1
|
Melo D, Coimbra S, Rocha S, Santos-Silva A. Influence of inhibiting methemoglobin formation on erythrocyte antioxidant defense. Arch Biochem Biophys 2024; 760:110121. [PMID: 39151873 DOI: 10.1016/j.abb.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
We aimed to study the influence of preventing methemoglobin (metHb) formation, in the roles of peroxiredoxin 2 (Prx2), glutathione peroxidase (GPx) and catalase (CAT) on the erythrocyte antioxidant defense system. We performed in vitro assays using healthy erythrocytes, with and without inhibition of autoxidation of Hb (saturation with carbon monoxide), followed by H2O2-induced oxidative stress. We assessed the enzyme activities and amounts of CAT, GPx and Prx2 in the red blood cell (RBC) cytosol and membrane and several biomarkers of oxidative stress, such as the reduced and oxidized glutathione levels, thiobarbituric acid reactive substances (TBARS) levels, membrane bound hemoglobin and total antioxidant status. When autoxidation of Hb was inhibited, no significant changes were found for GPx and CAT; Prx2 was observed only in the monomeric form in the cytosol and none bound to the membrane. Blocking the function of Hb as a pseudo-peroxidase does not seem to have an impact on the function of the RBC peroxidases.
Collapse
Affiliation(s)
- Daniela Melo
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n ° 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n ° 228, 4050-313, Porto, Portugal
| | - Susana Coimbra
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n ° 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n ° 228, 4050-313, Porto, Portugal; 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Avenida Central de Gandra, nº 1317, 4585-116, Gandra, Portugal.
| | - Susana Rocha
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n ° 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n ° 228, 4050-313, Porto, Portugal.
| | - Alice Santos-Silva
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n ° 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n ° 228, 4050-313, Porto, Portugal
| |
Collapse
|
2
|
Melo D, Ferreira F, Teles MJ, Porto G, Coimbra S, Rocha S, Santos-Silva A. Catalase, Glutathione Peroxidase, and Peroxiredoxin 2 in Erythrocyte Cytosol and Membrane in Hereditary Spherocytosis, Sickle Cell Disease, and β-Thalassemia. Antioxidants (Basel) 2024; 13:629. [PMID: 38929068 PMCID: PMC11201268 DOI: 10.3390/antiox13060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (Prx2) can counteract the deleterious effects of oxidative stress (OS). Their binding to the red blood cell (RBC) membrane has been reported in non-immune hemolytic anemias (NIHAs). Our aim was to evaluate the relationships between CAT, GPx, and Prx2, focusing on their role at the RBC membrane, in hereditary spherocytosis (HS), sickle cell disease (SCD), β-thalassemia (β-thal), and healthy individuals. The studies were performed in plasma and in the RBC cytosol and membrane, evaluating OS biomarkers and the enzymatic activities and/or the amounts of CAT, GPx, and Prx2. The binding of the enzymes to the membrane appears to be the primary protective mechanism against oxidative membrane injuries in healthy RBCs. In HS (unsplenectomized) and β-thal, translocation from the cytosol to the membrane of CAT and Prx2, respectively, was observed, probably to counteract lipid peroxidation. RBCs from splenectomized HS patients showed the highest membrane-bound hemoglobin, CAT, and GPx amounts in the membrane. SCD patients presented the lowest amount of enzyme linkage, possibly due to structural changes induced by sickle hemoglobin. The OS-induced changes and antioxidant response were different between the studied NIHAs and may contribute to the different clinical patterns in these patients.
Collapse
Affiliation(s)
- Daniela Melo
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Fátima Ferreira
- Hematology Service, Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal;
| | - Maria José Teles
- Laboratory Hematology Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
- Imuno-Hemotherapy Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
| | - Graça Porto
- Imuno-Hemotherapy Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
- Center for Predictive and Preventive Genetics (CGPP), Institute for Molecular and Cellular Biology (CGPP/IBMC), 4200-135 Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Susana Coimbra
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
- 1H-TOXRUN–One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Susana Rocha
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| |
Collapse
|
3
|
de Paula CP, de Oliveira da Silva JPM, Romanello KS, Bernardo VS, Torres FF, da Silva DGH, da Cunha AF. Peroxiredoxins in erythrocytes: far beyond the antioxidant role. J Mol Med (Berl) 2023; 101:1335-1353. [PMID: 37728644 DOI: 10.1007/s00109-023-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The red blood cells (RBCs) are essential to transport oxygen (O2) and nutrients throughout the human body. Changes in the structure or functioning of the erythrocytes can lead to several deficiencies, such as hemolytic anemias, in which an increase in reactive oxidative species generation is involved in the pathophysiological process, playing a significant role in the severity of several clinical manifestations. There are important lines of defense against the damage caused by oxidizing molecules. Among the antioxidant molecules, the enzyme peroxiredoxin (Prx) has the higher decomposition power of hydrogen peroxide, especially in RBCs, standing out because of its abundance. This review aimed to present the recent findings that broke some paradigms regarding the three isoforms of Prxs found in RBC (Prx1, Prx2, and Prx6), showing that in addition to their antioxidant activity, these enzymes may have supplementary roles in transducing peroxide signals, as molecular chaperones, protecting from membrane damage, and maintenance of iron homeostasis, thus contributing to the overall survival of human RBCs, roles that seen to be disrupted in hemolytic anemia conditions.
Collapse
Affiliation(s)
- Carla Peres de Paula
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
- Biotechnology Graduate Program, Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| | - João Pedro Maia de Oliveira da Silva
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | - Karen Simone Romanello
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Paulista State University, São Paulo, Brazil
- Federal University of Mato Grosso do Sul, Campus de Três Lagoas, Três Lagoas, Mato Grosso do Sul, Brazil
| | - Anderson Ferreira da Cunha
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
4
|
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, Ostuni MA. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023; 13:1262. [PMID: 37627327 PMCID: PMC10452114 DOI: 10.3390/biom13081262] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Red cell diseases encompass a group of inherited or acquired erythrocyte disorders that affect the structure, function, or production of red blood cells (RBCs). These disorders can lead to various clinical manifestations, including anemia, hemolysis, inflammation, and impaired oxygen-carrying capacity. Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, plays a significant role in the pathophysiology of red cell diseases. In this review, we discuss the most relevant oxidant species involved in RBC damage, the enzymatic and low molecular weight antioxidant systems that protect RBCs against oxidative injury, and finally, the role of oxidative stress in different red cell diseases, including sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, and pyruvate kinase deficiency, highlighting the underlying mechanisms leading to pathological RBC phenotypes.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sandrine Laurance
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Ana C. Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sophie D. Lefevre
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Matias N. Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Mariano A. Ostuni
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| |
Collapse
|
5
|
Sadowska-Bartosz I, Bartosz G. Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte. Antioxidants (Basel) 2023; 12:antiox12051012. [PMID: 37237878 DOI: 10.3390/antiox12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| |
Collapse
|
6
|
Melo D, Coimbra S, Rocha S, Santos-Silva A. Inhibition of erythrocyte's catalase, glutathione peroxidase or peroxiredoxin 2 - Impact on cytosol and membrane. Arch Biochem Biophys 2023; 739:109569. [PMID: 36918042 DOI: 10.1016/j.abb.2023.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Catalase (CAT), glutathione peroxidase (GPx) and Prx2 (peroxiredoxin 2) are the main antioxidant enzymatic defenses of erythrocytes. They prevent and minimize oxidative injuries in red blood cell (RBC) components, which are continuously exposed to oxidative stress (OS). The crosstalk between CAT, GPx and Prx2 is still not fully disclosed, as well as why these typically cytoplasmic enzymes bind to the RBC membrane. Our aim was to understand the interplay between CAT, GPx and Prx2 in the erythrocyte's cytosol and membrane. Under specific (partial) inhibition of each enzyme and increasing H2O2-induced OS conditions, we evaluated the enzyme activities and amounts, the binding of CAT, GPx and Prx2 to RBC membrane, and biomarkers of OS, such as the reduced and oxidized glutathione levels, thiobarbituric acid reactive substances (TBARS) levels, membrane bound hemoglobin and total antioxidant status. Our results support the hypothesis that when high levels of H2O2 get within the erythrocyte, CAT is the main player in the antioxidant protection of the cell, while Prx2 and GPx have a less striking role. Moreover, we found that CAT, appears to have more importance in the antioxidant protection of cytoplasm than of the membrane components, since when the activity of CAT is disturbed, GPx and Prx2 are both activated in the cytosol and mobilized to the membrane. In more severe OS conditions, the antioxidant activity of GPx is more significant at the membrane, as we found that GPx moves from the cytosol to the membrane, probably to protect it from lipid peroxidation.
Collapse
Affiliation(s)
- Daniela Melo
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Susana Coimbra
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; TOXRUN- Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| | - Susana Rocha
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Alice Santos-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
7
|
Anastasiadi AT, Stamoulis K, Papageorgiou EG, Lelli V, Rinalducci S, Papassideri IS, Kriebardis AG, Antonelou MH, Tzounakas VL. The time-course linkage between hemolysis, redox, and metabolic parameters during red blood cell storage with or without uric acid and ascorbic acid supplementation. FRONTIERS IN AGING 2023; 4:1161565. [PMID: 37025499 PMCID: PMC10072267 DOI: 10.3389/fragi.2023.1161565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
Oxidative phenomena are considered to lie at the root of the accelerated senescence observed in red blood cells (RBCs) stored under standard blood bank conditions. It was recently shown that the addition of uric (UA) and/or ascorbic acid (AA) to the preservative medium beneficially impacts the storability features of RBCs related to the handling of pro-oxidant triggers. This study constitutes the next step, aiming to examine the links between hemolysis, redox, and metabolic parameters in control and supplemented RBC units of different storage times. For this purpose, a paired correlation analysis of physiological and metabolism parameters was performed between early, middle, and late storage in each subgroup. Strong and repeated correlations were observed throughout storage in most hemolysis parameters, as well as in reactive oxygen species (ROS) and lipid peroxidation, suggesting that these features constitute donor-signatures, unaffected by the diverse storage solutions. Moreover, during storage, a general "dialogue" was observed between parameters of the same category (e.g., cell fragilities and hemolysis or lipid peroxidation and ROS), highlighting their interdependence. In all groups, extracellular antioxidant capacity, proteasomal activity, and glutathione precursors of preceding time points anticorrelated with oxidative stress lesions of upcoming ones. In the case of supplemented units, factors responsible for glutathione synthesis varied proportionally to the levels of glutathione itself. The current findings support that UA and AA addition reroutes the metabolism to induce glutathione production, and additionally provide mechanistic insight and footing to examine novel storage optimization strategies.
Collapse
Affiliation(s)
- Alkmini T. Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Veronica Lelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
- *Correspondence: Vassilis L. Tzounakas,
| |
Collapse
|
8
|
Anastasiadi AT, Tzounakas VL, Dzieciatkowska M, Arvaniti VZ, Papageorgiou EG, Papassideri IS, Stamoulis K, D'Alessandro A, Kriebardis AG, Antonelou MH. Innate Variability in Physiological and Omics Aspects of the Beta Thalassemia Trait-Specific Donor Variation Effects. Front Physiol 2022; 13:907444. [PMID: 35755442 PMCID: PMC9214579 DOI: 10.3389/fphys.2022.907444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The broad spectrum of beta-thalassemia (βThal) mutations may result in mild reduction (β ++), severe reduction (β +) or complete absence (β 0) of beta-globin synthesis. βThal heterozygotes eligible for blood donation are "good storers" in terms of red blood cell (RBC) fragility, proteostasis and redox parameters of storage lesion. However, it has not been examined if heterogeneity in genetic backgrounds among βThal-trait donors affects their RBC storability profile. For this purpose, a paired analysis of physiological and omics parameters was performed in freshly drawn blood and CPD/SAGM-stored RBCs donated by eligible volunteers of β ++ (N = 4), β + (N = 9) and β 0 (N = 2) mutation-based phenotypes. Compared to β +, β ++ RBCs were characterized by significantly lower RDW and HbA2 but higher hematocrit, MCV and NADPH levels in vivo. Moreover, they had lower levels of reactive oxygen species and markers of oxidative stress, already from baseline. Interestingly, their lower myosin and arginase membrane levels were accompanied by increased cellular fragility and arginine values. Proteostasis markers (proteasomal activity and/or chaperoning-protein membrane-binding) seem to be also diminished in β ++ as opposed to the other two phenotypic groups. Overall, despite the low number of samples in the sub-cohorts, it seems that the second level of genetic variability among the group of βThal-trait donors is reflected not only in the physiological features of RBCs in vivo, but almost equally in their storability profiles. Mutations that only slightly affect the globin chain equilibrium direct RBCs towards phenotypes closer to the average control, at least in terms of fragility indices and proteostatic dynamics.
Collapse
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
9
|
Dotsenko OI, Mischenko АМ, Taradina GV. Vibration influence on the O2-dependent processes activity in human erythrocytes. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The early signs of vibration effects on the human body are microcirculation and transcapillary metabolism disorders, accompanied by disruption of the supply to and utilization of oxygen in the tissues and organs. However, there are few experimental studies aimed at finding targets of vibration in cells and determining the action mechanism of vibration. In in vitro experiments, human erythrocytes in buffer solution were exposed to low-frequency vibration (frequency range 8–32 Hz, amplitudes 0.5–0.9 mm) for 3 hours. The dynamics of the accumulation of membrane-bound catalase and hemoglobin and the distribution of ligand hemoglobin in the membrane-bound fraction were studied as the indicators of functional activity of cells. The choice of these indicators is justified by the participation of catalase and hemoglobin in O2-dependent cellular reactions as a part of protein complexes. Since pО2 is a trigger of conformational transitions in the hemoglobin molecule, simultaneously with oxygen transport, hemoglobin signals to different metabolic systems about oxygen conditions in the environment. The studies revealed that in the conditions of vibration, the activity of membrane-associated catalase increased by 40–50% in the frequency range of 12–24 Hz (amplitude 0.5 ± 0.04 mm), by 20–30% in the amplitude of 0.9 mm, but after about 100–120 min exposure the enzyme activity decreased even below the control level. There was a dose-dependent accumulation of membrane-bound hemoglobin during exposure to vibration. In the membrane-bound fraction of hemoglobin, oxyhemoglobin had the highest content (60–80%), while the content of methemoglobin varied 5–20%. During vibrations in the frequency range 12–28 Hz, 0.5 mm, we recorded 10–30% increase in oxyhemoglobin. With increase in the vibration amplitude (0.9 mm) in the frequency range of 16–32 Hz, constant content of oxyhemoglobin was noted at the beginning of the experiment, which tended to decrease during the last exposure time. Frequency of 32 Hz caused increase in the deoxyhemoglobin content in the membrane-bound fraction. The content of methemoglobin (metHb) in erythrocytes significantly increased during exposure to the frequency range of 12–24 Hz, with the amplitude of 0.5 mm (1.3–2.4 times). During the exposure to frequencies of 28 and 32 Hz, we observed the transition of methemoglobin to hemichrome. The content of methemoglobin in the cells was lower and decreased at the end of the experiment when the vibration amplitude was 0.9 mm. In these experimental conditions, no increase in hemichrome content in the membrane-bound fraction was recorded. Therefore, the degree of binding of catalase and hemoglobin with the membrane of erythrocytes that were exposed to vibration and the changes in the content of ligand forms in the composition of membrane-bound hemoglobin are dose-dependent. Low-frequency vibration initiates O2-dependent processes in erythrocytes. Targets of such an influence are nanobubbles of dissolved air (babstons), retained on the surface of erythrocytes due to Coulomb interactions, capable of coagulation and increase in size under the action of vibration. At first, the consequences of these processes are increase in oxygen content in the surface of erythrocytes, and then decrease as a result of degassing. Thus, increase in oxygen content on the surface initiates redox reactions, whereas decrease in oxygen content leads to reconstruction of metabolic processes oriented at overcoming hypoxia.
Collapse
|
10
|
Specificity of Human Sulfiredoxin for Reductant and Peroxiredoxin Oligomeric State. Antioxidants (Basel) 2021; 10:antiox10060946. [PMID: 34208049 PMCID: PMC8230665 DOI: 10.3390/antiox10060946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
Human peroxiredoxins (Prx) are a family of antioxidant enzymes involved in a myriad of cellular functions and diseases. During the reaction with peroxides (e.g., H2O2), the typical 2-Cys Prxs change oligomeric structure between higher order (do)decamers and disulfide-linked dimers, with the hyperoxidized inactive state (-SO2H) favoring the multimeric structure of the reduced enzyme. Here, we present a study on the structural requirements for the repair of hyperoxidized 2-Cys Prxs by human sulfiredoxin (Srx) and the relative efficacy of physiological reductants hydrogen sulfide (H2S) and glutathione (GSH) in this reaction. The crystal structure of the toroidal Prx1-Srx complex shows an extended active site interface. The loss of this interface within engineered Prx2 and Prx3 dimers yielded variants more resistant to hyperoxidation and repair by Srx. Finally, we reveal for the first time Prx isoform-dependent use of and potential cooperation between GSH and H2S in supporting Srx activity.
Collapse
|
11
|
Pearson AG, Pullar JM, Cook J, Spencer ES, Vissers MC, Carr AC, Hampton MB. Peroxiredoxin 2 oxidation reveals hydrogen peroxide generation within erythrocytes during high-dose vitamin C administration. Redox Biol 2021; 43:101980. [PMID: 33905956 PMCID: PMC8099772 DOI: 10.1016/j.redox.2021.101980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Intravenous infusion of high dose (>10 g) vitamin C (IVC) is a common alternative cancer therapy. IVC results in millimolar levels of circulating ascorbate, which is proposed to generate cytotoxic quantities of H2O2 in the presence of transition metal ions. In this study we report on the in vitro and in vivo effects of millimolar ascorbate on erythrocytes. Addition of ascorbate to whole blood increased erythrocyte intracellular ascorbate approximately 35-fold. Within 10 min of ascorbate addition, we detected increased oxidation of erythrocyte peroxiredoxin 2 (Prx2), a major thiol antioxidant protein and a sensitive marker of H2O2 production. Up to 50% of Prx2 was present in the oxidised form after 60 min. The presence of extracellular catalase, removal of plasma or the addition of a metal chelator did not prevent ascorbate-induced Prx2 oxidation, suggesting that the H2O2 responsible for Prx2 oxidation was generated within the erythrocyte. Ascorbate is known to increase the rate of haemoglobin autoxidation and H2O2 production. Through spectral monitoring of oxidised haemoglobin we estimated a generation rate of 15 μM H2O2/min inside erythrocytes. We also investigated changes in erythrocyte ascorbate concentration and Prx2 oxidation following IVC infusion in a cohort of patients with cancer. Plasma ascorbate levels ranged from 7.8 to 35 mM immediately post infusion, while erythrocyte ascorbate levels reached 1.5–3.4 mM 4 h after beginning infusion. Transient oxidation of erythrocyte Prx2 was observed. We conclude that erythrocytes accumulate ascorbate during IVC infusion, providing a significant reservoir of ascorbate, and this ascorbate increases H2O2 generation within the cells. The consequence of increased erythrocyte Prx2 oxidation warrants further investigation.
Collapse
Affiliation(s)
- Andree G Pearson
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Juliet M Pullar
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John Cook
- New Brighton Health Care, Christchurch, New Zealand
| | - Emma S Spencer
- Nutrition in Medicine Research Group, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Margreet Cm Vissers
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
12
|
Fujii J, Homma T, Kobayashi S, Warang P, Madkaikar M, Mukherjee MB. Erythrocytes as a preferential target of oxidative stress in blood. Free Radic Res 2021; 55:562-580. [PMID: 33427524 DOI: 10.1080/10715762.2021.1873318] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Red blood cells (RBC) are specifically differentiated to transport oxygen and carbon dioxide in the blood and they lack most organelles, including mitochondria. The autoxidation of hemoglobin constitutes a major source of reactive oxygen species (ROS). Nitric oxide, which is produced by endothelial nitric oxide synthase (NOS3) or via the hemoglobin-mediated conversion of nitrite, interacts with ROS and results in the production of reactive nitrogen oxide species. Herein we present an overview of anemic diseases that are closely related to oxidative damage. Because the compensation of proteins by means of gene expression does not proceed in enucleated cells, antioxidative and redox systems play more important roles in maintaining the homeostasis of RBC against oxidative insult compared to ordinary cells. Defects in hemoglobin and enzymes that are involved in energy production and redox reactions largely trigger oxidative damage to RBC. The results of studies using genetically modified mice suggest that antioxidative enzymes, notably superoxide dismutase 1 and peroxiredoxin 2, play essential roles in coping with oxidative damage in erythroid cells, and their absence limits erythropoiesis, the life-span of RBC and consequently results in the development of anemia. The degeneration of the machinery involved in the proteolytic removal of damaged proteins appears to be associated with hemolytic events. The ubiquitin-proteasome system is the dominant machinery, not only for the proteolytic removal of damaged proteins in erythroid cells but also for the development of erythropoiesis. Hence, despite the fact that it is less abundant in RBC compared to ordinary cells, the aberrant ubiquitin-proteasome system may be associated with the development of anemic diseases via the accumulation of damaged proteins, as typified in sickle cell disease, and impaired erythropoiesis.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Prashant Warang
- ICMR - National Institute of Immunohaematology, Mumbai, India
| | | | | |
Collapse
|
13
|
Li H, Yang H, Wang D, Zhang L, Ma T. Peroxiredoxin2 (Prdx2) Reduces Oxidative Stress and Apoptosis of Myocardial Cells Induced by Acute Myocardial Infarction by Inhibiting the TLR4/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2020; 26:e926281. [PMID: 33268762 PMCID: PMC7722772 DOI: 10.12659/msm.926281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/07/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Peroxiredoxin2 (Prdx2) is an endogenous peroxidase and has been found to reduce the oxidative burden in cells and thereby reduce cell damage and apoptosis. Therefore, the purpose of this study was to investigate the effect of Prdx2 on the oxidative level and apoptosis of myocardial cells after acute myocardial infarction (AMI). MATERIAL AND METHODS We constructed an AMI model for Sprague-Dawley rats by ligating the left anterior descending coronary artery. We determined the effect of Prdx2 on AMI by detecting changes in Prdx2 in myocardial tissue via western blot and qRT-PCR. In addition, we used recombinant Prdx2 protein to treat rats and detect changes in oxidative stress and apoptosis in rat myocardial tissue to verify the protective effect of Prdx2 on the rat heart. RESULTS The protein and mRNA expression of Prdx2 in myocardial tissue of rats in the AMI group was significantly lower than that in the control group. The oxidative and apoptotic levels of myocardial tissue in Prdx2-administered rats were significantly improved compared to the non-administered group, which was manifested by a decrease in reactive oxygen species (ROS) levels and a decrease in the expression of the caspase family. In addition, Prdx2 also inhibited p65 phosphorylation in myocardial tissues and inhibited TLR4/NF-kappaB signaling pathway activity. CONCLUSIONS The expression of Prdx2 was decreased in myocardial tissue after AMI. Prdx2 can reduce apoptosis and ROS caused by AMI by inhibiting the TLR4/NF-kB signaling pathway, thereby reducing myocardial injury caused by AMI.
Collapse
|
14
|
Malik U, Zafar S, Younas N, Zerr I, Javed A. Unveiling the Physical and Functional Niches of FAM26F by Analyzing Its Subcellular Localization and Novel Interacting Partners. ACS OMEGA 2020; 5:22008-22020. [PMID: 32923759 PMCID: PMC7482079 DOI: 10.1021/acsomega.0c01249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The knowledge of a protein's subcellular localization and interacting partners are crucial for elucidating its cellular function and associated regulatory networks. Although FAM26F (family with sequence similarity 26, member F) has been recognized as a vital player in various infections, stimulation studies, cancer, and immune pathogenesis, the precise location and function of FAM26F are not well understood. The current study is the first to focus on functional characterization of FAM26F by analyzing its subcellular localization and identifying its novel interacting partners using advanced proteome approaches. The immunofluorescence and confocal microscopy results revealed FAM26F to be largely localized within the Golgi apparatus of the cell. However, its minor presence in endoplasmic reticulum (ER) pointed toward the probable retrograde transfer of FAM26F from Golgi to ER during adverse conditions. Moreover, co-immunoprecipitation and MS/MS results demonstrated a total of 85 proteins, 44 of which significantly copurified with FAM26F. Interestingly, out of these 44 MS/MS identified proteins, almost 52% were involved in innate immunity, 38.6% in neutrophil degranulation, and remaining 10% were either involved in phosphorylation, degradation, or regulation of apoptosis. Further characterization through Ingenuity Pathway Analysis showed that majority of these proteins was involved in maintaining calcium homeostasis of cell. Consequently, the validation of selected proteins uncovered the key interaction of FAM26F with Thioredoxin, which essentially paved the way for depicting its mechanism of action under stress or disease conditions. It is proposed that activation and inhibition of the cellular immune response is essentially dependent on whether FAM26F or Thioredoxin considerably interact with CD30R.
Collapse
Affiliation(s)
- Uzma Malik
- Department
of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences
(ASAB), National University of Sciences
and Technology (NUST), H-12 Campus, 44000 Islamabad, Pakistan
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | - Saima Zafar
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
- Department
of Biomedical Engineering & Sciences, School of Mechanical &
Manufacturing Engineering (SMME), National
University of Sciences and Technology (NUST), H-12
Campus, 44000 Islamabad, Pakistan
| | - Neelam Younas
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | - Inga Zerr
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | - Aneela Javed
- Department
of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences
(ASAB), National University of Sciences
and Technology (NUST), H-12 Campus, 44000 Islamabad, Pakistan
| |
Collapse
|
15
|
Dotsenko OI, Mykutska IV, Taradina GV, Boiarska ZO. Potential role of cytoplasmic protein binding to erythrocyte membrane in counteracting oxidative and metabolic stress. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The ability of protein to reversibly bind with membrane components is considered to be one of the oldest mechanisms of cell response to external stimuli. Erythrocytes have a well-developed mechanism of an adaptive response involving sorption-desorption processes, e.g. interactions of key glycolytic enzymes and hemoglobin with band 3 protein. A few publications have shown that under oxidative stress, cytoplasmic enzymes such as catalase, glutathione peroxidase and рeroxiredoxin bind to the erythrocyte membrane. The present work is a continuation of research in this direction to determine the causes and consequences of the interaction of cytoplasmic proteins with the membrane under conditions of oxidative stress and different glucose content. Human erythrocytes were incubated for five hours at 20 °C in an oxidizing medium of AscH – 1 · 10–4 M, Cu2+– 5 · 10–6 M with different glucose content (0–8 mM). Dynamic changes in the accumulation of membrane-bound hemoglobin, the distribution of ligand forms of hemoglobin in the cytoplasmic and membrane-bound fractions, the activity of membrane-associated and cytoplasmic forms of Cu/Zn superoxide dismutase (SOD1) and catalase, H2O2 content in extracellular and intracellular media were recorded. It was shown that binding of catalase and SOD1 to the erythrocyte membrane is initiated by oxidative stress and is a physiological function aimed at complete inactivation of extracellular and H2O2 and protection against their entry into the cell. It was shown that under conditions of glucose depletion and oxidative loading, catalase and SOD1 bind to the erythrocyte membrane, leading to inactivation of these enzymes. Membrane-bound hemoglobin was higher in cells incubated under these conditions than in glucose experiments. Glucose introduced into the incubation medium in an amount 4–8 mM causes complete binding of SOD1 to the membrane of erythrocytes, by involving it in the processes of casein kinase stabilization and glycolytic fluxes regulation. With mild oxidation, the amount of hemoglobin bound to the membrane does not change, indicating the presence of certain binding sites for hemoglobin with membrane proteins. We show that the activity of membrane-bound SOD1 along with the content of ligand forms in the composition of membrane-bound hemoglobin are informative indicators of the metabolic and redox state of erythrocytes.
Collapse
|
16
|
Tsamesidis I, Reybier K, Marchetti G, Pau MC, Virdis P, Fozza C, Nepveu F, Low PS, Turrini FM, Pantaleo A. Syk Kinase Inhibitors Synergize with Artemisinins by Enhancing Oxidative Stress in Plasmodium falciparum-Parasitized Erythrocytes. Antioxidants (Basel) 2020; 9:antiox9080753. [PMID: 32824055 PMCID: PMC7464437 DOI: 10.3390/antiox9080753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Although artemisinin-based combination therapies (ACTs) treat Plasmodium falciparum malaria effectively throughout most of the world, the recent expansion of ACT-resistant strains in some countries of the Greater Mekong Subregion (GMS) further increased the interest in improving the effectiveness of treatment and counteracting resistance. Recognizing that (1) partially denatured hemoglobin containing reactive iron (hemichromes) is generated in parasitized red blood cells (pRBC) by oxidative stress, (2) redox-active hemichromes have the potential to enhance oxidative stress triggered by the parasite and the activation of artemisinin to its pharmaceutically active form, and (3) Syk kinase inhibitors block the release of membrane microparticles containing hemichromes, we hypothesized that increasing hemichrome content in parasitized erythrocytes through the inhibition of Syk kinase might trigger a virtuous cycle involving the activation of artemisinin, the enhancement of oxidative stress elicited by activated artemisinin, and a further increase in hemichrome production. We demonstrate here that artemisinin indeed augments oxidative stress within parasitized RBCs and that Syk kinase inhibitors further increase iron-dependent oxidative stress, synergizing with artemisinin in killing the parasite. We then demonstrate that Syk kinase inhibitors achieve this oxidative enhancement by preventing parasite-induced release of erythrocyte-derived microparticles containing redox-active hemichromes. We also observe that Syk kinase inhibitors do not promote oxidative toxicity to healthy RBCs as they do not produce appreciable amounts of hemichromes. Since some Syk kinase inhibitors can be taken daily with minimal side effects, we propose that Syk kinase inhibitors could evidently contribute to the potentiation of ACTs.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Karine Reybier
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Giuseppe Marchetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
| | - Maria Carmina Pau
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
| | - Patrizia Virdis
- Department of Clinical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (C.F.)
| | - Claudio Fozza
- Department of Clinical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (C.F.)
| | - Francoise Nepveu
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Philip S. Low
- Purdue Institute for Drug Discovery and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA;
| | | | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
- Correspondence:
| |
Collapse
|
17
|
Comparative Study of Protective Action of Exogenous 2-Cys Peroxiredoxins (Prx1 and Prx2) Under Renal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2020; 9:antiox9080680. [PMID: 32751232 PMCID: PMC7465264 DOI: 10.3390/antiox9080680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of ischemia-reperfusion (I/R) injuries is based on oxidative stress caused by a sharp increase in the concentration of free radicals, reactive oxygen species (ROS) and secondary products of free radical oxidation of biological macromolecules during reperfusion. Application of exogenous antioxidants lowers the level of ROS in the affected tissues, suppresses or adjusts the course of oxidative stress, thereby substantially reducing the severity of I/R injury. We believe that the use of antioxidant enzymes may be the most promising line of effort since they possess higher efficiency than low molecular weight antioxidants. Among antioxidant enzymes, of great interest are peroxiredoxins (Prx1–6) which reduce a wide range of organic and inorganic peroxide substrates. In an animal model of bilateral I/R injury of kidneys (using histological, biochemical, and molecular biological methods) it was shown that intravenous administration of recombinant typical 2-Cys peroxiredoxins (Prx1 and Prx2) effectively reduces the severity of I/R damage, contributing to the normalization of the structural and functional state of the kidneys and an almost 2-fold increase in the survival of experimental animals. The use of recombinant Prx1 or Prx2 can be an efficient approach for the prevention and treatment of renal I/R injury.
Collapse
|
18
|
Chaves NA, Alegria TGP, Dantas LS, Netto LES, Miyamoto S, Bonini Domingos CR, da Silva DGH. Impaired antioxidant capacity causes a disruption of metabolic homeostasis in sickle erythrocytes. Free Radic Biol Med 2019; 141:34-46. [PMID: 31163255 DOI: 10.1016/j.freeradbiomed.2019.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
This study examined particularly relevant redox pathways such as glycolysis, pentose phosphate pathway (PPP), metHb reductase and nucleotide metabolism, in order to better address how sickle cells deal with redox metabolism disruption. We also investigated the generation of specific oxidative lesions, and the levels of an unexplored antioxidant that could act as a candidate biomarker for oxidative status in sickle cell anemia (SCA). We adopted rigorous exclusion criteria to obtain the studied groups, which were composed by 10 subjects without hemoglobinopathies and 10 SCA patients. We confirmed that sickle cells overwhelm the antioxidant defense system, leading to an impaired antioxidant capacity that significantly contributed to the increase in cholesterol oxidation (ChAld) and hemolysis. Among the antioxidants evaluated, ergothioneine levels decreased in SCA (two-fold). We found strong correlations of ergothioneine levels with other erythrocyte metabolism markers, suggesting its use as an antioxidant therapy alternative for SCA treatment. Moreover, we found higher activities of MetHb reductase, AChE, G6PDH, HXK, and LDH, as well as levels of NADPH, ATP and hypoxanthine in sickle cells. On this basis, we conclude that impaired antioxidant capacity leaves to a loss of glycolysis and PPP shifting mechanism control and further homeostasis rupture, contributing to a decreased lifespan of sickle cells.
Collapse
Affiliation(s)
| | - Thiago Geronimo Pires Alegria
- USP - University of Sao Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, Sao Paulo, Brazil
| | - Lucas Souza Dantas
- USP - University of Sao Paulo, Institute of Chemistry, Department of Biochemistry, Sao Paulo, Brazil
| | - Luis Eduardo Soares Netto
- USP - University of Sao Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, Sao Paulo, Brazil
| | - Sayuri Miyamoto
- USP - University of Sao Paulo, Institute of Chemistry, Department of Biochemistry, Sao Paulo, Brazil
| | | | | |
Collapse
|
19
|
Kosmachevskaya OV, Nasybullina EI, Blindar VN, Topunov AF. Binding of Erythrocyte Hemoglobin to the Membrane to Realize Signal-Regulatory Function (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819020091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Forshaw TE, Holmila R, Nelson KJ, Lewis JE, Kemp ML, Tsang AW, Poole LB, Lowther WT, Furdui CM. Peroxiredoxins in Cancer and Response to Radiation Therapies. Antioxidants (Basel) 2019; 8:antiox8010011. [PMID: 30609657 PMCID: PMC6356878 DOI: 10.3390/antiox8010011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins have a long-established cellular function as regulators of redox metabolism by catalyzing the reduction of peroxides (e.g., H2O2, lipid peroxides) with high catalytic efficiency. This activity is also critical to the initiation and relay of both phosphorylation and redox signaling in a broad range of pathophysiological contexts. Under normal physiological conditions, peroxiredoxins protect normal cells from oxidative damage that could promote oncogenesis (e.g., environmental stressors). In cancer, higher expression level of peroxiredoxins has been associated with both tumor growth and resistance to radiation therapies. However, this relationship between the expression of peroxiredoxins and the response to radiation is not evident from an analysis of data in The Cancer Genome Atlas (TCGA) or NCI60 panel of cancer cell lines. The focus of this review is to summarize the current experimental knowledge implicating this class of proteins in cancer, and to provide a perspective on the value of targeting peroxiredoxins in the management of cancer. Potential biases in the analysis of the TCGA data with respect to radiation resistance are also highlighted.
Collapse
Affiliation(s)
- Tom E Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Reetta Holmila
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Joshua E Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - W Todd Lowther
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
21
|
Romanello KS, Teixeira KKL, Silva JPMO, Nagamatsu ST, Bezerra MAC, Domingos IF, Martins DAP, Araujo AS, Lanaro C, Breyer CA, Ferreira RA, Franco-Penteado C, Costa FF, Malavazi I, Netto LES, de Oliveira MA, Cunha AF. Global analysis of erythroid cells redox status reveals the involvement of Prdx1 and Prdx2 in the severity of beta thalassemia. PLoS One 2018; 13:e0208316. [PMID: 30521599 PMCID: PMC6283586 DOI: 10.1371/journal.pone.0208316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/15/2018] [Indexed: 12/30/2022] Open
Abstract
β-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by an absent or reduced beta globin chain synthesis. The unbalance of alpha-gamma chain and the presence of pathological free iron promote severe oxidative damage, playing crucial a role in erythrocyte hemolysis, exacerbating ineffective erythropoiesis and decreasing the lifespan of red blood cells (RBC). Catalase, glutathione peroxidase and peroxiredoxins act together to protect RBCs from hydrogen peroxide insult. Among them, peroxiredoxins stand out for their overall abundance and reactivity. In RBCs, Prdx2 is the third most abundant protein, although Prdxs 1 and 6 isoforms are also found in lower amounts. Despite the importance of these enzymes, Prdx1 and Prdx2 may have their peroxidase activity inactivated by hyperoxidation at high hydroperoxide concentrations, which also promotes the molecular chaperone activity of these proteins. Some studies have demonstrated the importance of Prdx1 and Prdx2 for the development and maintenance of erythrocytes in hemolytic anemia. Now, we performed a global analysis comparatively evaluating the expression profile of several antioxidant enzymes and their physiological reducing agents in patients with beta thalassemia intermedia (BTI) and healthy individuals. Furthermore, increased levels of ROS were observed not only in RBC, but also in neutrophils and mononuclear cells of BTI patients. The level of transcripts and the protein content of Prx1 were increased in reticulocyte and RBCs of BTI patients and the protein content was also found to be higher when compared to beta thalassemia major (BTM), suggesting that this peroxidase could cooperate with Prx2 in the removal of H2O2. Furthermore, Prdx2 production is highly increased in RBCs of BTM patients that present high amounts of hyperoxidized species. A significant increase in the content of Trx1, Srx1 and Sod1 in RBCs of BTI patients suggested protective roles for these enzymes in BTI patients. Finally, the upregulation of Nrf2 and Keap1 transcription factors found in BTI patients may be involved in the regulation of the antioxidant enzymes analyzed in this work.
Collapse
Affiliation(s)
- Karen S. Romanello
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, São Carlos, Brazil
| | - Karina K. L. Teixeira
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, São Carlos, Brazil
| | - João Pedro M. O. Silva
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, São Carlos, Brazil
| | - Sheila T. Nagamatsu
- Universidade de Campinas (UNICAMP), Departamento de Genética, Evolução e Bioagentes, Campinas, Brazil
| | | | - Igor F. Domingos
- Universidade Federal de Pernambuco (UFPE), Departamento de Genética, Pernambuco, Brazil
| | - Diego A. P. Martins
- Universidade Federal de Pernambuco (UFPE), Departamento de Genética, Pernambuco, Brazil
| | - Aderson S. Araujo
- Fundação de Hematologia e Hemoterapia do estado de Pernambuco (HEMOPE), Pernambuco, Brazil
| | - Carolina Lanaro
- Hemocentro da Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Carlos A. Breyer
- Universidade Estadual Paulista (UNESP)–Campus Litoral Paulista, São Vicente, Brazil
| | | | | | | | - Iran Malavazi
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, São Carlos, Brazil
| | - Luis E. S. Netto
- Universidade de São Paulo (USP), Departamento de Genética, Biologia Evolutiva, São Paulo, Brazil
| | | | - Anderson F. Cunha
- Universidade Federal de São Carlos (UFSCar), Departamento de Genética e Evolução, São Carlos, Brazil
- * E-mail:
| |
Collapse
|
22
|
Vishalakshi GJ, Hemshekhar M, Kemparaju K, Girish KS. Para-tertiary butyl catechol induces eryptosis in vitro via oxidative stress and hemoglobin leakage in human erythrocytes. Toxicol In Vitro 2018; 52:286-296. [PMID: 30016652 DOI: 10.1016/j.tiv.2018.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022]
Abstract
Exposure of human population to industrial chemicals is believed as a significant contributing factor to the outgrowth of occupational diseases especially in developing countries due to improper safety measures and sanitary conditions. Para-tertiary butylcatechol (PTBC) widely employed in petrochemical, thermofax and phototypesetting industries, induces melanocytotoxicity and contact dermatitis leading to occupational leukoderma/vitiligo. Few vitiligo patients were reported for oxidative stress-induced hemolytic anemia and thrombocytopenia, however its impact on blood components is still not clear. Erythrocytes are the major cell population in circulation and play a prominent role in various diseases. In this work, the effect of PTBC on human erythrocytes is evaluated in vitro. PTBC induces oxidative stress-mediated eryptosis (erythrocyte death) causing detrimental changes such as depleted antioxidant levels, altered surface morphology, hemoglobin denaturation and heinz body formation. These findings validate that PTBC could induce toxic effects on human erythrocytes. Exposure of humans to toxic chemicals constitutes an important issue in various industries; one such issue is the exposure of PTBC at work place resulting in a spectrum of dermal complications. Therefore, it is imperative to appraise the long-term toxicities in order to further delineate the mechanisms of resultant disorders associated with PTBC and to establish the therapeutic interventions.
Collapse
Affiliation(s)
| | - Mahadevappa Hemshekhar
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570 006, India; Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg R3E3P4, Canada
| | - Kempaiah Kemparaju
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570 006, India.
| | - Kesturu S Girish
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570 006, India; Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, India.
| |
Collapse
|
23
|
The Effect of Sepsis on the Erythrocyte. Int J Mol Sci 2017; 18:ijms18091932. [PMID: 28885563 PMCID: PMC5618581 DOI: 10.3390/ijms18091932] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022] Open
Abstract
Sepsis induces a wide range of effects on the red blood cell (RBC). Some of the effects including altered metabolism and decreased 2,3-bisphosphoglycerate are preventable with appropriate treatment, whereas others, including decreased erythrocyte deformability and redistribution of membrane phospholipids, appear to be permanent, and factors in RBC clearance. Here, we review the effects of sepsis on the erythrocyte, including changes in RBC volume, metabolism and hemoglobin's affinity for oxygen, morphology, RBC deformability (an early indicator of sepsis), antioxidant status, intracellular Ca2+ homeostasis, membrane proteins, membrane phospholipid redistribution, clearance and RBC O₂-dependent adenosine triphosphate efflux (an RBC hypoxia signaling mechanism involved in microvascular autoregulation). We also consider the causes of these effects by host mediated oxidant stress and bacterial virulence factors. Additionally, we consider the altered erythrocyte microenvironment due to sepsis induced microvascular dysregulation and speculate on the possible effects of RBC autoxidation. In future, a better understanding of the mechanisms involved in sepsis induced erythrocyte pathophysiology and clearance may guide improved sepsis treatments. Evidence that small molecule antioxidants protect the erythrocyte from loss of deformability, and more importantly improve septic patient outcome suggest further research in this area is warranted. While not generally considered a critical factor in sepsis, erythrocytes (and especially a smaller subpopulation) appear to be highly susceptible to sepsis induced injury, provide an early warning signal of sepsis and are a factor in the microvascular dysfunction that has been associated with organ dysfunction.
Collapse
|
24
|
Welbourn EM, Wilson MT, Yusof A, Metodiev MV, Cooper CE. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radic Biol Med 2017; 103:95-106. [PMID: 28007575 PMCID: PMC5282401 DOI: 10.1016/j.freeradbiomed.2016.12.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 12/20/2022]
Abstract
Covalent hemoglobin binding to membranes leads to band 3 (AE1) clustering and the removal of erythrocytes from the circulation; it is also implicated in blood storage lesions. Damaged hemoglobin, with the heme being in a redox and oxygen-binding inactive hemichrome form, has been implicated as the binding species. However, previous studies used strong non-physiological oxidants. In vivo hemoglobin is constantly being oxidised to methemoglobin (ferric), with around 1% of hemoglobin being in this form at any one time. In this study we tested the ability of the natural oxidised form of hemoglobin (methemoglobin) in the presence or absence of the physiological oxidant hydrogen peroxide to initiate membrane binding. The higher the oxidation state of hemoglobin (from Fe(III) to Fe(V)) the more binding was observed, with approximately 50% of this binding requiring reactive sulphydryl groups. The hemoglobin bound was in a high molecular weight complex containing spectrin, ankyrin and band 4.2, which are common to one of the cytoskeletal nodes. Unusually, we showed that hemoglobin bound in this way was redox active and capable of ligand binding. It can initiate lipid peroxidation showing the potential to cause cell damage. In vivo oxidative stress studies using extreme endurance exercise challenges showed an increase in hemoglobin membrane binding, especially in older cells with lower levels of antioxidant enzymes. These are then targeted for destruction. We propose a model where mild oxidative stress initiates the binding of redox active hemoglobin to the membrane. The maximum lifetime of the erythrocyte is thus governed by the redox activity of the cell; from the moment of its release into the circulation the timer is set.
Collapse
Affiliation(s)
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Ashril Yusof
- Dept. of Exercise Science, Sports Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Chris E Cooper
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK.
| |
Collapse
|