1
|
Lee E, Park HY, Kim SW, Sun Y, Choi JH, Seo J, Jung YP, Kim AJ, Kim J, Lim K. Enhancing Supplemental Effects of Acute Natural Antioxidant Derived from Yeast Fermentation and Vitamin C on Sports Performance in Triathlon Athletes: A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial. Nutrients 2023; 15:3324. [PMID: 37571262 PMCID: PMC10421245 DOI: 10.3390/nu15153324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
This study investigated the acute effects of natural antioxidants, derived from yeast fermentation containing glutathione and dietary vitamin C supplementation, on metabolic function, skeletal muscle oxygenation, cardiac function, and antioxidant function during submaximal exercise in middle-aged triathlon athletes. Twelve participants (aged 49.42 ± 5.9 years) completed 90 min submaximal cycling trials corresponding to 70% maximal oxygen uptake with either vitamin C and glutathione (VitC+Glu), vitamin C (VitC), glutathione (Glu) supplementation, or placebo. Metabolic function (minute ventilation, oxygen uptake, carbon dioxide output [VCO2], respiratory exchange ratio [RER], oxygen pulse [O2pulse], carbohydrate oxidation, fat oxidation, and energy expenditure), skeletal muscle oxygenation (oxidized hemoglobin and myoglobin in skeletal muscle tissue, total hemoglobin and myoglobin in skeletal muscle tissue [tHb]), cardiac function (heart rate [HR], stroke volume [SV], cardiac output, end-diastolic volume, end-systolic volume, and ejection fraction), and antioxidant function parameters (blood lactate, superoxide dismutase, catalase, glutathione peroxidases, glutathione [GSH], diacron reactive oxygen metabolite [dROM], and biological antioxidant potential [BAP]) were measured during submaximal exercise and recovery. VCO2, RER, HR, blood lactate after exercise, and dROM were significantly lower, and O2pulse, tHb, and BAP were significantly higher for VitC+Glu than for the other trials (p < 0.05). In conclusion, combined vitamin C and glutathione supplementation was more effective in improving metabolic function, skeletal oxygenation, cardiac function, and antioxidant function during prolonged submaximal exercise in middle-aged triathletes.
Collapse
Affiliation(s)
- Eunjoo Lee
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (E.L.); (H.-Y.P.); (S.-W.K.); (Y.S.); (J.-H.C.); (J.S.); (J.K.)
| | - Hun-Young Park
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (E.L.); (H.-Y.P.); (S.-W.K.); (Y.S.); (J.-H.C.); (J.S.); (J.K.)
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (E.L.); (H.-Y.P.); (S.-W.K.); (Y.S.); (J.-H.C.); (J.S.); (J.K.)
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Yerin Sun
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (E.L.); (H.-Y.P.); (S.-W.K.); (Y.S.); (J.-H.C.); (J.S.); (J.K.)
| | - Jae-Ho Choi
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (E.L.); (H.-Y.P.); (S.-W.K.); (Y.S.); (J.-H.C.); (J.S.); (J.K.)
| | - Jisoo Seo
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (E.L.); (H.-Y.P.); (S.-W.K.); (Y.S.); (J.-H.C.); (J.S.); (J.K.)
| | - Yanghoon Peter Jung
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea; (Y.P.J.); (A.-J.K.)
| | - Ah-Jin Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea; (Y.P.J.); (A.-J.K.)
| | - Jisu Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (E.L.); (H.-Y.P.); (S.-W.K.); (Y.S.); (J.-H.C.); (J.S.); (J.K.)
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Kiwon Lim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea; (E.L.); (H.-Y.P.); (S.-W.K.); (Y.S.); (J.-H.C.); (J.S.); (J.K.)
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Huang R, Song L, Zhao J, Lei Y, Li T. Differential influences of serum vitamin C on blood pressure based on age and sex in normotensive individuals. Front Nutr 2022; 9:986808. [DOI: 10.3389/fnut.2022.986808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
AimHypertension is among the most prevalent chronic diseases with diverse etiology, affecting over 1 billion people globally. In numerous studies, vitamin C inversely correlated with blood pressure and was suspected to have antihypertensive properties. Currently, there is conflicting evidence regarding the relationship between vitamin C and blood pressure, with most studies being conducted on hypertensive subjects. The principal objective of this project was to investigate the relationship between vitamin C and blood pressure in normotensive adult subjects.MethodsA total of 2,533 individuals aged 20 years and above were enrolled in the present study from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. Outcome variables were systolic blood pressure (SBP) and diastolic blood pressure (DBP). Serum vitamin C was regarded as an independent variable. EmpowerStats software and R (version 3.4.3) were used to examine the association between vitamin C and SBP or DBP.ResultsVitamin C was reversely correlated with both SBP (β = −0.02, 95% CI: −0.03 to −0.00, p = 0.0306) and DBP (β = −0.02, 95% CI: −0.04 to −0.01, p = <0.0011) after adjusting all covariates. This reverse relationship may be affected by a number of factors, including a person’s gender, age, race, and ethnicity. A U-shaped association between vitamin C and SBP in females and an inverted one between vitamin C and DBP in males were detected, respectively. We further calculated the inflection points at 90.3 μmol/L for females and 40 μmol/L for males. It is somewhat surprising that a reverse U-shaped distribution between vitamin C and SBP and DBP in people over 50 was detected, and the point of inflection of vitamin C were all located at 40 μmol/L.ConclusionVitamin C was negatively correlated with both SBP and DBP in this cross-sectional analysis. However, a U-shaped relationship and an inverted one were also observed in certain people, which implied that, though vitamin C is considered a vital antioxidant, maintaining vitamin C at appropriate levels may be beneficial according to different populations.
Collapse
|
3
|
Halliwell B. Reflections of an Aging Free Radical Part 2: Meeting Inspirational People. Antioxid Redox Signal 2022; 38:792-802. [PMID: 35651275 DOI: 10.1089/ars.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: During my long career in the field of redox biology, I met many inspiring people, especially Lester Packer. Recent Advances: This special issue of Antioxidants & Redox Signaling is dedicated to Lester Packer. Critical Issues: In this short review, I explore how Lester and other pioneers helped to develop the redox biology field and how I interacted with them. Future Directions: In our research to advance the field of redox biology, we stand on the shoulders of giants, including Lester Packer.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Saz-Lara A, Cavero-Redondo I, Martínez-Vizcaíno V, Martínez-Ortega IA, Notario-Pacheco B, Pascual-Morena C. The Comparative Effects of Different Types of Oral Vitamin Supplements on Arterial Stiffness: A Network Meta-Analysis. Nutrients 2022; 14:1009. [PMID: 35267985 PMCID: PMC8912633 DOI: 10.3390/nu14051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Arterial stiffness, a significant prognostic factor of cardiovascular disease, may be affected by dietary factors. Research on the effects of oral vitamin supplements on arterial stiffness and/or endothelial function has produced controversial results. Therefore, the aim of this network meta-analysis was to comparatively assess the effect of different types of oral vitamin supplements on arterial stiffness in the adult population. We searched the PubMed, Embase, Cochrane Library, and Web of Science databases for randomized controlled trials from their inception to 30 September 2021. A network meta-analysis using a frequentist perspective was conducted to assess the effects of different types of oral vitamin supplements on arterial stiffness, as determined by pulse wave velocity. In total, 22 studies were included, with a total of 1318 participants in the intervention group and 1115 participants in the placebo group. The included studies were listed in an ad hoc table describing direct and indirect comparisons of the different types of vitamins. Our findings showed that, in both pairwise comparison and frequentist network meta-analysis, the different types of oral vitamin supplements did not show statistically significant effects on arterial stiffness. However, when oral vitamin supplementation was longer than 12 weeks, vitamin D3 showed a significant reduction in arterial stiffness, compared with the placebo (ES: -0.15; 95% CI: -0.30, -0.00; -60.0% m/s) and vitamin D2 (ES: -0.25; 95% CI: -0.48, -0.02, -52.0% m/s). In summary, our study confirms that oral vitamin D3 supplementation for more than 12 weeks could be an effective approach to reduce arterial stiffness and could be considered a useful approach to improve vascular health in patients at high risk of cardiovascular disease.
Collapse
Affiliation(s)
- Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16171 Cuenca, Spain; (A.S.-L.); (V.M.-V.); (I.A.M.-O.); (B.N.-P.); (C.P.-M.)
| | - Iván Cavero-Redondo
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16171 Cuenca, Spain; (A.S.-L.); (V.M.-V.); (I.A.M.-O.); (B.N.-P.); (C.P.-M.)
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16171 Cuenca, Spain; (A.S.-L.); (V.M.-V.); (I.A.M.-O.); (B.N.-P.); (C.P.-M.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Isabel Antonia Martínez-Ortega
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16171 Cuenca, Spain; (A.S.-L.); (V.M.-V.); (I.A.M.-O.); (B.N.-P.); (C.P.-M.)
| | - Blanca Notario-Pacheco
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16171 Cuenca, Spain; (A.S.-L.); (V.M.-V.); (I.A.M.-O.); (B.N.-P.); (C.P.-M.)
| | - Carlos Pascual-Morena
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16171 Cuenca, Spain; (A.S.-L.); (V.M.-V.); (I.A.M.-O.); (B.N.-P.); (C.P.-M.)
| |
Collapse
|
5
|
Stone RM, Ainslie PN, Tremblay JC, Akins JD, MacLeod DB, Tymko MM, DeSouza CA, Bain AR. GLOBAL REACH 2018: intra-arterial vitamin C improves endothelial-dependent vasodilatory function in humans at high altitude. J Physiol 2021; 600:1373-1383. [PMID: 34743333 DOI: 10.1113/jp282281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
High altitude-induced hypoxaemia is often associated with peripheral vascular dysfunction. However, the basic mechanism(s) underlying high-altitude vascular impairments remains unclear. This study tested the hypothesis that oxidative stress contributes to the impairments in endothelial function during early acclimatization to high altitude. Ten young healthy lowlanders were tested at sea level (344 m) and following 4-6 days at high altitude (4300 m). Vascular endothelial function was determined using the isolated perfused forearm technique with forearm blood flow (FBF) measured by strain-gauge venous occlusion plethysmography. FBF was quantified in response to acetylcholine (ACh), sodium nitroprusside (SNP) and a co-infusion of ACh with the antioxidant vitamin C (ACh+VitC). The total FBF response to ACh (area under the curve) was ∼30% lower at high altitude than at sea level (P = 0.048). There was no difference in the response to SNP at high altitude (P = 0.860). At sea level, the co-infusion of ACh+VitC had no influence on the FBF dose response (P = 0.268); however, at high altitude ACh+VitC resulted in an average increase in the FBF dose response by ∼20% (P = 0.019). At high altitude, the decreased FBF response to ACh, and the increase in FBF in response to ACh+VitC, were associated with the magnitude of arterial hypoxaemia (R2 = 0.60, P = 0.008 and R2 = 0.63, P = 0.006, respectively). Collectively, these data support the hypothesis that impairments in vascular endothelial function at high altitude are in part attributable to oxidative stress, a consequence of the magnitude of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related vascular dysfunction. KEY POINTS: Vascular dysfunction has been demonstrated in lowlanders at high altitude (>4000 m). However, the extent of impairment and the delineation of contributing mechanisms have remained unclear. Using the gold-standard isolated perfused forearm model, we determined the extent of vasodilatory dysfunction and oxidative stress as a contributing mechanism in healthy lowlanders before and 4-6 days after rapid ascent to 4300 m. The total forearm blood flow response to acetylcholine at high altitude was decreased by ∼30%. Co-infusion of acetylcholine with the antioxidant vitamin C partially restored the total forearm blood flow by ∼20%. The magnitude of forearm blood flow reduction, as well as the impact of oxidative stress, was positively associated with the individual severity of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related changes in endothelial-mediated vasodilatory function.
Collapse
Affiliation(s)
- Rachel M Stone
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| | - Philip N Ainslie
- Kelowna, Centre for Heart Lung and Vascular Health, University of British Columbia, Vancouver, Canada
| | - Joshua C Tremblay
- Kelowna, Centre for Heart Lung and Vascular Health, University of British Columbia, Vancouver, Canada
| | | | - David B MacLeod
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Anthony R Bain
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| |
Collapse
|
6
|
Lefferts EC, Hibner BA, Lefferts WK, Lima NS, Baynard T, Haus JM, Lane‐Cordova AD, Phillips SA, Fernhall B. Oral vitamin C restores endothelial function during acute inflammation in young and older adults. Physiol Rep 2021; 9:e15104. [PMID: 34762777 PMCID: PMC8582295 DOI: 10.14814/phy2.15104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress has been linked to reductions in vascular function during acute inflammation in young adults; however, the effect of acute inflammation on vascular function with aging is inconclusive. The aim of this study was to determine if oral antioxidant administration eliminates vascular dysfunction during acute inflammation in young and older adults. Brachial flow-mediated dilation (FMD) and carotid-femoral pulse wave velocity (PWV) were measured in nine young (3 male, 24 ± 4 yrs, 26.2 ± 4.9 kg/m2 ) and 16 older (13 male, 64 ± 5 yrs, 25.8 ± 3.2 kg/m2 ) adults before and 2-h after oral consumption of 2 g of vitamin C. The vitamin C protocol was completed at rest and 24 h after acute inflammation was induced via the typhoid vaccine. Venous blood samples were taken to measure markers of inflammation and vitamin C. Both interleukin-6 (Δ+0.7 ± 1.8 pg/ml) and C-reactive protein (Δ+1.9 ± 3.1 mg/L) were increased at 24 h following the vaccine (p < 0.01). There was no change in FMD or PWV following vitamin C administration at rest (p > 0.05). FMD was lower in all groups during acute inflammation (Δ-1.4 ± 1.9%, p < 0.01), with no changes in PWV (Δ-0.0 ± 0.9 m/s, p > 0.05). Vitamin C restored FMD back to initial values in young and older adults during acute inflammation (Δ+1.0 ± 1.8%, p < 0.01) with no change in inflammatory markers or PWV (p > 0.05). In conclusion, oral vitamin C restored endothelial function during acute inflammation in young and older adults, with no effect on aortic stiffness. The effect of vitamin C on endothelial function did not appear to be due to reductions in inflammatory markers. The exact mechanisms should be further investigated.
Collapse
Affiliation(s)
- Elizabeth C. Lefferts
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of KinesiologyIowa State UniversityAmesIowaUSA
| | - Brooks A. Hibner
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Wesley K. Lefferts
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of KinesiologyIowa State UniversityAmesIowaUSA
| | - Natalia S. Lima
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Tracy Baynard
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Jacob M. Haus
- School of KinesiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Abbi D. Lane‐Cordova
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Shane A. Phillips
- Department of Physical TherapyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Bo Fernhall
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
7
|
Collins BJ, Mukherjee MS, Miller MD, Delaney CL. Effect of Dietary or Supplemental Vitamin C Intake on Vitamin C Levels in Patients with and without Cardiovascular Disease: A Systematic Review. Nutrients 2021; 13:nu13072330. [PMID: 34371840 PMCID: PMC8308513 DOI: 10.3390/nu13072330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is a pro-oxidative and pro-inflammatory disease state, which is the underlying cause of most cardiovascular events, estimated to affect 5.2% of the Australian population. Diet, and specifically vitamin C, through its antioxidant properties can play a role in impeding the development and progression of atherosclerosis. This systematic review conducted comprehensive searches in Medline, Emcare, Scopus, PubMed, and Cochrane using key search terms for vitamin C, plasma vitamin C, supplementation, and cardiovascular disease (CVD). The results demonstrated that vitamin C supplementation resulted in a significant increase in vitamin C levels in populations with or without CVD, except for one study on the CVD population. It was also seen that the healthy population baseline and post-intervention vitamin C levels were high compared to the CVD population. However, further research is indicated for CVD population groups with varying baseline vitamin C levels, such as low baseline vitamin C, within a more representative elderly cohort in order to formulate and update vitamin C repletion guidelines.
Collapse
Affiliation(s)
- Bianca J. Collins
- Department of Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Mitali S. Mukherjee
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Michelle D. Miller
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
- Correspondence:
| | - Christopher L. Delaney
- Department of Vascular Surgery, Flinders Medical Centre, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
8
|
Abstract
In this mini-reflection, I explain how during my doctoral work in a Botany Department I first became interested in H2O2 and later in my career in other reactive oxygen species, especially the role of "catalytic" iron and haem compounds (including leghaemoglobin) in promoting oxidative damage. The important roles that H2O2, other ROS and dietary plants play in respect to humans are discussed. I also review the roles of diet-derived antioxidants in relation to human disease, presenting reasons why clinical trials using high doses of natural antioxidants have generally given disappointing results. Iron chelators and ergothioneine are reviewed as potential cytoprotective agents with antioxidant properties that may be useful therapeutically. The discovery of ferroptosis may also lead to novel agents that can be used to treat certain diseases.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
9
|
Barrows IR, Ramezani A, Raj DS. Inflammation, Immunity, and Oxidative Stress in Hypertension-Partners in Crime? Adv Chronic Kidney Dis 2019; 26:122-130. [PMID: 31023446 DOI: 10.1053/j.ackd.2019.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
Hypertension is considered as the most common risk factor for cardiovascular disease. Inflammatory processes link hypertension and cardiovascular disease, and participate in their pathophysiology. In recent years, there has been an increase in research focused on unraveling the role of inflammation and immune activation in development and maintenance of hypertension. Although inflammation is known to be associated with hypertension, whether inflammation is a cause or effect of hypertension remains to be elucidated. This review describes the recent studies that link inflammation and hypertension and demonstrate the involvement of oxidative stress and endothelial dysfunction-two of the key processes in the development of hypertension. Etiology of hypertension, including novel immune cell subtypes, cytokines, toll-like receptors, inflammasomes, and gut microbiome, found to be associated with inflammation and hypertension are summarized and discussed. Most recent findings in this field are presented with special emphasis on potential of anti-inflammatory drugs and statins for treatment of hypertension.
Collapse
|
10
|
Crosstalk between Vitamins A, B12, D, K, C, and E Status and Arterial Stiffness. DISEASE MARKERS 2017; 2017:8784971. [PMID: 28167849 PMCID: PMC5266829 DOI: 10.1155/2017/8784971] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
Arterial stiffness is associated with cardiovascular risk, morbidity, and mortality. The present paper reviews the main vitamins related to arterial stiffness and enabling destiffening, their mechanisms of action, providing a brief description of the latest studies in the area, and their implications for primary cardiovascular prevention, clinical practice, and therapy. Despite inconsistent evidence for destiffening induced by vitamin supplementation in several randomized clinical trials, positive results were obtained in specific populations. The main mechanisms are related to antiatherogenic effects, improvement of endothelial function (vitamins A, C, D, and E) and metabolic profile (vitamins A, B12, C, D, and K), inhibition of the renin-angiotensin-aldosterone system (vitamin D), anti-inflammatory (vitamins A, D, E, and K) and antioxidant effects (vitamins A, C, and E), decrease of homocysteine level (vitamin B12), and reversing calcification of arteries (vitamin K). Vitamins A, B12, C, D, E, and K status is important in evaluating cardiovascular risk, and vitamin supplementation may be an effective, individualized, and inexpensive destiffening therapy.
Collapse
|
11
|
Harris E, Rowsell R, Pipingas A, Macpherson H. No effect of multivitamin supplementation on central blood pressure in healthy older people: A randomized controlled trial. Atherosclerosis 2016; 246:236-42. [PMID: 26812001 DOI: 10.1016/j.atherosclerosis.2016.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Central blood pressure rises with age, which increases cardiovascular risk. There is some evidence that nutritional supplements may be useful to reduce central blood pressures in older people, but no studies have investigated the effects of multivitamin supplements for this purpose. This randomized, double-blind, placebo-controlled study investigated the effects of 16-weeks supplementation with gender-specific multivitamin and herbal supplements. METHOD Participants were healthy individuals, free from heart disease, and included 160 females aged ≥ 50 and 79 males aged 50-65 years. Analyses of co-variance, correcting for baseline cardiovascular assessments, were used to determine the effects of supplementation on central cardiovascular measures including augmentation index, augmentation pressure and pulse pressure. Significance was set at p = 0.016. RESULTS No effects of multivitamin supplementation were observed in either males or females (respectively) for central augmentation index (p = 0.841; p = 0.296), central augmentation pressure (p = 0.794; p = 0.442), and central pulse pressure (p = 0.078; p = 0.304). Similarly, there was no treatment effect observed for brachial systolic, diastolic or pulse pressures. CONCLUSION Four months multivitamin supplementation does not appear to exert any benefit to measures of central blood pressure in healthy older people.
Collapse
Affiliation(s)
- Elizabeth Harris
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic, 3000, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Vic, 3122, Australia.
| | - Renee Rowsell
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Vic, 3122, Australia.
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Vic, 3122, Australia.
| | - Helen Macpherson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Vic, 3122, Australia; Centre for Physical Activity and Nutrition Research, Deakin University, Burwood, Vic, 3125, Australia.
| |
Collapse
|
12
|
Wu CF, Liu PY, Wu TJ, Hung Y, Yang SP, Lin GM. Therapeutic modification of arterial stiffness: An update and comprehensive review. World J Cardiol 2015; 7:742-753. [PMID: 26635922 PMCID: PMC4660469 DOI: 10.4330/wjc.v7.i11.742] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/30/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Arterial stiffness has been recognized as a marker of cardiovascular disease and associated with long-term worse clinical outcomes in several populations. Age, hypertension, smoking, and dyslipidemia, known as traditional vascular risk factors, as well as diabetes, obesity, and systemic inflammation lead to both atherosclerosis and arterial stiffness. Targeting multiple modifiable risk factors has become the main therapeutic strategy to improve arterial stiffness in patients at high cardiovascular risk. Additionally to life style modifications, long-term ω-3 fatty acids (fish oil) supplementation in diet may improve arterial stiffness in the population with hypertension or metabolic syndrome. Pharmacological treatment such as renin-angiotensin-aldosterone system antagonists, metformin, and 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors were useful in individuals with hypertension and diabetes. In obese population with obstructive sleep apnea, weight reduction, aerobic exercise, and continuous positive airway pressure treatment may also improve arterial stiffness. In the populations with chronic inflammatory disease such as rheumatoid arthritis, a use of antibodies against tumor necrosis factor-alpha could work effectively. Other therapeutic options such as renal sympathetic nerve denervation for patients with resistant hypertension are investigated in many ongoing clinical trials. Therefore our comprehensive review provides knowledge in detail regarding many aspects of pathogenesis, measurement, and management of arterial stiffness in several populations, which would be helpful for physicians to make clinical decision.
Collapse
|
13
|
Zarling JA, Brunt VE, Vallerga AK, Li W, Tao A, Zarling DA, Minson CT. Nitroxide pharmaceutical development for age-related degeneration and disease. Front Genet 2015; 6:325. [PMID: 26594225 PMCID: PMC4635221 DOI: 10.3389/fgene.2015.00325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/19/2015] [Indexed: 02/05/2023] Open
Abstract
Nitroxide small molecule agents are in development as preventative or therapeutic pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular disease, which are two major diseases of aging. These aging diseases are associated with patient genetics, smoking, diet, oxidative stress, and chronic inflammation. Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation- and other environmental-induced pathophysiological conditions in aging disease are reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551) are evaluated in (1) non-smokers versus smokers with cutaneous microvascular dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP and TP-H topically penetrate and function in skin or mucosa, protecting and treating radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and travels to the back of the eye, preserving visual acuity and preserving normal and low light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable drug formulations are discussed.
Collapse
Affiliation(s)
| | - Vienna E. Brunt
- Department of Human Physiology, University of Oregon, EugeneOR, USA
| | | | - Weixing Li
- Colby Pharmaceutical Company, Menlo ParkCA, USA
| | - Albert Tao
- Department of Biomedical Engineering, Washington University in St. Louis, St. LouisMO, USA
| | | | | |
Collapse
|
14
|
Galano JM, Lee YY, Durand T, Lee JCY. Special Issue on "Analytical Methods for Oxidized Biomolecules and Antioxidants" The use of isoprostanoids as biomarkers of oxidative damage, and their role in human dietary intervention studies. Free Radic Res 2015; 49:583-98. [PMID: 25734631 DOI: 10.3109/10715762.2015.1007969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Isoprostanoids are a group of non-enzymatic oxidized lipids from polyunsaturated fatty acids. They are commonly used as biomarkers for oxidative damage, to assess in vivo lipid peroxidation in diseases related to the vascular system and neurodegeneration. Currently, there is a mismatch with the outcome in the use of these biomarkers in intervention studies, particularly when testing the effect of antioxidants such as vitamins C and E, or zinc, or a cocktail of these, with other food components. Much of this is because the biomarkers, the method of measurement, and the duration of supplementation are unsuitable. In this review, we will highlight the formation of isoprostanoids from their respective fatty acids, and their application as biomarkers for oxidative damage in vivo, considering human dietary intervention studies evaluating plasma and urine, using mass spectrometry techniques.
Collapse
Affiliation(s)
- J-M Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Universités of Montpellier , France
| | | | | | | |
Collapse
|
15
|
Low vitamin C values are linked with decreased physical performance and increased oxidative stress: reversal by vitamin C supplementation. Eur J Nutr 2014; 55:45-53. [DOI: 10.1007/s00394-014-0821-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/10/2014] [Indexed: 11/25/2022]
|
16
|
Ashor AW, Siervo M, Lara J, Oggioni C, Mathers JC. Antioxidant vitamin supplementation reduces arterial stiffness in adults: a systematic review and meta-analysis of randomized controlled trials. J Nutr 2014; 144:1594-602. [PMID: 25098780 DOI: 10.3945/jn.114.195826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies tested the effects of supplementation with antioxidant vitamins on arterial stiffness, but the results were contradictory. OBJECTIVES The aim of our study was to conduct a systematic review and meta-analysis investigating the effect of antioxidant vitamins on arterial stiffness and to determine whether the effects on arterial stiffness vary according to dose, duration of intervention, and health or nutritional status of the included participants. METHODS We searched 3 databases (Medline, Embase, and Scopus) for articles that potentially met the following eligibility criteria: 1) randomized controlled trials comparing antioxidant vitamins (vitamins C, E, and A and β-carotene) to either placebo or no active control in 2) adult participants aged ≥18 y; 3) antioxidant vitamins administered alone or in combination, irrespective of dose, duration, and route of administration; and 4) changes in arterial stiffness or arterial compliance. Data were pooled as standardized mean differences (SMDs) and analyzed using fixed- and random-effects models. RESULTS Data synthesis showed that antioxidant vitamins reduced arterial stiffness significantly (SMD: -0.17; 95% CI: -0.26, -0.08; P < 0.001). This effect was significant in experimental (SMD: -1.02; 95% CI: -1.54, -0.49; P < 0.001) and primary prevention (SMD: -0.14; 95% CI: -0.24, -0.04; P < 0.01) studies, whereas a trend for reduced arterial stiffness was observed in studies including participants with diseases (SMD: -0.19; 95% CI: -0.40, 0.02; P = 0.08). Vitamin supplementation improved arterial stiffness irrespective of age group and duration of intervention. Antioxidant vitamins were more effective in participants with low baseline plasma concentrations of vitamins C (SMD: -0.35; 95% CI: -0.62, -0.07; P < 0.016) and E (SMD: -0.79; 95% CI: -1.23, -0.33; P < 0.01). CONCLUSIONS Supplementation with antioxidant vitamins has a small, protective effect on arterial stiffness. The effect may be augmented in those with lower baseline plasma vitamin E and C concentrations. This trial was registered at PROSPERO as CRD42014007260.
Collapse
Affiliation(s)
- Ammar W Ashor
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Mario Siervo
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| | - Jose Lara
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| | - Clio Oggioni
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| | - John C Mathers
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK; and
| |
Collapse
|
17
|
Ashor AW, Lara J, Mathers JC, Siervo M. Effect of vitamin C on endothelial function in health and disease: a systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 2014; 235:9-20. [PMID: 24792921 DOI: 10.1016/j.atherosclerosis.2014.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/05/2014] [Accepted: 04/05/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Observational studies indicate that higher vitamin C intake is associated with reduced risk for cardiovascular diseases. However, randomised controlled trials (RCT) examining the effect of vitamin C on endothelial function (EF) have reported inconsistent results. The aims of this systematic review and meta-analysis were to determine the effect of vitamin C supplementation on EF and to investigate whether the effect was influenced by health status, study duration, dose and route of vitamin C administration. METHODS We searched the Medline, Embase, Cochrane Library, and Scopus databases from inception to May 2013 for studies that met the following criteria: 1) RCT with adult participants, 2) vitamin C administered alone, 3) studies that quantified EF using commonly applied methods including ultrasound, plethysmography and pulse wave analysis. RESULTS Pooling the data from 44 clinical trials showed a significant positive effect of vitamin C on EF (SMD: 0.50, 95% CI: 0.34, 0.66, P < 0.001). Stratification of the analysis by health outcome revealed improved EF in atherosclerotic (SMD: 0.84, 95% CI: 0.41, 1.26, P < 0.001), diabetic (SMD: 0.52, 95% CI: 0.21, 0.82, P < 0.001) and heart failure patients (SMD: 0.48, 95% CI: 0.08, 0.88, P < 0.02) after vitamin C supplementation. The effect size appeared to be unaffected by study design, duration, baseline plasma vitamin C concentration or route of administration of vitamin C. The meta-regression showed a significant positive association between vitamin C dose and improvement in EF (β: 0.00011, 95% CI: 0.00001, 0.00021, P = 0.03). CONCLUSIONS Vitamin C supplementation improved EF. The effect of vitamin C supplementation appeared to be dependent on health status, with stronger effects in those at higher cardiovascular disease risk. PROSPERO Database registration: CRD42013004567, http://www.crd.york.ac.uk/prospero/
Collapse
Affiliation(s)
- Ammar W Ashor
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne NE4 5PL, UK; College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq.
| | - Jose Lara
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne NE4 5PL, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne NE4 5PL, UK
| | - Mario Siervo
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle on Tyne NE4 5PL, UK
| |
Collapse
|
18
|
Petrosino T, Serafini M. Antioxidant Modulation of F2-Isoprostanes in Humans: A Systematic Review. Crit Rev Food Sci Nutr 2014; 54:1202-21. [DOI: 10.1080/10408398.2011.630153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Bekhit AEDA, Hopkins DL, Fahri FT, Ponnampalam EN. Oxidative Processes in Muscle Systems and Fresh Meat: Sources, Markers, and Remedies. Compr Rev Food Sci Food Saf 2013; 12:565-597. [DOI: 10.1111/1541-4337.12027] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/06/2013] [Indexed: 01/12/2023]
Affiliation(s)
| | - David L. Hopkins
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; PO Box 129; Cowra; NSW; Australia
| | - Fahri T. Fahri
- Australian Meat Processor Corp. Ltd., 460 Pacific Highway; St Leonards; NSW 2065; Australia
| | - Eric N. Ponnampalam
- Future Farming Systems Research Div.; Dept. of Primary Industries; Werribee; Victoria 3030; Australia
| |
Collapse
|
20
|
Schaffer S, Halliwell B. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. GENES AND NUTRITION 2011; 7:99-109. [PMID: 22012276 DOI: 10.1007/s12263-011-0255-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/06/2011] [Indexed: 12/26/2022]
Abstract
Although several epidemiological and intervention studies suggest that polyphenols (PPs) and PP-rich foods may improve memory and cognition in animals and humans, PPs' mode of action is only poorly understood. To help distinguish between the different modes of action that have been proposed for PPs, it is obviously important to know how much PPs can accumulate in the brain, if any at all. However, reliable data on PP uptake into the brain of animals are limited as many studies failed to report important control procedures during data acquisition. In this paper, we summarize published data on the penetration of PPs into animal brain and review some hypotheses to explain the biological basis of potentially health-beneficial effects of PPs to the brain. Finally, we highlight promising new approaches, especially those of a hormetic dose-response and gut microbiota-brain interaction, which may allow a better understanding of PPs' mode of action in animals and humans.
Collapse
Affiliation(s)
- Sebastian Schaffer
- Department of Biochemistry, Centre for Life Sciences, National University of Singapore, 22 Medical Drive, Singapore, 117456, Singapore
| | | |
Collapse
|
21
|
Ghouleh IA, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, Barchowsky A, Nauseef WM, Kelley EE, Bauer PM, Darley-Usmar V, Shiva S, Cifuentes-Pagano E, Freeman BA, Gladwin MT, Pagano PJ. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 2011; 51:1271-88. [PMID: 21722728 PMCID: PMC3205968 DOI: 10.1016/j.freeradbiomed.2011.06.011] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are involved in numerous physiological and pathophysiological responses. Increasing evidence implicates ROS as signaling molecules involved in the propagation of cellular pathways. The NADPH oxidase (Nox) family of enzymes is a major source of ROS in the cell and has been related to the progression of many diseases and even environmental toxicity. The complexity of this family's effects on cellular processes stems from the fact that there are seven members, each with unique tissue distribution, cellular localization, and expression. Nox proteins also differ in activation mechanisms and the major ROS detected as their product. To add to this complexity, mounting evidence suggests that other cellular oxidases or their products may be involved in Nox regulation. The overall redox and metabolic status of the cell, specifically the mitochondria, also has implications on ROS signaling. Signaling of such molecules as electrophilic fatty acids has an impact on many redox-sensitive pathologies and thus, as anti-inflammatory molecules, contributes to the complexity of ROS regulation. This review is based on the proceedings of a recent international Oxidase Signaling Symposium at the University of Pittsburgh's Vascular Medicine Institute and Department of Pharmacology and Chemical Biology and encompasses further interaction and discussion among the presenters.
Collapse
Affiliation(s)
- Imad Al Ghouleh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Nicholas K.H. Khoo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Ulla G. Knaus
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA
| | - Rhian M. Touyz
- Ottawa Hospital Research Institute, Univ of Ottawa, Ottawa, Ontario, Canada
| | - Victor J. Thannickal
- Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Aaron Barchowsky
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - William M. Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
- Veterans Administration Medical Center, Iowa City, IA
| | - Eric E. Kelley
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA
| | - Phillip M. Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Bruce A. Freeman
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Mark T. Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Pulmonary, Allergy & Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Patrick J. Pagano
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
22
|
Goodman M, Bostick RM, Kucuk O, Jones DP. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic Biol Med 2011; 51:1068-84. [PMID: 21683786 DOI: 10.1016/j.freeradbiomed.2011.05.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/09/2011] [Accepted: 05/17/2011] [Indexed: 02/07/2023]
Abstract
The purpose of this review is to summarize the most important human clinical trials of antioxidants as cancer prevention agents conducted to date, provide an overview of currently ongoing studies, and discuss future steps needed to advance research in this field. To date there have been several large (at least 7000 participants) trials testing the efficacy of antioxidant supplements in preventing cancer. The specific agents (diet-derived direct antioxidants and essential components of antioxidant enzymes) tested in those trials included β-carotene, vitamin E, vitamin C, selenium, retinol, zinc, riboflavin, and molybdenum. None of the completed trials produced convincing evidence to justify the use of traditional antioxidant-related vitamins or minerals for cancer prevention. Our search of ongoing trials identified six projects at various stages of completion. Five of those six trials use selenium as the intervention of interest delivered either alone or in combination with other agents. The lack of success to date can be explained by a variety of factors that need to be considered in the next generation research. These factors include lack of good biological rationale for selecting specific agents of interest; limited number of agents tested to date; use of pharmacological, rather than dietary, doses; and insufficient duration of intervention and follow-up. The latter consideration underscores the need for alternative endpoints that are associated with increased risk of neoplasia (i.e., biomarkers of risk), but are detectable prior to tumor occurrence. Although dietary antioxidants are a large and diverse group of compounds, only a small proportion of candidate agents have been tested. In summary, the strategy of focusing on large high-budget studies using cancer incidence as the endpoint and testing a relatively limited number of antioxidant agents has been largely unsuccessful. This lack of success in previous trials should not preclude us from seeking novel ways of preventing cancer by modulating oxidative balance. On the contrary, the well demonstrated mechanistic link between excessive oxidative stress and carcinogenesis underscores the need for new studies. It appears that future large-scale projects should be preceded by smaller, shorter, less expensive biomarker-based studies that can serve as a link from mechanistic and observational research to human cancer prevention trials. These relatively inexpensive studies would provide human experimental evidence for the likely efficacy, optimum dose, and long-term safety of the intervention of interest that would then guide the design of safe, more definitive large-scale trials.
Collapse
Affiliation(s)
- Michael Goodman
- Emory University Rollins School of Public Health, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
23
|
Myint PK, Luben RN, Wareham NJ, Khaw KT. Association between plasma vitamin C concentrations and blood pressure in the European prospective investigation into cancer-Norfolk population-based study. Hypertension 2011; 58:372-9. [PMID: 21768529 DOI: 10.1161/hypertensionaha.111.171108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of fruit and vegetable consumption and blood pressure is unclear. A population-based cross-sectional study was conducted in 20 926 men and women aged 40 to 79 years participating in the European Prospective Investigation Into Cancer-Norfolk who completed a health questionnaire and attended a clinic from 1993 to 1997. The relationship between plasma vitamin C concentrations, as an indicator of fruit and vegetable intake, and systolic BP was examined. The magnitude of their association was assessed using dichotomized values of high (≥140 mm Hg) and low (<140 mm Hg) systolic blood pressure. A total of 20 926 participants (46% men; mean [SD] 58.5 years [9.2 years]) were included after excluding participants with any missing data for variables of interest. People with high vitamin C concentrations had lower clinic blood pressure. The likelihood of having high blood pressure was 22% lower (odds ratio: 0.78 [95% CI: 0.71 to 0.86]) for those who were in the top quartiles of plasma vitamin C levels compared with the bottom quartiles after adjusting for age, sex, body mass index, cholesterol, prevalent medical conditions, smoking, physical activity, alcohol consumption, social class, education, use of vitamin C-containing supplement, and antihypertensive medication. Sex-specific analysis, as well as repeated analysis after exclusion of people who used vitamin C-containing supplements or who were taking antihypertensive medication, did not alter the results. There appears to be a strong association between vitamin C concentrations, an indicator of fruit and vegetable consumption, and a lower level of blood pressure. This may provide further evidence for health benefits of dietary patterns with higher fruit and vegetable consumption.
Collapse
Affiliation(s)
- Phyo K Myint
- Norwich Medical School, Chancellors Drive, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | | | |
Collapse
|
24
|
Theodorou AA, Nikolaidis MG, Paschalis V, Koutsias S, Panayiotou G, Fatouros IG, Koutedakis Y, Jamurtas AZ. No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training. Am J Clin Nutr 2011; 93:1373-83. [PMID: 21508092 DOI: 10.3945/ajcn.110.009266] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It was recently reported that antioxidant supplementation decreases training efficiency and prevents cellular adaptations to chronic exercise. OBJECTIVE This study aimed to investigate the effects of vitamin C and vitamin E supplementation on muscle performance, blood and muscle redox status biomarkers, and hemolysis in trained and untrained men after acute and chronic exercise. A specific type of exercise was applied (eccentric) to produce long-lasting and extensive changes in redox status biomarkers and to examine more easily the potential effects of antioxidant supplementation. DESIGN In a double-blinded fashion, men received either a daily oral supplement of vitamin C and vitamin E (n = 14) or placebo (n = 14) for 11 wk (started 4 wk before the pretraining exercise testing and continued until the posttraining exercise testing). After baseline testing, the subjects performed an eccentric exercise session 2 times/wk for 4 wk. Before and after the chronic eccentric exercise, the subjects underwent one session of acute eccentric exercise, physiologic measurements were performed, and blood samples and muscle biopsy samples (from 4 men) were collected. RESULTS The results failed to support any effect of antioxidant supplementation. Eccentric exercise similarly modified muscle damage and performance, blood redox status biomarkers, and hemolysis in both the supplemented and nonsupplemented groups. This occurred despite the fact that eccentric exercise induced marked changes in muscle damage and performance and in redox status after exercise. CONCLUSION The complete lack of any effect on the physiologic and biochemical outcome measures used raises questions about the validity of using oral antioxidant supplementation as a redox modulator of muscle and redox status in healthy humans.
Collapse
Affiliation(s)
- Anastasios A Theodorou
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pase MP, Grima NA, Sarris J. The effects of dietary and nutrient interventions on arterial stiffness: a systematic review. Am J Clin Nutr 2011; 93:446-54. [PMID: 21147858 DOI: 10.3945/ajcn.110.002725] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Although dietary and nutrient interventions have been extensively studied as a means of improving arterial stiffness, to our knowledge no systematic analysis of the data has been conducted. OBJECTIVE The aim of the current study was to systematically review the human clinical trial data and qualitatively examine the efficacy of dietary and nutrient interventions in the treatment of arterial stiffness. DESIGN We systematically searched multiple databases until July 2010 for relevant randomized controlled human clinical trials of common dietary and nutrient interventions in the treatment of arterial stiffness. Located studies were subject to strict inclusion criteria and objectively assessed for scientific quality. RESULTS Of the 75 relevant studies located, we considered 38 studies to be appropriate for review. Results revealed support for intakes of omega-3 (n-3) fish oils (Cohen's d = 0.21-0.81) and soy isoflavones (Cohen's d = 0.35-0.39) in the treatment of arterial stiffness. There was limited but consistent evidence to suggest that salt restriction (Cohen's d = 0.28-0.37) as well as consumption of fermented-milk products (Cohen's d = 0.15-0.33) that contain bioactive peptides improved arterial stiffness. The evidentiary support for intakes of vitamins, micronutrients, and herbal medicines was insufficient. Limited but consistent evidence suggested that caffeine intake acutely increased arterial stiffness (Cohen's d = 0.34-0.51). CONCLUSIONS Current evidence from several small studies suggests that omega-3 and soy isoflavone supplementation provides an effective means of reducing arterial stiffness. There was little research that explored intakes of herbal medicines or micronutrients in the treatment of arterial stiffness, and this remains an area of potential research.
Collapse
Affiliation(s)
- Matthew P Pase
- National Institute of Complementary Medicine Centre for Study of Natural Medicines and Neurocognition, Melbourne, Australia.
| | | | | |
Collapse
|
26
|
Abstract
Increased vascular production of reactive oxygen species (ROS; termed oxidative stress) has been implicated in various chronic diseases, including hypertension. Oxidative stress is both a cause and a consequence of hypertension. Although oxidative injury may not be the sole etiology, it amplifies blood pressure elevation in the presence of other pro-hypertensive factors. Oxidative stress is a multisystem phenomenon in hypertension and involves the heart, kidneys, nervous system, vessels and possibly the immune system. Compelling experimental and clinical evidence indicates the importance of the vasculature in the pathophysiology of hypertension and as such much emphasis has been placed on the (patho)biology of ROS in the vascular system. A major source for cardiovascular, renal and neural ROS is a family of non-phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox), including the prototypic Nox2 homolog-based NADPH oxidase, as well as other Noxes, such as Nox1 and Nox4. Nox-derived ROS is important in regulating endothelial function and vascular tone. Oxidative stress is implicated in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis and rarefaction, important processes involved in vascular remodeling in hypertension. Despite a plethora of data implicating oxidative stress as a causative factor in experimental hypertension, findings in human hypertension are less conclusive. This review highlights the importance of ROS in vascular biology and focuses on the potential role of oxidative stress in human hypertension.
Collapse
|
27
|
Bagryantseva Y, Novotna B, Rossner P, Chvatalova I, Milcova A, Svecova V, Lnenickova Z, Solansky I, Sram RJ. Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: impact of air pollution and genetic polymorphisms. Toxicol Lett 2010; 199:60-8. [PMID: 20723587 DOI: 10.1016/j.toxlet.2010.08.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 08/02/2010] [Accepted: 08/11/2010] [Indexed: 12/17/2022]
Abstract
DNA integrity was investigated in the lymphocytes of 50 bus drivers, 20 garagemen and 50 controls using the comet assay with excision repair enzymes. In parallel, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 15-F(2t)-isoprostane levels in the urine and protein carbonyl levels in the plasma were assessed as markers of oxidative damage to DNA, lipids and proteins. Exposure to carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and volatile compounds was measured by personal samplers for 48 and 24h, respectively, before the collection of biological specimens. Both exposed groups exhibited a higher levels of DNA instability and oxidative damage to biological macromolecules than the controls. The incidence of oxidized lesions in lymphocyte DNA, but not the urinary levels of 8-oxodG, correlated with exposure to benzene and triglycerides increased this damage. Oxidative damage to lipids and proteins was associated with exposure to cPAHs and the lipid peroxidation levels positively correlated with age and LDL cholesterol, and negatively with vitamin C. The carriers of at least one variant hOGG1 (Cys) allele tended to higher oxidative damage to lymphocyte DNA than those with the wild genotype, while XPD23 (Gln/Gln) homozygotes were more susceptible to the induction of DNA strand breaks. In contrast, GSTM1 null variant seemed to protect DNA integrity.
Collapse
Affiliation(s)
- Yana Bagryantseva
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Praha 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Halliwell B, Lee CYJ. Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues. Antioxid Redox Signal 2010; 13:145-56. [PMID: 20001743 DOI: 10.1089/ars.2009.2934] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The measurement of F2-isoprostanes by methods utilizing mass spectrometry is widely regarded as the best currently available biomarker of lipid peroxidation. F2-isoprostanes and their metabolites can be measured accurately in plasma, urine, and other body fluids using mass spectrometric techniques, and detailed protocols have been published in several papers. However, many clinical studies and intervention studies with diets or supplements, have employed single "spot" measurements of F2-isoprostanes on either plasma/serum or urine to estimate "oxidative stress." This review examines the validity of the common assumption that plasma and urinary F2-isoprostane measurements are equivalent. It identifies scenarios where they may not be and where "spot" measurements can be misleading, with examples from the literature. We also discuss the controversial issue of whether and how F2-isoprostane levels in plasma should be standardized against lipids, and, if so, which lipids to use.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | | |
Collapse
|
29
|
Gutteridge JM, Halliwell B. Antioxidants: Molecules, medicines, and myths. Biochem Biophys Res Commun 2010; 393:561-4. [DOI: 10.1016/j.bbrc.2010.02.071] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/11/2010] [Indexed: 11/26/2022]
|
30
|
Pun PBL, Gruber J, Tang SY, Schaffer S, Ong RLS, Fong S, Ng LF, Cheah I, Halliwell B. Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans? Biogerontology 2009; 11:17-30. [PMID: 19350411 DOI: 10.1007/s10522-009-9223-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/23/2009] [Indexed: 12/21/2022]
Abstract
Antioxidants are often investigated as a promising strategy for extending lifespan. Accordingly, there is significant interest in novel antioxidant compounds derived from natural sources such as plant extracts. However, because lifespan studies are laborious and expensive to conduct, candidate compounds are frequently selected based simply on their in vitro antioxidant efficacy, with the implicit assumption that in vitro antioxidants are also in vivo antioxidants, and that in vivo antioxidants will decrease functionally relevant oxidative damage and thereby extend lifespan. We investigated the validity of these assumptions in the model organism, Caenorhabditis elegans. Nematodes were exposed to 6 plant extracts, selected out of a total of 34 based on a simple in vitro antioxidant assay. We found no correlation between in vitro and in vivo antioxidant capacities. Antioxidant efficacies were also not predictive of lifespan benefits. Further studies into those extracts that produced significant lifespan extension indicated that a direct antioxidant effect is unlikely to be the main factor responsible for the modulation of nematode lifespan.
Collapse
Affiliation(s)
- Pamela Boon Li Pun
- Department of Biochemistry, Ageing/Neurobiology Programme, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In my career I have moved from chemistry to biochemistry to plant science to clinical chemistry and back again (in a partial way) to plants. This review presents a brief history of my research achievements (ascorbate-glutathione cycle, role of iron in oxidative damage and human disease, biomarkers of free radical damage, and studies on atherosclerosis and neurodegeneration) and how they relate to my research activities today. The field of free radicals/other reactive species/antioxidants underpins all of modern Biology. These agents helped to drive human evolution and the basic principles of the field are repeatedly found to be relevant in other research areas. It was an exciting field when I started some 40 years ago, and it still is today, but some major challenges must be faced.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore.
| |
Collapse
|