1
|
Amelio D, Garofalo F. Morpho-functional changes of lungfish Protopterus dolloi skin in the shift from freshwater to aestivating conditions. Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110846. [PMID: 36894022 DOI: 10.1016/j.cbpb.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
African dipnoi (Protopterus sp.) are obligate air-breathing fish that, during dry season, may experience a period of dormancy named aestivation. Aestivation is characterized by complete reliance on pulmonary breathing, general decrease of metabolism and down-regulation of respiratory and cardiovascular functions. To date, little is known about morpho-functional rearrangements induced by aestivation in the skin of African lungfishes. Our study aims to identify, in the skin of P. dolloi, structural modifications and stress-induced molecules in response to short-term (6 days) and long-term (40 days) aestivation. Light microscopy showed that short-term aestivation induces major reorganization, with narrowing of epidermal layers and decrease of mucous cells; prolonged aestivation is characterized by regenerative processes and re-thickening of epidermal layers. Immunofluorescence reveals that aestivation correlates with an increased oxidative stress and changes of Heat Shock Proteins expression, suggesting a protective role for these chaperons. Our findings revealed that lungfish skin undergoes remarkable morphological and biochemical readjustments in response to stressful conditions associated with aestivation.
Collapse
Affiliation(s)
- Daniela Amelio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Filippo Garofalo
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
2
|
Anthony RM, MacLeay JM, Gross KL. Alpha-Lipoic Acid as a Nutritive Supplement for Humans and Animals: An Overview of Its Use in Dog Food. Animals (Basel) 2021; 11:ani11051454. [PMID: 34069383 PMCID: PMC8158713 DOI: 10.3390/ani11051454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary A review of human and animal studies involving alpha-lipoic acid supplementation was conducted to determine the utility of alpha-lipoic acid in dog food. The present literature shows that alpha-lipoic acid has utility as a nutritive additive at concentrations of 2.7–4.94 mg/kg body weight/day and improves antioxidant capacity in dogs. Abstract Alpha-lipoic acid (a-LA) is used as a nutritive additive in dog food. Therefore, we performed a systematic review of studies published to date in PubMed, Google Scholar, Cochrane Library and MedlinePlus involving alpha-lipoic acid supplementation, which included human clinical trials as well as animal studies, to evaluate its utility as a supplement in foods for healthy, adult dogs. While an upper limit of alpha-lipoic acid intake in humans has not been conclusively determined, the levels for oral intake of a-LA have been better defined in animals, and distinct differences based on species have been described. The maximum tolerated oral dose of a-LA in dogs has been reported as 126 mg/kg body weight and the LD50 as 400 to 500 mg/kg body weight. The antioxidant, anti-inflammatory and neuro-protective benefits of alpha-lipoic acid in dogs were observed at concentrations much lower than the maximum tolerated dose or proposed LD50. At concentrations of 2.7–4.94 mg/kg body weight/day, alpha-lipoic acid is well tolerated and posed no health risks to dogs while providing improved antioxidant capacity. This review thereby supports the utility of alpha-lipoic acid as an effective nutritive additive in dog food.
Collapse
|
3
|
The mechanism and prevention of mitochondrial injury after exercise. J Physiol Biochem 2021; 77:215-225. [PMID: 33650090 DOI: 10.1007/s13105-021-00802-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
With the development of society, physical activity has come to be an effective means by which people pursue good health to improve the quality of life. However, with the increase of intensity and the passage of time, exercise injury has become a hazard that can no longer be ignored. It is imperative to find effective ways to inhibit or reduce the negative effects of exercise. Mitochondria are important organelles involved in exercise and play an important role in exercise injury and prevention. Studies have found that exercise preconditioning and increased mitochondrial nutrition can effectively decrease mitochondrial damage after exercise. Against this background, some of the newest developments in this important field are reviewed here. The results discussed indicate that exercise preconditioning and supplement mitochondrial nutrition need to be increased to prevent exercise-related injuries.
Collapse
|
4
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
5
|
Khan S, Mao Y, Gao D, Riaz S, Niaz Z, Tang L, Khan S, Wang D. Identification of proteins responding to pathogen-infection in the red alga Pyropia yezoensis using iTRAQ quantitative proteomics. BMC Genomics 2018; 19:842. [PMID: 30482156 PMCID: PMC6260746 DOI: 10.1186/s12864-018-5229-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pyropia yezoensis is an important marine crop which, due to its high protein content, is widely used as a seafood in China. Unfortunately, red rot disease, caused by Pythium porphyrae, seriously damages P. yezoensis farms every year in China, Japan, and Korea. Proteomic methods are often used to study the interactions between hosts and pathogens. Therefore, an iTRAQ-based proteomic analysis was used to identify pathogen-responsive proteins following the artificial infection of P. yezoensis with P. porphyrae spores. RESULTS A total of 762 differentially expressed proteins were identified, of which 378 were up-regulated and 384 were down-regulated following infection. A large amount of these proteins were involved in disease stress, carbohydrate metabolism, cell signaling, chaperone activity, photosynthesis, and energy metabolism, as annotated in the KEGG database. Overall, the data showed that P. yezoensis resists infection by inhibiting photosynthesis, and energy and carbohydrate metabolism pathways, as supported by changes in the expression levels of related proteins. The expression data are available via ProteomeXchange with the identifier PXD009363. CONCLUSIONS The current data provide an overall summary of the red algae responses to pathogen infection. This study improves our understanding of infection resistance in P. yezoensis, and may help in increasing the breeding of P. porphyrae-infection tolerant macroalgae.
Collapse
Affiliation(s)
- Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Dong Gao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Lei Tang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Sohaib Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Dongmei Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
6
|
Korkmaz A, Venojärvi M, Wasenius N, Manderoos S, Deruisseau KC, Gidlund EK, Heinonen OJ, Lindholm H, Aunola S, Eriksson JG, Atalay M. Plasma irisin is increased following 12 weeks of Nordic walking and associates with glucose homoeostasis in overweight/obese men with impaired glucose regulation. Eur J Sport Sci 2018; 19:258-266. [PMID: 30132382 DOI: 10.1080/17461391.2018.1506504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Irisin is a myokine that is thought to be secreted in response to exercise that may help to prevent obesity and maintain normal glucose metabolism. In this study we investigated the associations between irisin and glucose homeostasis in middle-aged, overweight and obese men (n = 144) with impaired glucose regulation, and the impact of exercise training on these relationships. The participants underwent 12 weeks of resistance or aerobic (Nordic walking) exercise training three times per week, 60 minutes per session. Venous blood (n = 105) and skeletal muscle samples (n = 45) were obtained at baseline and post-intervention. Compared to controls, Nordic walking, but not resistance training, increased irisin levels in plasma (9.6 ± 4.2%, P = 0.014; 8.7 ± 4.9%, P = 0.087; respectively) compared to controls. When considering all subjects, baseline irisin correlated positively with atherogenic index of plasma (r = 0.244, P = 0.013) and 2-hour insulin levels (r = 0.214, P = 0.028), and negatively with age (r = -0.262, P = 0.007), adiponectin (r = -0.240, P = 0.014) and McAuley index (r = -0.259, P = 0.008). Training-induced FNDC5 mRNA changes were negatively correlated with HbA1c (r = -0.527, P = 0.030) in the resistance training group and with chemerin in the Nordic walking group (r = -0.615, P = 0.033). In conclusion, 12-weeks of Nordic walking was more effective than resistance training in elevating plasma irisin, in middle-aged men with impaired glucose tolerance. Thus, the change in irisin in response to exercise training varied by the type of exercise but showed limited association with improvements in glucose homeostasis.
Collapse
Affiliation(s)
- Ayhan Korkmaz
- a Institute of Biomedicine, Physiology , University of Eastern Finland , Kuopio , Finland
| | - Mika Venojärvi
- b Institute of Biomedicine, Sports and Exercise Medicine , University of Eastern Finland , Kuopio , Finland
| | - Niko Wasenius
- c Department of General Practice and Primary Health Care , University of Helsinki, and Helsinki University Hospital , Helsinki , Finland.,d Folkhälsan Research Center , Helsinki , Finland
| | - Sirpa Manderoos
- c Department of General Practice and Primary Health Care , University of Helsinki, and Helsinki University Hospital , Helsinki , Finland.,d Folkhälsan Research Center , Helsinki , Finland.,e Department of Public Health Solutions , National Institute for Health and Welfare , Helsinki and Turku , Finland
| | - Keith C Deruisseau
- a Institute of Biomedicine, Physiology , University of Eastern Finland , Kuopio , Finland.,f Department of Exercise Science , Syracuse University , Syracuse , NY , USA
| | - Eva-Karin Gidlund
- g Department of Physiology and Pharmacology , Karolinska Institutet , Stockholm , Sweden
| | - Olli J Heinonen
- h Paavo Nurmi Centre, Departments of Physiology, and Health and Physical Activity , University of Turku , Turku , Finland
| | - Harri Lindholm
- i Finnish Institute of Occupational Health , Helsinki , Finland
| | - Sirkka Aunola
- j Department of Welfare , National Institute for Health and Welfare , Turku , Finland
| | - Johan G Eriksson
- c Department of General Practice and Primary Health Care , University of Helsinki, and Helsinki University Hospital , Helsinki , Finland.,d Folkhälsan Research Center , Helsinki , Finland.,e Department of Public Health Solutions , National Institute for Health and Welfare , Helsinki and Turku , Finland
| | - Mustafa Atalay
- a Institute of Biomedicine, Physiology , University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
7
|
Long-Term Exercise Protects against Cellular Stresses in Aged Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2894247. [PMID: 29765493 PMCID: PMC5889853 DOI: 10.1155/2018/2894247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 01/09/2023]
Abstract
The current study examined the effect of aging and long-term wheel-running on the expression of heat shock protein (HSP), redox regulation, and endoplasmic reticulum (ER) stress markers in tibialis anterior (T.A.) and soleus muscle of mice. Male mice were divided into young (Y, 3-month-old), old-sedentary (OS, 24-month-old), and old-exercise (OE, 24-month-old) groups. The OE group started voluntary wheel-running at 3 months and continued until 24 months of age. Aging was associated with a higher thioredoxin-interacting protein (TxNiP) level, lower thioredoxin-1 (TRX-1) to TxNiP ratio—a determinant of redox regulation and increased CHOP, an indicator of ER stress-related apoptosis signaling in both muscles. Notably, GRP78, a key indicator of ER stress, was selectively elevated in T.A. Long-term exercise decreased TxNiP in T.A. and soleus muscles and increased the TRX-1/TxNiP ratio in soleus muscle of aged mice. Inducible HSP70 and constituent HSC70 were upregulated, whereas CHOP was reduced after exercise in soleus muscle. Thus, our data demonstrated that aging induced oxidative stress and activated ER stress-related apoptosis signaling in skeletal muscle, whereas long-term wheel-running improved redox regulation, ER stress adaptation and attenuated ER stress-related apoptosis signaling. These findings suggest that life-long exercise can protect against age-related cellular stress.
Collapse
|
8
|
Ide T. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats. Eur J Nutr 2017; 57:1545-1561. [DOI: 10.1007/s00394-017-1440-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
|
9
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Rousseau AS, Sibille B, Murdaca J, Mothe-Satney I, Grimaldi PA, Neels JG. α-Lipoic acid up-regulates expression of peroxisome proliferator-activated receptor β in skeletal muscle: involvement of the JNK signaling pathway. FASEB J 2015; 30:1287-99. [PMID: 26655383 DOI: 10.1096/fj.15-280453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/16/2015] [Indexed: 11/11/2022]
Abstract
We hypothesized that α-lipoic acid (α-LA) might interact with the transcriptional control of peroxisome proliferator-activated receptor (PPAR)β in skeletal muscle. Molecular mechanisms were investigated using differentiated C2C12 myotubes treated with α-LA and/or PPARβ agonist GW0742. In vivo studies with 3-mo-old C57Bl6 mice were realized: voluntary wheel running (VWR) training (7 wk), and a 6 wk diet containing (or not) α-LA (0.25% wt/wt). This last condition was combined with (or not) 1 bout of treadmill exercise (18 m/min for 1 h). Using a reporter assay, we demonstrate that α-LA is not an agonist of PPARβ but regulates PPARβ target gene expression through an active PPARβ pathway. GW0742-induced pyruvate dehydrogenase kinase 4 mRNA is potentiated by α-LA. In C2C12, α-LA lowers the activation of the JNK signaling pathway and increases PPARβ mRNA and protein levels (2-fold) to the same extent as with the JNK inhibitor SP600125. Similarly to VWR training effect, PPARβ expression increases (2-fold) in vastus lateralis of animals fed an α-LA-enriched diet. However, α-LA treatment does not further stimulate the adaptive up-regulation of PPARβ observed in response to 1 bout of exercise. We have identified a novel mechanism of regulation of PPARβ expression/action in skeletal muscle with potential physiologic application through the action of α-LA, involving the JNK pathway.
Collapse
Affiliation(s)
- Anne-Sophie Rousseau
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| | - Brigitte Sibille
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| | - Joseph Murdaca
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| | - Isabelle Mothe-Satney
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| | - Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Mediterranean Center of Molecular Medicine (C3M), Nice, France; and University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
11
|
Crisafulli A, Mancardi D, Marongiu E, Rastaldo R, Penna C, Pagliaro P. Preconditioning cardioprotection and exercise performance: a radical point of view. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0225-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Oksala NKJ, Ekmekçi FG, Ozsoy E, Kirankaya S, Kokkola T, Emecen G, Lappalainen J, Kaarniranta K, Atalay M. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biol 2014; 3:25-8. [PMID: 25462062 PMCID: PMC4225528 DOI: 10.1016/j.redox.2014.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022] Open
Abstract
Heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a family of highly conserved proteins that respond to a wide variety of stress including oxidative stress. Although both acute and chronic oxidative stress have been well demonstrated to induce HSP responses, little evidence is available whether increased HSP levels provide enhanced protection against oxidative stress under elevated yet sublethal temperatures. We studied relationships between oxidative stress and HSPs in a physiological model by using Garra rufa (doctor fish), a fish species naturally acclimatized to different thermal conditions. We compared fish naturally living in a hot spring with relatively high water temperature (34.4±0.6°C) to those living in normal river water temperature (25.4±4.7°C), and found that levels of all the studied HSPs (HSP70, HSP60, HSP90, HSC70 and GRP75) were higher in fish living in elevated water temperature compared with normal river water temperature. In contrast, indicators of oxidative stress, including protein carbonyls and lipid hydroperoxides, were decreased in fish living in the elevated temperature, indicating that HSP levels are inversely associated with oxidative stress. The present results provide evidence that physiologically increased HSP levels provide protection against oxidative stress and enhance cytoprotection.
Collapse
Affiliation(s)
- Niku K J Oksala
- Institute of Biomedicine, Department of Physiology, University of Eastern Finland, Kuopio, Finland; Department of Surgery, Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - F Güler Ekmekçi
- Department of Biology, Faculty of Science, University of Hacettepe, Beytepe, Turkey
| | - Ergi Ozsoy
- Department of Biology, Faculty of Science, University of Hacettepe, Beytepe, Turkey
| | - Serife Kirankaya
- Department of Biology, Faculty of Science and Literature, University of Düzce, Düzce, Turkey
| | - Tarja Kokkola
- Institute of Biomedicine, Department of Physiology, University of Eastern Finland, Kuopio, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Güzin Emecen
- Department of Biology, Faculty of Science, University of Hacettepe, Beytepe, Turkey
| | - Jani Lappalainen
- Institute of Biomedicine, Department of Physiology, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, Department of Physiology, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
13
|
Rosa NN, Pekkinen J, Zavala K, Fouret G, Korkmaz A, Feillet-Coudray C, Atalay M, Hanhineva K, Mykkänen H, Poutanen K, Micard V. Impact of wheat aleurone structure on metabolic disorders caused by a high-fat diet in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10101-10109. [PMID: 25238637 DOI: 10.1021/jf503314a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The present study investigated the potential of native and structurally modified wheat aleurone, by dry-grinding or enzymatic treatments, to counteract metabolic disorders in mice with diet-induced obesity (DIO). C57BL6/J mice were first fed ad libitum with a high-fat diet for 9 weeks to induce obesity, after which the native or treated aleurone fractions were added (13% (w/w)) in the high-fat diets for an additional 8 weeks. The effects of the aleurone-enriched diets were evaluated by assessing body weight gain, adiposity, fasting blood glucose, plasma insulin and leptin, and anti-inflammatory and oxidative stress markers. Enrichment of the diet with native or finely ground aleurone did not improve any parameter analyzed; finely ground aleurone even slightly increased (p = 0.03) body weight gain. Enrichment of the diet with enzymatically treated aleurone only had a tendency toward lower body weight gain, visceral adipose tissue accumulation, fasting plasma insulin, and leptin levels.
Collapse
Affiliation(s)
- Natalia Nicole Rosa
- Montpellier SupAgro-INRA-UMII-CIRAD, JRU IATE1208 Agropolymers Engineering and Emerging Technologies , 2 Place Pierre Viala, F-34060 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Venojärvi M, Korkmaz A, Wasenius N, Manderoos S, Heinonen OJ, Lindholm H, Aunola S, Eriksson JG, Atalay M. 12 weeks' aerobic and resistance training without dietary intervention did not influence oxidative stress but aerobic training decreased atherogenic index in middle-aged men with impaired glucose regulation. Food Chem Toxicol 2013; 61:127-35. [PMID: 23623841 DOI: 10.1016/j.fct.2013.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/26/2013] [Accepted: 04/09/2013] [Indexed: 12/17/2022]
Abstract
Our aim was to determine whether 12 weeks' aerobic Nordic walking (NW) or resistance exercise training (RT) without diet-induced weight loss could decrease oxidative stress and atherogenic index of plasma (AIP), prevalence of metabolic syndrome (MetS) and MetS score in middle-aged men with impaired glucose regulation (IGR) (n=144. 54.5 ± 6.5 years). In addition, we compared effects of intervention between overweight and obese subgroups. Prevalence of MetS and AIP index decreased only in NW group and MetS score in both NW and RT groups but not in control group. The changes in AIP index correlated inversely with changes in plasma antioxidant capacity. The change in AIP index remained a significant independent predictor of the changes in MetS score after the model was adjusted for age, BMI and volume of exercise (MET h/week) in NW group. There were no changes in the other measured markers of oxidative stress and related cytokines (e.g. osteopontin and osteoprotegerin) in any of the groups. Nordic walking decreased prevalence of MetS and MetS score. Improved lipid profile remained a predictor of decreased MetS score only in NW group and it seems that Nordic walking has more beneficial effects on cardiovascular disease risks than RT training.
Collapse
Affiliation(s)
- Mika Venojärvi
- Institute of Biomedicine, Exercise Medicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 396] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
16
|
Nikolaidis MG, Kyparos A, Spanou C, Paschalis V, Theodorou AA, Vrabas IS. Redox biology of exercise: an integrative and comparative consideration of some overlooked issues. J Exp Biol 2012; 215:1615-25. [DOI: 10.1242/jeb.067470] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Summary
The central aim of this review is to address the highly multidisciplinary topic of redox biology as related to exercise using an integrative and comparative approach rather than focusing on blood, skeletal muscle or humans. An attempt is also made to re-define ‘oxidative stress’ as well as to introduce the term ‘alterations in redox homeostasis’ to describe changes in redox homeostasis indicating oxidative stress, reductive stress or both. The literature analysis shows that the effects of non-muscle-damaging exercise and muscle-damaging exercise on redox homeostasis are completely different. Non-muscle-damaging exercise induces alterations in redox homeostasis that last a few hours post exercise, whereas muscle-damaging exercise causes alterations in redox homeostasis that may persist for and/or appear several days post exercise. Both exhaustive maximal exercise lasting only 30 s and isometric exercise lasting 1–3 min (the latter activating in addition a small muscle mass) induce systemic oxidative stress. With the necessary modifications, exercise is capable of inducing redox homeostasis alterations in all fluids, cells, tissues and organs studied so far, irrespective of strains and species. More importantly, ‘exercise-induced oxidative stress’ is not an ‘oddity’ associated with a particular type of exercise, tissue or species. Rather, oxidative stress constitutes a ubiquitous fundamental biological response to the alteration of redox homeostasis imposed by exercise. The hormesis concept could provide an interpretative framework to reconcile differences that emerge among studies in the field of exercise redox biology. Integrative and comparative approaches can help determine the interactions of key redox responses at multiple levels of biological organization.
Collapse
Affiliation(s)
- Michalis G. Nikolaidis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Antonios Kyparos
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Chrysoula Spanou
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sports Science, University of Thessaly, Karies, 42100 Trikala, Greece
| | - Anastasios A. Theodorou
- Laboratory of Exercise, Health and Human Performance, Research Center, European University of Cyprus, Nicosia, Cyprus
| | - Ioannis S. Vrabas
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| |
Collapse
|
17
|
Theodorou AA, Nikolaidis MG, Paschalis V, Koutsias S, Panayiotou G, Fatouros IG, Koutedakis Y, Jamurtas AZ. No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training. Am J Clin Nutr 2011; 93:1373-83. [PMID: 21508092 DOI: 10.3945/ajcn.110.009266] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It was recently reported that antioxidant supplementation decreases training efficiency and prevents cellular adaptations to chronic exercise. OBJECTIVE This study aimed to investigate the effects of vitamin C and vitamin E supplementation on muscle performance, blood and muscle redox status biomarkers, and hemolysis in trained and untrained men after acute and chronic exercise. A specific type of exercise was applied (eccentric) to produce long-lasting and extensive changes in redox status biomarkers and to examine more easily the potential effects of antioxidant supplementation. DESIGN In a double-blinded fashion, men received either a daily oral supplement of vitamin C and vitamin E (n = 14) or placebo (n = 14) for 11 wk (started 4 wk before the pretraining exercise testing and continued until the posttraining exercise testing). After baseline testing, the subjects performed an eccentric exercise session 2 times/wk for 4 wk. Before and after the chronic eccentric exercise, the subjects underwent one session of acute eccentric exercise, physiologic measurements were performed, and blood samples and muscle biopsy samples (from 4 men) were collected. RESULTS The results failed to support any effect of antioxidant supplementation. Eccentric exercise similarly modified muscle damage and performance, blood redox status biomarkers, and hemolysis in both the supplemented and nonsupplemented groups. This occurred despite the fact that eccentric exercise induced marked changes in muscle damage and performance and in redox status after exercise. CONCLUSION The complete lack of any effect on the physiologic and biochemical outcome measures used raises questions about the validity of using oral antioxidant supplementation as a redox modulator of muscle and redox status in healthy humans.
Collapse
Affiliation(s)
- Anastasios A Theodorou
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | | | | | | | | | | | | | | |
Collapse
|
18
|
White S, Warren L, Bobel J. Effects of Dietary Selenium Supplementation and Exercise on Antioxidant Enzyme Activity in Equine Blood and Skeletal Muscle. J Equine Vet Sci 2011. [DOI: 10.1016/j.jevs.2011.03.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Click RE. Obesity, longevity, quality of life: alteration by dietary 2-mercaptoethanol. Virulence 2010; 1:509-15. [PMID: 21178502 DOI: 10.4161/viru.1.6.13803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous investigations demonstrated that optimization of murine immunological reactivity in tissue culture required a sulfhydryl compound; the most effective being 2-mercaptoethanol (2-Me). Since these reports, 2-Me was found beneficial for both growth/function of other cell-types in vitro, including those of other species, and when fed orally, it impeded and/or reversed some in situ physiological changes associated with aging. More recently, thiol-containing compounds possessing oxidation-reduction potentials weaker than 2-Me were found to impart beneficial effects for many other, including human, diseases. Based on these effects, the research herein addressed the question: What consequences might dietary 2-Me impart on health and disease of mice other than those associated with aging? The main parameters monitored over the lifetime of individual animals exposed to dietary 10⁻³ M 2-Me in their drinking water were: quality of life (obesity and development of recumbent, emaciated and/or cachectic health); longevity; and appearance of tumors. Instead of anticipated toxic attributes, the following unique benefits were found; mean survival of a moderately-lived strain (A/J) was increased 40.8%, high-fat-diet obesity was curtailed in C57BL/10 mice, and a goal of aging intervention protocols, namely preventing loss of quality of life during aging (recumbent, emaciated and/or cachectic) was achieved. Various mechanisms are discussed as they pertain to these findings.
Collapse
|