- Laboratório de Genética e Evolução Molecular de Aves, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| | - Patricia Schneider
- Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Alexandre Aleixo
- Coordenação de Zoologia, Museu Paraense Emilio Goeldi, Belém, PA, Brazil
| | - Maria Paula Schneider
- Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Fabrício R Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Cristina Miyaki
- Laboratório de Genética e Evolução Molecular de Aves, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| | - Ana Tereza R Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Evolutionary analysis of Chironius snakes unveils cryptic diversity and provides clues to diversification in the Neotropics. Mol Phylogenet Evol 2017; 116:108-119. [DOI: 10.1016/j.ympev.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/20/2022]
|
12
|
Costa WJEM, Amorim PF, Mattos JLO. Molecular phylogeny and timing of diversification in South American Cynolebiini seasonal killifishes. Mol Phylogenet Evol 2017; 116:61-68. [PMID: 28754241 DOI: 10.1016/j.ympev.2017.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 11/17/2022]
Abstract
The rich biological diversity of South America has motivated a series of studies associating evolution of endemic taxa with the dramatic geologic and climatic changes that occurred during the Cainozoic. The organism here studied is the killifish tribe Cynolebiini, a group of seasonal fishes uniquely inhabiting temporary pools formed during the rainy seasons. The Cynolebiini are found in open vegetation areas inserted in the main tropical and subtropical South American phytogeographical regions east of the Andes. Here, we present the first molecular phylogeny sampling all the eight genera of the Cynolebiini, using fragments of two mitochondrial and four nuclear genes for 35 species of Cynolebiini plus 19 species as outgroups. The dataset, 4448bp, was analysed under Bayesian and maximum likelihood approaches, providing a relatively well solved tree, which retrieves high support values for the Cynolebiini and most included clades. The resulting tree was used to estimate the time of divergence in included lineages using two cyprinodontiform fossils to calibrate the tree. We further investigated historical biogeography through the likelihood-based DEC model. Our estimates indicate that divergence between the clades comprising New World and Old World aplocheiloids occurred during the Eocene, about 50Mya, much more recent than the Gondwanan fragmentation scenario assumed in previous studies. This estimation is nearly synchronous to estimated splits involving other South American and African vertebrate clades, which have been explained by transoceanic dispersal through an ancient Atlantic island chain during the Palaeogene. We estimate that Cynolebiini split from its sister group Cynopoecilini in the Oligocene, about 25Mya and that Cynolebiini started to diversify giving origin to the present genera during the Miocene, about 20-14Mya. The Cynolebiini had an ancestral origin in the Atlantic Forest and probably were not present in the open vegetation formations of central and northeastern South America until the Middle Miocene, when expansion of dry open vegetation was favoured by cool temperatures and strike seasonality. Initial splitting between the genera Cynolebias and Simpsonichthys during the Miocene (about 14Mya) is attributed to the uplift of the Central Brazilian Plateau.
Collapse
Affiliation(s)
- Wilson J E M Costa
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, Caixa Postal 68049, CEP 21944-970 Rio de Janeiro, RJ, Brazil.
| | - Pedro F Amorim
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, Caixa Postal 68049, CEP 21944-970 Rio de Janeiro, RJ, Brazil.
| | - José Leonardo O Mattos
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, Caixa Postal 68049, CEP 21944-970 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Urantowka AD, Kroczak A, Mackiewicz P. The influence of molecular markers and methods on inferring the phylogenetic relationships between the representatives of the Arini (parrots, Psittaciformes), determined on the basis of their complete mitochondrial genomes. BMC Evol Biol 2017; 17:166. [PMID: 28705202 PMCID: PMC5513162 DOI: 10.1186/s12862-017-1012-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 07/04/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Conures are a morphologically diverse group of Neotropical parrots classified as members of the tribe Arini, which has recently been subjected to a taxonomic revision. The previously broadly defined Aratinga genus of this tribe has been split into the 'true' Aratinga and three additional genera, Eupsittula, Psittacara and Thectocercus. Popular markers used in the reconstruction of the parrots' phylogenies derive from mitochondrial DNA. However, current phylogenetic analyses seem to indicate conflicting relationships between Aratinga and other conures, and also among other Arini members. Therefore, it is not clear if the mtDNA phylogenies can reliably define the species tree. The inconsistencies may result from the variable evolution rate of the markers used or their weak phylogenetic signal. To resolve these controversies and to assess to what extent the phylogenetic relationships in the tribe Arini can be inferred from mitochondrial genomes, we compared representative Arini mitogenomes as well as examined the usefulness of the individual mitochondrial markers and the efficiency of various phylogenetic methods. RESULTS Single molecular markers produced inconsistent tree topologies, while different methods offered various topologies even for the same marker. A significant disagreement in these tree topologies occurred for cytb, nd2 and nd6 genes, which are commonly used in parrot phylogenies. The strongest phylogenetic signal was found in the control region and RNA genes. However, these markers cannot be used alone in inferring Arini phylogenies because they do not provide fully resolved trees. The most reliable phylogeny of the parrots under study is obtained only on the concatenated set of all mitochondrial markers. The analyses established significantly resolved relationships within the former Aratinga representatives and the main genera of the tribe Arini. Such mtDNA phylogeny can be in agreement with the species tree, owing to its match with synapomorphic features in plumage colouration. CONCLUSIONS Phylogenetic relationships inferred from single mitochondrial markers can be incorrect and contradictory. Therefore, such phylogenies should be considered with caution. Reliable results can be produced by concatenated sets of all or at least the majority of mitochondrial genes and the control region. The results advance a new view on the relationships among the main genera of Arini and resolve the inconsistencies between the taxa that were previously classified as the broadly defined genus Aratinga. Although gene and species trees do not always have to be consistent, the mtDNA phylogenies for Arini can reflect the species tree.
Collapse
Affiliation(s)
- Adam Dawid Urantowka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, ul. Kożuchowska7, 51-631, Wroclaw, Poland
| | - Aleksandra Kroczak
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Fryderyka Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Fryderyka Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
14
|
Braun MP, Reinschmidt M, Datzmann T, Waugh D, Zamora R, Häbich A, Neves L, Gerlach H, Arndt T, Mettke-Hofmann C, Sauer-Gürth H, Wink M. Influences of oceanic islands and the Pleistocene on the biogeography and evolution of two groups of Australasian parrots (Aves: Psittaciformes: Eclectus roratus, Trichoglossus haematodus complex). Rapid evolution and implications for taxonomy and conservation. EUROPEAN JOURNAL OF ECOLOGY 2016. [DOI: 10.1515/eje-2017-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe Australasian region is a centre of biodiversity and endemism, mainly based on the tropical climate in combination with the large amount of islands. During the Pleistocene, islands of the Sahul Shelf (Australia, New Guinea, Aru Islands) had been part of the same land mass, while islands within the Wallacea (Lesser Sunda Islands, Moluccas, Sulawesi etc.) remained isolated. We investigated biogeographical avian diversification patterns of two species complexes across the Wallacea and the Sahul Shelf: the Eclectus Parrot Eclectus roratus Wagler, 1832, and the Rainbow Lorikeet Trichoglossus haematodus Linnaeus, 1771. Both species are represented by a large number of described geographical subspecies. We used mitochondrial cytochrome b (cyt b) sequences for phylogenetic and network analysis to detect biogeographic roles of islands and avian diversification patterns. The number of threatened taxa in this region is increasing rapidly and there is an urgent need for (sub-)species conservation in this region. Our study provides first genetic evidence for treating several island taxa as distinct species. In both species complexes similar genetic patterns were detected. Genetic diversification was higher across the islands of the Wallacea than across the islands of the Sahul Shelf. Divergence in E. roratus can be dated back about 1.38 million years ago, whereas in the younger T. haematodus it was 0.80 million years ago. Long distance dispersal was the most likely event for distribution patterns across the Wallacea and Sahul Shelf. The geographic origin of the species-complex Eclectus roratus spp. is supposed to be Wallacean, but for the species-complex Trichoglossus haematodus spp. it is supposed to be non-Wallacean. Trichoglossus euteles, so far considered a distinct species, clearly belongs to the Trichoglossus-haematodus-complex. The only case of sympatry in the complex is the distribution of T. (h.) euteles and T. h. capistratus on Timor, which means a rapid evolution from one ancestor into two distinct species within only 800,000 years. For all other taxa a Checkerboard distribution pattern is present. In this complex, 8 taxa are already treated as separate species (del Hoyo et al. 2014). Based on genetic evidence, the following populations are supported to represent phylogenetic units: (1) N New Guinea (haematodus) incl. Biak (rosenbergii), Bismarck Archipelago (massena), and New Caledonia (deplanchii); (2) Flores (weberi); (3) E Australia (moluccanus) incl. Aru Islands (nigrogularis) and S New Guinea (caeruleiceps); (4) N Australia (rubritorquis); (5) Timor 1st lineage (capistratus) incl. Sumba (fortis); (6) Bali and Lombok (mitchellii); (7) Sumbawa (forsteni); (8) Timor 2nd lineage (euteles). Those 8 phylogenetic units are not identical to the 8 species listed by del Hoyo et al. (2014). Several populations on smaller islands are under decline, a separate species status may lead to a higher conservation status in both species complexes, which are currently listed as “Least Concern”. Eclectus roratus is currently treated as monospecific. Based on genetic evidence, the following populations are suggested being treated as valid species: (1) Sumba (Eclectus cornelia), (2) Tanimbar Islands (E. riedeli), (3) Moluccas (E. roratus), and (4) New Guinea (E. polychloros incl. Aru Islands (E. aruensis), and Solomon Island (E. solomonensis).
Collapse
|
15
|
Costa WJEM. Inferring Evolution of Habitat Usage and Body Size in Endangered, Seasonal Cynopoeciline Killifishes from the South American Atlantic Forest through an Integrative Approach (Cyprinodontiformes: Rivulidae). PLoS One 2016; 11:e0159315. [PMID: 27428070 PMCID: PMC4948875 DOI: 10.1371/journal.pone.0159315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/30/2016] [Indexed: 11/23/2022] Open
Abstract
Cynopoecilines comprise a diversified clade of small killifishes occurring in the Atlantic Forest, one of the most endangered biodiversity hotspots in the world. They are found in temporary pools of savannah-like and dense forest habitats, and most of them are highly threatened with extinction if not already extinct. The greatest gap in our knowledge of cynopoecilines stems from the absence of an integrative approach incorporating molecular phylogenetic data of species still found in their habitats with phylogenetic data taken from the rare and possibly extinct species without accessible molecular information. An integrative analysis combining 115 morphological characters with a multigene dataset of 2,108 bp comprising three nuclear loci (GLYT1, ENC1, Rho), provided a robust phylogeny of cynopoeciline killifishes, which was herein used to attain an accurate phylogenetic placement of nearly extinct species. The analysis indicates that the most recent common ancestor of the Cynopoecilini lived in open vegetation habitats of the Atlantic Forest of eastern Brazil and was a miniature species, reaching between 25 and 28 mm of standard length. The rare cases of cynopoecilines specialized in inhabiting pools within dense forests are interpreted as derived from four independent evolutionary events. Shifts in habitat usage and biogeographic patterns are tentatively associated to Cenozoic paleogeographic events, but the evolutionary history of cynopoecilines may be partially lost by a combination of poor past sampling and recent habitat decline. A sharp evolutionary shift directed to increased body size in a clade encompassing the genera Campellolebias and Cynopoecilus may be related to a parallel acquisition of an internally-fertilizing reproductive strategy, unique among aplocheiloid killifishes. This study reinforces the importance of adding morphological information to molecular databases as a tool to understand the biological complexity of organisms under intense pressure from loss of habitat.
Collapse
Affiliation(s)
- Wilson J. E. M. Costa
- Laboratory of Systematics and Evolution of Teleost Fishes, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
16
|
da Silva HE, Presti FT, Wasko AP, Pinhal D. Development of microsatellite markers for Hyacinth macaw (Anodorhynchus hyacinthinus) and their cross-amplification in other parrot species. BMC Res Notes 2015; 8:736. [PMID: 26626138 PMCID: PMC4665848 DOI: 10.1186/s13104-015-1749-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/25/2015] [Indexed: 11/30/2022] Open
Abstract
Background Hyacinth macaw Anodorhynchus hyacinthinus is the largest parrot of the world and is considered vulnerable to extinction due to its habitat loss and illegal trade associated to the international pet market demand. Genetic studies on this species are still incipient to generate a consistent characterization of the population dynamics and to develop appropriate conservation strategies. In this sense, microsatellite markers may support the detection of a population genetic structure for this bird species. However, at this time, none Hyacinth macaw species-specific primers for microsatellite loci have been so far established. This study aimed to develop and characterize polymorphic microsatellite markers for A. hyacinthinus and to check for their cross-amplification in other parrot species. Findings Sequences containing repeated dinucleotide motifs were prospected and optimized from a genomic library that was enriched for microsatellites using magnetic beads. The analyses of 43–57 samples from wild individuals of three distinct Brazilian subpopulations led to the characterization of five polymorphic microsatellite loci. Allele richness per locus ranged from two to 12. Three loci exhibited observed heterozygosity values higher than 50 %, but the overall average value among all loci was close to 45 %. In addition, successful primer cross-amplification was verified in seven other investigated species of Neotropical parrots. Conclusions The newly developed markers have shown to be potentially useful for in situ and ex situ population studies to support future conservation actions of Hyacinth macaw and other parrots.
Collapse
Affiliation(s)
- Helder E da Silva
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, 18618-970, Brazil.
| | - Flavia T Presti
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, 18618-970, Brazil.
| | - Adriane P Wasko
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, 18618-970, Brazil.
| | - Danillo Pinhal
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, 18618-970, Brazil.
| |
Collapse
|
17
|
Horvatić S, Cavraro F, Zanella D, Malavasi S. Sound production in the Ponto-Caspian gobyNeogobius fluviatilisand acoustic affinities within theGobiuslineage: implications for phylogeny. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12696] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sven Horvatić
- Department of Zoology; Faculty of Science; University of Zagreb; Rooseveltov trg 6 10000 Zagreb Croatia
| | - Francesco Cavraro
- CEMAS - Centre for Estuarine and Coastal Marine Science; Department of Environmental Sciences; Informatics and Statistics; Università Ca' Foscari Venezia; Campo della Celestia Castello 2737/b 30122 Venice Italy
| | - Davor Zanella
- Department of Zoology; Faculty of Science; University of Zagreb; Rooseveltov trg 6 10000 Zagreb Croatia
| | - Stefano Malavasi
- CEMAS - Centre for Estuarine and Coastal Marine Science; Department of Environmental Sciences; Informatics and Statistics; Università Ca' Foscari Venezia; Campo della Celestia Castello 2737/b 30122 Venice Italy
| |
Collapse
|
18
|
Coetzer WG, Downs CT, Perrin MR, Willows-Munro S. Molecular systematics of the Cape Parrot (Poicephalus robustus): implications for taxonomy and conservation. PLoS One 2015; 10:e0133376. [PMID: 26267261 PMCID: PMC4534405 DOI: 10.1371/journal.pone.0133376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/26/2015] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of the Cape Parrot (Poicephalus robustus robustus) has been the focus of much debate. A number of authors suggest that the Cape Parrot should be viewed as a distinct species separate from the other two P. robustus subspecies (P. r. fuscicollis and P. r. suahelicus). These recommendations were based on morphological, ecological, and behavioural assessments. In this study we investigated the validity of these recommendations using multilocus DNA analyses. We genotyped 138 specimens from five Poicephalus species (P. cryptoxanthus, P. gulielmi, P. meyeri, P. robustus, and P. rueppellii) using 11 microsatellite loci. Additionally, two mitochondrial (cytochrome oxidase I gene and 16S ribosomal RNA) and one nuclear intron (intron 7 of the β-fibrinogen gene) markers were amplified and sequenced. Bayesian clustering analysis and pairwise FST analysis of microsatellite data identified P. r. robustus as genetically distinct from the other P. robustus subspecies. Phylogenetic and molecular clock analyses on sequence data also supported the microsatellite analyses, placing P. r. robustus in a distinct clade separate from the other P. robustus subspecies. Molecular clock analysis places the most recent common ancestor between P. r. robustus and P. r. fuscicollis / P. r. suahelicus at 2.13 to 2.67 million years ago. Our results all support previous recommendations to elevate the Cape Parrot to species level. This will facilitate better planning and implementation of international and local conservation management strategies for the Cape Parrot.
Collapse
Affiliation(s)
- Willem G. Coetzer
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Colleen T. Downs
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Mike R. Perrin
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Sandi Willows-Munro
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
19
|
Gonçalves PFM, Oliveira-Marques AR, Matsumoto TE, Miyaki CY. DNA Barcoding Identifies Illegal Parrot Trade: Figure 1. J Hered 2015; 106 Suppl 1:560-4. [DOI: 10.1093/jhered/esv035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
20
|
Presti FT, Guedes NMR, Antas PTZ, Miyaki CY. Population Genetic Structure in Hyacinth Macaws (Anodorhynchus hyacinthinus) and Identification of the Probable Origin of Confiscated Individuals. J Hered 2015; 106 Suppl 1:491-502. [DOI: 10.1093/jhered/esv038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
de Oliveira Furo I, Kretschmer R, O’Brien PC, Ferguson-Smith MA, de Oliveira EHC. Chromosomal Diversity and Karyotype Evolution in South American Macaws (Psittaciformes, Psittacidae). PLoS One 2015; 10:e0130157. [PMID: 26087053 PMCID: PMC4472783 DOI: 10.1371/journal.pone.0130157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
Most species of macaws, which represent the largest species of Neotropical Psittacidae, characterized by their long tails and exuberant colours, are endangered, mainly because of hunting, illegal trade and habitat destruction. Long tailed species seem to represent a monophyletic group within Psittacidae, supported by cytogenetic data. Hence, these species show karyotypes with predominance of biarmed macrochromosomes, in contrast to short tailed species, with a predominance of acro/telocentric macrochromosomes. Because of their similar karyotypes, it has been proposed that inversions and translocations may be the main types of rearrangements occurring during the evolution of this group. However, only one species of macaw, Ara macao, that has had its genome sequenced was analyzed by means of molecular cytogenetics. Hence, in order to verify the rearrangements, we analyzed the karyotype of two species of macaws, Ara chloropterus and Anodorhynchus hyacinthinus, using cross-species chromosome painting with two different sets of probes from chicken and white hawk. Both intra- and interchromosomal rearrangements were observed. Chicken probes revealed the occurrence of fusions, fissions and inversions in both species, while the probes from white hawk determined the correct breakpoints or chromosome segments involved in the rearrangements. Some of these rearrangements were common for both species of macaws (fission of GGA1 and fusions of GGA1p/GGA4q, GGA6/GGA7 and GGA8/GGA9), while the fissions of GGA 2 and 4p were found only in A. chloropterus. These results confirm that despite apparent chromosomal similarity, macaws have very diverse karyotypes, which differ from each other not only by inversions and translocations as postulated before, but also by fissions and fusions.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Programa de Pós Graduação em Genética e Biologia Molecular, Instituto de Ciências Biológicas Universidade Federal do Pará, Belém, PA, Brazil
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brazil
| | - Rafael Kretschmer
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia C. O’Brien
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brazil
- Faculdade de Ciências Naturais, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA-Brazil
- * E-mail:
| |
Collapse
|
22
|
Carril J, Degrange FJ, Tambussi CP. Jaw myology and bite force of the monk parakeet (Aves, Psittaciformes). J Anat 2015; 227:34-44. [PMID: 26053435 DOI: 10.1111/joa.12330] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 01/11/2023] Open
Abstract
Psittaciform birds exhibit novelties in jaw bone structure and musculature that are associated with strong bite forces. These features include an ossified arcus suborbitalis and the muscles ethmomandibularis and pseudomasseter. We analyse the jaw musculature of the monk parakeet (Myiopsitta monachus) to enable future studies aimed at understanding craniofacial development, morphology, function and evolution. We estimate bite force based on muscle dissections, physiological cross-sectional area and skull biomechanical modelling. We also compare our results with available data for other birds and traced the evolutionary origin of the three novel diagnostic traits. Our results indicate that, in Myiopsitta, (i) the arcus suborbitalis is absent and the orbit is ventrally closed by an elongate processus orbitalis and a short ligamentum suborbitale; (ii) the ethmomandibularis muscle is a conspicuous muscle with two bellies, with its origin on the anterior portion of the septum interorbitale and insertion on the medial aspect of the mandible; (iii) the pseudomasseter muscle consists of some fibers arising from the m. adductor mandibulae externus superficialis, covering the lateral surface of the arcus jugalis and attaches by an aponeurotic sheet on the processus orbitalis; (iv) a well-developed adductor mandibulae complex is present; (v) the bite force estimation relative to body mass is higher than that calculated for other non-psittaciform species; and (vi) character evolution analysis revealed that the absence of the arcus suborbitalis and the presence of the m. pseudomassseter are the ancestral conditions, and mapping is inconclusive about presence of one or two bellies of the m. ethmomandibularis.
Collapse
Affiliation(s)
- Julieta Carril
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CONICET is a national institution, Argentina
| | - Federico J Degrange
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CONICET is a national institution, Argentina.,Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET-UNC, Córdoba, Argentina
| | - Claudia P Tambussi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CONICET is a national institution, Argentina.,Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
23
|
Carril J, Tambussi CP, Degrange FJ, Benitez Saldivar MJ, Picasso MBJ. Comparative brain morphology of Neotropical parrots (Aves, Psittaciformes) inferred from virtual 3D endocasts. J Anat 2015; 229:239-51. [PMID: 26053196 DOI: 10.1111/joa.12325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 01/11/2023] Open
Abstract
Psittaciformes are a very diverse group of non-passerine birds, with advanced cognitive abilities and highly developed locomotor and feeding behaviours. Using computed tomography and three-dimensional (3D) visualization software, the endocasts of 14 extant Neotropical parrots were reconstructed, with the aim of analysing, comparing and exploring the morphology of the brain within the clade. A 3D geomorphometric analysis was performed, and the encephalization quotient (EQ) was calculated. Brain morphology character states were traced onto a Psittaciformes tree in order to facilitate interpretation of morphological traits in a phylogenetic context. Our results indicate that: (i) there are two conspicuously distinct brain morphologies, one considered walnut type (quadrangular and wider than long) and the other rounded (narrower and rostrally tapered); (ii) Psittaciformes possess a noticeable notch between hemisphaeria that divides the bulbus olfactorius; (iii) the plesiomorphic and most frequently observed characteristics of Neotropical parrots are a rostrally tapered telencephalon in dorsal view, distinctly enlarged dorsal expansion of the eminentia sagittalis and conspicuous fissura mediana; (iv) there is a positive correlation between body mass and brain volume; (v) psittacids are characterized by high EQ values that suggest high brain volumes in relation to their body masses; and (vi) the endocranial morphology of the Psittaciformes as a whole is distinctive relative to other birds. This new knowledge of brain morphology offers much potential for further insight in paleoneurological, phylogenetic and evolutionary studies.
Collapse
Affiliation(s)
- Julieta Carril
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Claudia Patricia Tambussi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET-UNC, Córdoba, Argentina
| | - Federico Javier Degrange
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET-UNC, Córdoba, Argentina.,Centro de Investigaciones Paleobiológicas (CIPAL), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Juliana Benitez Saldivar
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Beatriz Julieta Picasso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.,División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
24
|
Schweizer M, Güntert M, Seehausen O, Leuenberger C, Hertwig ST. Parallel adaptations to nectarivory in parrots, key innovations and the diversification of the Loriinae. Ecol Evol 2014; 4:2867-83. [PMID: 25165525 PMCID: PMC4130445 DOI: 10.1002/ece3.1131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/12/2022] Open
Abstract
Specialization to nectarivory is associated with radiations within different bird groups, including parrots. One of them, the Australasian lories, were shown to be unexpectedly species rich. Their shift to nectarivory may have created an ecological opportunity promoting species proliferation. Several morphological specializations of the feeding tract to nectarivory have been described for parrots. However, they have never been assessed in a quantitative framework considering phylogenetic nonindependence. Using a phylogenetic comparative approach with broad taxon sampling and 15 continuous characters of the digestive tract, we demonstrate that nectarivorous parrots differ in several traits from the remaining parrots. These trait-changes indicate phenotype-environment correlations and parallel evolution, and may reflect adaptations to feed effectively on nectar. Moreover, the diet shift was associated with significant trait shifts at the base of the radiation of the lories, as shown by an alternative statistical approach. Their diet shift might be considered as an evolutionary key innovation which promoted significant non-adaptive lineage diversification through allopatric partitioning of the same new niche. The lack of increased rates of cladogenesis in other nectarivorous parrots indicates that evolutionary innovations need not be associated one-to-one with diversification events.
Collapse
Affiliation(s)
- Manuel Schweizer
- Naturhistorisches Museum der Burgergemeinde BernBernastrasse 15, CH 3005, Bern, Switzerland
| | - Marcel Güntert
- Naturhistorisches Museum der Burgergemeinde BernBernastrasse 15, CH 3005, Bern, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Macroevolution, Institute of Ecology & Evolution, University of BernBaltzerstrasse 6, CH 3012, Bern, Switzerland
- Fish Ecology and Evolution, EAWAGSeestrasse 79, CH 6047, Kastanienbaum, Switzerland
| | - Christoph Leuenberger
- Department of Quantitative Economics, University of FribourgBoulevard de Pérolles 90, CH 1700, Fribourg, Switzerland
| | - Stefan T Hertwig
- Naturhistorisches Museum der Burgergemeinde BernBernastrasse 15, CH 3005, Bern, Switzerland
| |
Collapse
|
25
|
Carril J, Mosto MC, Picasso MBJ, Tambussi CP. Hindlimb myology of the monk parakeet (Aves, Psittaciformes). J Morphol 2014; 275:732-44. [DOI: 10.1002/jmor.20253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/25/2013] [Accepted: 01/01/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Julieta Carril
- Cátedra de Reproducción Animal; Instituto de Teriogenología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires; Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
| | - María C. Mosto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
- División Paleontología Vertebrados, Museo de La Plata; Universidad Nacional de La Plata, Buenos Aires; Argentina
| | - Mariana B. J. Picasso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
- División Paleontología Vertebrados, Museo de La Plata; Universidad Nacional de La Plata, Buenos Aires; Argentina
| | - Claudia P. Tambussi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA-CONICET-UNC), Córdoba; Argentina
| |
Collapse
|
26
|
Performance on the Hamilton search task, and the influence of lateralization, in captive orange-winged Amazon parrots (Amazona amazonica). Anim Cogn 2013; 17:901-9. [DOI: 10.1007/s10071-013-0723-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 11/27/2022]
|
27
|
Urantowka AD, Kroczak AM, Strzała T. Complete mitochondrial genome of endangered Socorro Conure (Aratinga brevipes) - taxonomic position of the species and its relationship with Green Conure. ACTA ACUST UNITED AC 2013; 25:365-7. [PMID: 23815322 DOI: 10.3109/19401736.2013.803095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Socorro Conure (Aratinga brevipes.Aratinga holochlora brevipes) is a parrot endemic to the Island of Socorro. According to some taxonomists the species is considered a subspecies of Green Conure (Aratinga holochlora). Some other classifications treat brevipes as a separate species based on relatively minor morphological differences between both species/subspecies. However, taxonomic position of Aratinga brevipes was never determined by molecular research. We sequenced full mitochondrial genome of the species and constructed phylogenetic tree using sequences of mitochondrial ND2 gene from A. brevipes and some other representatives of Conures group. Our results showed, that despite Aratinga brevipes is closely related to Aratinga holochlora, this Conure should be treated as a separate species.
Collapse
Affiliation(s)
- Adam Dawid Urantowka
- Department of Genetics, Wrocław University of Environmental and Life Sciences , Kozuchowska 7, Wrocław 51-631 , Poland
| | | | | |
Collapse
|
28
|
Raposo do Amaral F, Albers PK, Edwards SV, Miyaki CY. Multilocus tests of Pleistocene refugia and ancient divergence in a pair of Atlantic Forest antbirds (Myrmeciza). Mol Ecol 2013; 22:3996-4013. [DOI: 10.1111/mec.12361] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/24/2013] [Accepted: 03/28/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Fábio Raposo do Amaral
- Departamento de Genética e Biologia Evolutiva; Universidade de São Paulo; Rua do Matão, 277, Cidade Universitária São Paulo SP CEP 05508-090 Brazil
| | - Patrick K. Albers
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Cristina Y. Miyaki
- Departamento de Genética e Biologia Evolutiva; Universidade de São Paulo; Rua do Matão, 277, Cidade Universitária São Paulo SP CEP 05508-090 Brazil
| |
Collapse
|
29
|
A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao). PLoS One 2013; 8:e62415. [PMID: 23667475 PMCID: PMC3648530 DOI: 10.1371/journal.pone.0062415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
Data deposition to NCBI Genomes: This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMXX00000000 (SMACv1.0, unscaffolded genome assembly). The version described in this paper is the first version (AMXX01000000). The scaffolded assembly (SMACv1.1) has been deposited at DDBJ/EMBL/GenBank under the accession AOUJ00000000, and is also the first version (AOUJ01000000). Strong biological interest in traits such as the acquisition and utilization of speech, cognitive abilities, and longevity catalyzed the utilization of two next-generation sequencing platforms to provide the first-draft de novo genome assembly for the large, new world parrot Ara macao (Scarlet Macaw). Despite the challenges associated with genome assembly for an outbred avian species, including 951,507 high-quality putative single nucleotide polymorphisms, the final genome assembly (>1.035 Gb) includes more than 997 Mb of unambiguous sequence data (excluding N's). Cytogenetic analyses including ZooFISH revealed complex rearrangements associated with two scarlet macaw macrochromosomes (AMA6, AMA7), which supports the hypothesis that translocations, fusions, and intragenomic rearrangements are key factors associated with karyotype evolution among parrots. In silico annotation of the scarlet macaw genome provided robust evidence for 14,405 nuclear gene annotation models, their predicted transcripts and proteins, and a complete mitochondrial genome. Comparative analyses involving the scarlet macaw, chicken, and zebra finch genomes revealed high levels of nucleotide-based conservation as well as evidence for overall genome stability among the three highly divergent species. Application of a new whole-genome analysis of divergence involving all three species yielded prioritized candidate genes and noncoding regions for parrot traits of interest (i.e., speech, intelligence, longevity) which were independently supported by the results of previous human GWAS studies. We also observed evidence for genes and noncoding loci that displayed extreme conservation across the three avian lineages, thereby reflecting their likely biological and developmental importance among birds.
Collapse
|
30
|
Urantowka AD, Grabowski KA, Strzała T. Complete mitochondrial genome of Blue-crowned Parakeet (Aratinga acuticaudata)--phylogenetic position of the species among parrots group called Conures. ACTA ACUST UNITED AC 2013; 24:336-8. [PMID: 23351080 DOI: 10.3109/19401736.2012.760080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Blue-crowned Parakeet (Aratinga acuticaudata) is a South American parrot species with a taxonomic position not confirmed by molecular studies. We sequenced full mitochondrial genome and constructed phylogenetic tree using sequences of mitochondrial ND2 gene from A. acuticaudata and some other representatives of Conures group. Our results confirmed previously described distribution of Aratinga species into three clades, but surprisingly did not classify Blue-crowned Parakeet to any of them. We found that A. acuticaudata shares the closest relationship with Diopsittaca nobilis and forms a separate clade together with Guaruba guarouba and Leptosittaca branickii species with a significant node. Our results confirm lack of monophyly of the genus Aratinga and underline the need of its taxonomic revision.
Collapse
Affiliation(s)
- Adam Dawid Urantowka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, Wroclaw 51-631, Poland.
| | | | | |
Collapse
|
31
|
Edwards DB. Immune investment is explained by sexual selection and pace-of-life, but not longevity in parrots (Psittaciformes). PLoS One 2012; 7:e53066. [PMID: 23300862 PMCID: PMC3531452 DOI: 10.1371/journal.pone.0053066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/28/2012] [Indexed: 01/28/2023] Open
Abstract
Investment in current reproduction should come at the expense of traits promoting future reproduction, such as immunity and longevity. To date, comparative studies of pace-of-life traits have provided some support for this, with slower paced species having greater immune function. Another means of investment in current reproduction is through secondary sexual characters (SSC). Investment in SSC's is considered costly, both in terms of immunity and longevity, with greater costs being borne by species with more elaborate traits. Yet within species, females prefer more ornate males and those males are typically immunologically superior. Because of this, predictions about the relationship between immunity and SSC's across species are not clear. If traits are costly, brighter species should have reduced immune function, but the opposite is true if SSC's arise from selection for more immunocompetent individuals. My approach was to investigate immune investment in relation to SSC's, pace-of-life and longevity while considering potentially confounding ecological factors. To do so I assessed leukocyte counts from in a novel group, the Psittaciformes. Investment in SSC's best explained investment in immunity: species with brighter plumage had higher leukocyte counts and those with a greater degree of sexual dichromatism had fewer. Ecological variables and pace-of-life models tended to be poor predictors of immune investment. However, shorter incubation periods were associated with lower leukocyte counts supporting the notion that species with a fast pace-of-life invest less in immunity. These results suggest that investment in reproduction in terms of fast pace-of-life and sexual dichromatism results in reduced immunity; however, investment in plumage colour per se does not impose a cost on immunity across species.
Collapse
Affiliation(s)
- Darryl B Edwards
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada.
| |
Collapse
|
32
|
Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre PH, Graham CH, Graves GR, Jønsson KA, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C. An Update of Wallace’s Zoogeographic Regions of the World. Science 2012; 339:74-8. [PMID: 23258408 DOI: 10.1126/science.1228282] [Citation(s) in RCA: 516] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modern attempts to produce biogeographic maps focus on the distribution of species, and the maps are typically drawn without phylogenetic considerations. Here, we generate a global map of zoogeographic regions by combining data on the distributions and phylogenetic relationships of 21,037 species of amphibians, birds, and mammals. We identify 20 distinct zoogeographic regions, which are grouped into 11 larger realms. We document the lack of support for several regions previously defined based on distributional data and show that spatial turnover in the phylogenetic composition of vertebrate assemblages is higher in the Southern than in the Northern Hemisphere. We further show that the integration of phylogenetic information provides valuable insight on historical relationships among regions, permitting the identification of evolutionarily unique regions of the world.
Collapse
Affiliation(s)
- Ben G Holt
- Center for Macroecology, Evolution, and Climate, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Smith BT, Ribas CC, Whitney BM, HernÁndez-baÑos BE, Klicka J. Identifying biases at different spatial and temporal scales of diversification: a case study in the Neotropical parrotlet genusForpus. Mol Ecol 2012. [DOI: 10.1111/mec.12118] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian Tilston Smith
- Museum of Natural Science; Louisiana State University; 119 Foster Hall Baton Rouge LA 70803 USA
- Marjorie Barrick Museum of Natural History; University of Nevada; Las Vegas, 4505 S. Maryland Parkway Box 454012 Las Vegas NV 89154-4012 USA
- School of Life Sciences; University of Nevada; Las Vegas, 4505 S. Maryland Parkway Las Vegas NV 89154 USA
| | - Camila C. Ribas
- Coordenação de Biodiversidade; Instituto Nacional de Pesquisas da Amazônia; Av. André Araújo Manaus AM 2936 Brasil
| | - Bret M. Whitney
- Museum of Natural Science; Louisiana State University; 119 Foster Hall Baton Rouge LA 70803 USA
| | - Blanca E. HernÁndez-baÑos
- Museo de Zoología, Facultad de Ciencias; Universidad Nacional Autónoma de México; Apartado Postal 70-399 México DF 04510 México
| | - John Klicka
- Marjorie Barrick Museum of Natural History; University of Nevada; Las Vegas, 4505 S. Maryland Parkway Box 454012 Las Vegas NV 89154-4012 USA
| |
Collapse
|
34
|
QUINTERO ESTHER, RIBAS CAMILAC, CRACRAFT JOEL. The AndeanHapalopsittacaparrots (Psittacidae, Aves): an example of montane-tropical lowland vicariance. ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00567.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
SCHWEIZER MANUEL, GÜNTERT MARCEL, HERTWIG STEFANT. Out of the Bassian province: historical biogeography of the Australasian platycercine parrots (Aves, Psittaciformes). ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00561.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Schirtzinger EE, Tavares ES, Gonzales LA, Eberhard JR, Miyaki CY, Sanchez JJ, Hernandez A, Müeller H, Graves GR, Fleischer RC, Wright TF. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes. Mol Phylogenet Evol 2012; 64:342-56. [PMID: 22543055 DOI: 10.1016/j.ympev.2012.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 04/08/2012] [Accepted: 04/10/2012] [Indexed: 01/06/2023]
Abstract
Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome.
Collapse
Affiliation(s)
- Erin E Schirtzinger
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schweizer M, Güntert M, Hertwig ST. Phylogeny and biogeography of the parrot genus
Prioniturus
(Aves: Psittaciformes). J ZOOL SYST EVOL RES 2012. [DOI: 10.1111/j.1439-0469.2012.00654.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Schweizer
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse, Bern, Switzerland
| | - Marcel Güntert
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse, Bern, Switzerland
| | - Stefan T. Hertwig
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse, Bern, Switzerland
| |
Collapse
|
38
|
Ribas CC, Aleixo A, Nogueira ACR, Miyaki CY, Cracraft J. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proc Biol Sci 2011; 279:681-9. [PMID: 21795268 DOI: 10.1098/rspb.2011.1120] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many hypotheses have been proposed to explain high species diversity in Amazonia, but few generalizations have emerged. In part, this has arisen from the scarcity of rigorous tests for mechanisms promoting speciation, and from major uncertainties about palaeogeographic events and their spatial and temporal associations with diversification. Here, we investigate the environmental history of Amazonia using a phylogenetic and biogeographic analysis of trumpeters (Aves: Psophia), which are represented by species in each of the vertebrate areas of endemism. Their relationships reveal an unforeseen 'complete' time-slice of Amazonian diversification over the past 3.0 Myr. We employ this temporally calibrated phylogeny to test competing palaeogeographic hypotheses. Our results are consistent with the establishment of the current Amazonian drainage system at approximately 3.0-2.0 Ma and predict the temporal pattern of major river formation over Plio-Pleistocene times. We propose a palaeobiogeographic model for the last 3.0 Myr of Amazonian history that has implications for understanding patterns of endemism, the temporal history of Amazonian diversification and mechanisms promoting speciation. The history of Psophia, in combination with new geological evidence, provides the strongest direct evidence supporting a role for river dynamics in Amazonian diversification, and the absence of such a role for glacial climate cycles and refugia.
Collapse
Affiliation(s)
- Camila C Ribas
- PCAC Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Manaus, AM 69060-000, Brazil.
| | | | | | | | | |
Collapse
|
39
|
Joseph L, Toon A, Schirtzinger EE, Wright TF. Molecular systematics of two enigmatic genera Psittacella and Pezoporus illuminate the ecological radiation of Australo-Papuan parrots (Aves: Psittaciformes). Mol Phylogenet Evol 2011; 59:675-84. [DOI: 10.1016/j.ympev.2011.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
40
|
Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness. Animals (Basel) 2011; 1:205-41. [PMID: 26486313 PMCID: PMC4513461 DOI: 10.3390/ani1020205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The immense rainforest ecosystems of tropical America represent some of the greatest concentrations of biodiversity on the planet. Prominent among these are evolutionary radiations of freshwater fishes, including electric eels, piranhas, stingrays, and a myriad of small-bodied and colorful tetras, cichlids, and armored catfishes. In all, the many thousands of these forms account for nearly 10% of all the vertebrate species on Earth. This article explores the complimentary roles that ecological and geographic filters play in limiting dispersal in aquatic species, and how these factors contribute to the accumulation of species richness over broad geographic and evolutionary time scales. Abstract The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200–500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient, predating the Late Miocene-Pliocene (c. 4 Ma) uplift that isolated its several headwater basins. The results also suggest that habitat specialization (phylogenetic niche conservatism) and geographic isolation (dispersal limitation) have contributed to the maintenance of high species richness in this region of the Amazon Basin.
Collapse
|
41
|
White NE, Phillips MJ, Gilbert MTP, Alfaro-Núñez A, Willerslev E, Mawson PR, Spencer PBS, Bunce M. The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae). Mol Phylogenet Evol 2011; 59:615-22. [PMID: 21419232 DOI: 10.1016/j.ympev.2011.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/30/2022]
Abstract
Cockatoos are the distinctive family Cacatuidae, a major lineage of the order of parrots (Psittaciformes) and distributed throughout the Australasian region of the world. However, the evolutionary history of cockatoos is not well understood. We investigated the phylogeny of cockatoos based on three mitochondrial and three nuclear DNA genes obtained from 16 of 21 species of Cacatuidae. In addition, five novel mitochondrial genomes were used to estimate time of divergence and our estimates indicate Cacatuidae diverged from Psittacidae approximately 40.7 million years ago (95% CI 51.6-30.3 Ma) during the Eocene. Our data shows Cacatuidae began to diversify approximately 27.9 Ma (95% CI 38.1-18.3 Ma) during the Oligocene. The early to middle Miocene (20-10 Ma) was a significant period in the evolution of modern Australian environments and vegetation, in which a transformation from mainly mesic to xeric habitats (e.g., fire-adapted sclerophyll vegetation and grasslands) occurred. We hypothesize that this environmental transformation was a driving force behind the diversification of cockatoos. A detailed multi-locus molecular phylogeny enabled us to resolve the phylogenetic placements of the Palm Cockatoo (Probosciger aterrimus), Galah (Eolophus roseicapillus), Gang-gang Cockatoo (Callocephalon fimbriatum) and Cockatiel (Nymphicus hollandicus), which have historically been difficult to place within Cacatuidae. When the molecular evidence is analysed in concert with morphology, it is clear that many of the cockatoo species' diagnostic phenotypic traits such as plumage colour, body size, wing shape and bill morphology have evolved in parallel or convergently across lineages.
Collapse
Affiliation(s)
- Nicole E White
- School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Pacheco MA, Battistuzzi FU, Lentino M, Aguilar RF, Kumar S, Escalante AA. Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Mol Biol Evol 2011; 28:1927-42. [PMID: 21242529 DOI: 10.1093/molbev/msr014] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, AZ, USA
| | | | | | | | | | | |
Collapse
|
43
|
do Amaral FR, Sheldon FH, Wajntal A. Towards an assessment of character interdependence in avian RNA phylogenetics: A general secondary structure model for the avian mitochondrial 16S rRNA. Mol Phylogenet Evol 2010; 56:498-506. [DOI: 10.1016/j.ympev.2010.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/04/2010] [Accepted: 03/09/2010] [Indexed: 11/15/2022]
|
44
|
Schweizer M, Seehausen O, Güntert M, Hertwig ST. The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. Mol Phylogenet Evol 2010; 54:984-94. [DOI: 10.1016/j.ympev.2009.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
45
|
do Amaral FR, Sheldon FH, Gamauf A, Haring E, Riesing M, Silveira LF, Wajntal A. Patterns and processes of diversification in a widespread and ecologically diverse avian group, the buteonine hawks (Aves, Accipitridae). Mol Phylogenet Evol 2009; 53:703-15. [DOI: 10.1016/j.ympev.2009.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 07/18/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
|
46
|
The complete mitochondrial genomes of the whistling duck (Dendrocygna javanica) and black swan (Cygnus atratus): dating evolutionary divergence in Galloanserae. Mol Biol Rep 2009; 37:3001-15. [PMID: 19823953 DOI: 10.1007/s11033-009-9868-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Galloanserae is an ancient and diverse avian group, for which comprehensive molecular evidence relevant to phylogenetic analysis in the context of molecular chronology is lacking. In this study, we present two additional mitochondrial genome sequences of Galloanserae (the whistling duck, Dendrocygna javanica, and the black swan, Cygnus atratus) to broaden the scope of molecular phylogenetic reconstruction. The lengths of the whistling duck's and black swan's mitochondrial genomes are 16,753 and 16,748 bases, respectively. Phylogenetic analyses suggest that Dendrocygna is more likely to be in a basal position of the branch consisting of Anatinae and Anserinae, an affiliation that does not conform to its traditional classification. Bayesian approaches were employed to provide a rough timescale for Galloanserae evolution. In general, a narrow range of 95% confidence intervals gave younger estimates than those based on limited genes and estimated that at least two lineages originated before the Coniacian epoch around 90 MYA, well before the Cretaceous-Tertiary boundary. In addition, these results, which were compatible with estimates from fossil evidence, also imply that the origin of numerous genera in Anseriformes took place in the late Oligocene to early Miocene. Taken together, the results presented here provide a working framework for future research on Galloanserae evolution, and they underline the utility of whole mitochondrial genome sequences for the resolution of deep divergence.
Collapse
|
47
|
|
48
|
Wright TF, Schirtzinger EE, Matsumoto T, Eberhard JR, Graves GR, Sanchez JJ, Capelli S, Müller H, Scharpegge J, Chambers GK, Fleischer RC. A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the cretaceous. Mol Biol Evol 2008; 25:2141-56. [PMID: 18653733 PMCID: PMC2727385 DOI: 10.1093/molbev/msn160] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2008] [Indexed: 11/13/2022] Open
Abstract
The question of when modern birds (Neornithes) first diversified has generated much debate among avian systematists. Fossil evidence generally supports a Tertiary diversification, whereas estimates based on molecular dating favor an earlier diversification in the Cretaceous period. In this study, we used an alternate approach, the inference of historical biogeographic patterns, to test the hypothesis that the initial radiation of the Order Psittaciformes (the parrots and cockatoos) originated on the Gondwana supercontinent during the Cretaceous. We utilized broad taxonomic sampling (representatives of 69 of the 82 extant genera and 8 outgroup taxa) and multilocus molecular character sampling (3,941 bp from mitochondrial DNA (mtDNA) genes cytochrome oxidase I and NADH dehydrogenase 2 and nuclear introns of rhodopsin intron 1, tropomyosin alpha-subunit intron 5, and transforming growth factor ss-2) to generate phylogenetic hypotheses for the Psittaciformes. Analyses of the combined character partitions using maximum parsimony, maximum likelihood, and Bayesian criteria produced well-resolved and topologically similar trees in which the New Zealand taxa Strigops and Nestor (Psittacidae) were sister to all other psittaciforms and the cockatoo clade (Cacatuidae) was sister to a clade containing all remaining parrots (Psittacidae). Within this large clade of Psittacidae, some traditionally recognized tribes and subfamilies were monophyletic (e.g., Arini, Psittacini, and Loriinae), whereas several others were polyphyletic (e.g., Cyclopsittacini, Platycercini, Psittaculini, and Psittacinae). Ancestral area reconstructions using our Bayesian phylogenetic hypothesis and current distributions of genera supported the hypothesis of an Australasian origin for the Psittaciformes. Separate analyses of the timing of parrot diversification constructed with both Bayesian relaxed-clock and penalized likelihood approaches showed better agreement between geologic and diversification events in the chronograms based on a Cretaceous dating of the basal split within parrots than the chronograms based on a Tertiary dating of this split, although these data are more equivocal. Taken together, our results support a Cretaceous origin of Psittaciformes in Gondwana after the separation of Africa and the India/Madagascar block with subsequent diversification through both vicariance and dispersal. These well-resolved molecular phylogenies will be of value for comparative studies of behavior, ecology, and life history in parrots.
Collapse
Affiliation(s)
- Timothy F Wright
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Baker AJ, Pereira SL, Paton TA. Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biol Lett 2008; 3:205-9. [PMID: 17284401 PMCID: PMC2375939 DOI: 10.1098/rsbl.2006.0606] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Comparative study of character evolution in the shorebirds is presently limited because the phylogenetic placement of some enigmatic genera remains unclear. We therefore used Bayesian methods to obtain a well-supported phylogeny of 90 recognized genera using 5 kb of mitochondrial and nuclear sequences. The tree comprised three major clades: Lari (gulls, auks and allies plus buttonquails) as sister to Scolopaci (sandpipers, jacanas and allies), and in turn sister to Charadrii (plovers, oystercatchers and allies), as in previous molecular studies. Plovers and noddies were not recovered as monophyletic assemblages, and the Egyptian plover Pluvianus is apparently not a plover. Molecular dating using multiple fossil constraints suggests that the three suborders originated in the late Cretaceous between 79 and 102 Mya, and at least 14 lineages of modern shorebirds survived the mass extinction at the K/T boundary. Previous difficulties in determining the phylogenetic relationships of enigmatic taxa reflect the fact that they are well-differentiated relicts of old, genus-poor lineages. We refrain from suggesting systematic revisions for shorebirds at this time because gene trees may fail to recover the species tree when long branches are connected to deep, shorter branches, as is the case for some of the enigmatic taxa.
Collapse
Affiliation(s)
- Allan J Baker
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park Crescent, Toronto, Ontario, Canada M5S 2C6.
| | | | | |
Collapse
|
50
|
Russello MA, Avery ML, Wright TF. Genetic evidence links invasive monk parakeet populations in the United States to the international pet trade. BMC Evol Biol 2008; 8:217. [PMID: 18652686 PMCID: PMC2517076 DOI: 10.1186/1471-2148-8-217] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 07/24/2008] [Indexed: 11/10/2022] Open
Abstract
Background Severe ecological and economic impacts caused by some invasive species make it imperative to understand the attributes that permit them to spread. A notorious crop pest across its native range in South America, the monk parakeet (Myiopsitta monachus) has become established on four other continents, including growing populations in the United States. As a critical first step to studying mechanisms of invasion success in this species, here we elucidated the geographical and taxonomic history of the North American invasions of the monk parakeet. Specifically, we conducted a genetic assessment of current monk parakeet taxonomy based on mitochondrial DNA control region sequences from 73 museum specimens. These data supported comparative analyses of mtDNA lineage diversity in the native and naturalized ranges of the monk parakeet and allowed for identification of putative source populations. Results There was no molecular character support for the M. m. calita, M. m. cotorra, and M. m. monachus subspecies, while the Bolivian M. m. luchsi was monophyletic and diagnosably distinct. Three haplotypes sampled in the native range were detected within invasive populations in Florida, Connecticut, New Jersey and Rhode Island, the two most common of which were unique to M. m. monachus samples from eastern Argentina and bordering areas in Brazil and Uruguay. Conclusion The lack of discrete morphological character differences in tandem with the results presented here suggest that M. m. calita, M. m. cotorra and M. m. monachus are in need of formal taxonomic revision. The genetic distinctiveness of M. m. luchsi is consistent with previous recommendations of allospecies status for this taxon. The geographic origins of haplotypes sampled in the four U.S. populations are concordant with trapping records from the mid-20th century and suggest that propagule pressure exerted by the international pet bird trade contributed to the establishment of invasive populations in the United States.
Collapse
Affiliation(s)
- Michael A Russello
- Department of Biology and Physical Geography, University of British Columbia Okanagan, Kelowna, British Columbia V1V 1V7, Canada.
| | | | | |
Collapse
|