1
|
Koyasu N, Hyodo F, Iwasaki R, Eto H, Elhelaly AE, Tomita H, Shoda S, Takasu M, Mori T, Murata M, Hara A, Noda Y, Kato H, Matsuo M. Spatiotemporal imaging of redox status using in vivo dynamic nuclear polarization magnetic resonance imaging system for early monitoring of response to radiation treatment of tumor. Free Radic Biol Med 2022; 179:170-180. [PMID: 34968704 DOI: 10.1016/j.freeradbiomed.2021.12.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
In general, the effectiveness of radiation treatment is evaluated through the observation of morphological changes with computed tomography (CT) or magnetic resonance imaging (MRI) images after treatment. However, the evaluation of the treatment effects can be very time consuming, and thus can delay the verification of patient cases where treatment has not been fully effective. It is known that the treatment efficacy depends on redox modulation in tumor tissues, which is an indirect effect of oxidizing redox molecules such as hydroxyl radicals and of reactive oxygen species generated by radiation treatment. In vivo dynamic nuclear polarization-MRI (DNP-MRI) using carbamoyl-PROXYL (CmP) as a redox sensitive DNP probe enables the accurate monitoring of the anatomical distribution of free radicals based on interactions of electrons and nuclear spin, known as Overhauser effect. However, spatiotemporal response of the redox status in tumor tissues post-irradiation remains unknown. In this study, we demonstrate the usefulness of spatiotemporal redox status as an early imaging biomarker of tumor response after irradiation using in vivo DNP-MRI. Our results highlight that in vivo DNP-MRI/CmP allowed us to visualize the tumor redox status responses significantly faster and earlier compared to the verification of morphological changes observed with 1.5 T MRI and cancer metabolism (Warburg effect) obtained by hyperpolarized 13C pyruvate MRS. Our findings suggest that the early assessment of redox status alterations with in vivo DNP-MRI/CmP probe may provide very efficient information regarding the effectiveness of the subsequent radiation treatment.
Collapse
Affiliation(s)
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan.
| | - Ryota Iwasaki
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hinako Eto
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | | | | | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Takashi Mori
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University, Gifu, Japan
| | | | - Hiroki Kato
- Department of Radiology, Gifu University, Gifu, Japan
| | | |
Collapse
|
2
|
Kimura K, Iguchi N, Nakano H, Yasui H, Matsumoto S, Inanami O, Hirata H. Redox-Sensitive Mapping of a Mouse Tumor Model Using Sparse Projection Sampling of Electron Paramagnetic Resonance. Antioxid Redox Signal 2022; 36:57-69. [PMID: 33847172 PMCID: PMC8823265 DOI: 10.1089/ars.2021.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/08/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022]
Abstract
Aims: This work aimed to establish an accelerated imaging system for redox-sensitive mapping in a mouse tumor model using electron paramagnetic resonance (EPR) and nitroxyl radicals. Results: Sparse sampling of EPR spectral projections was demonstrated for a solution phantom. The reconstructed three-dimensional (3D) images with filtered back-projection (FBP) and compressed sensing image reconstruction were quantitatively assessed for the solution phantom. Mouse xenograft models of a human-derived pancreatic ductal adenocarcinoma cell line, MIA PaCa-2, were also measured for redox-sensitive mapping with the sparse sampling technique. Innovation: A short-lifetime redox-sensitive nitroxyl radical (15N-labeled perdeuterated Tempone) could be measured to map the decay rates of the EPR signals for the mouse xenograft models. Acceleration of 3D EPR image acquisition broadened the choices of nitroxyl radical probes with various redox sensitivities to biological environments. Conclusion: Sparse sampling of EPR spectral projections accelerated image acquisition in the 3D redox-sensitive mapping of mouse tumor-bearing legs fourfold compared with conventional image acquisition with FBP. Antioxid. Redox Signal. 36, 57-69.
Collapse
Affiliation(s)
- Kota Kimura
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Nami Iguchi
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hitomi Nakano
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Samouilov A, Komarov D, Petryakov S, Iosilevich A, Zweier JL. Development of an L-band resonator optimized for fast scan EPR imaging of the mouse head. Magn Reson Med 2021; 86:2316-2327. [PMID: 33938574 PMCID: PMC8295191 DOI: 10.1002/mrm.28821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop a novel resonator for high-quality fast scan electron paramagnetic resonance (EPR) and EPR/NMR co-imaging of the head and brain of mice at 1.25 GHz. METHODS Resonator dimensions were scaled to fit the mouse head with maximum filling factor. A single-loop 6-gap resonator of 20 mm diameter and 20 mm length was constructed. High resonator stability was achieved utilizing a fixed position double coupling loop. Symmetrical mutually inverted connections rendered it insensitive to field modulation and fast scan. Coupling adjustment was provided by a parallel-connected variable capacitor located at the feeding line at λ/4 distance. To minimize radiation loss, the shield around the resonator was supplemented with a planar conductive disc that focuses return magnetic flux. RESULTS Coupling of the resonator loaded with the mouse head was efficient and easy. This resonator enabled high-quality in vivo 3D EPR imaging of the mouse head following intravenous infusion of nitroxide probes. With this resonator and rapid scan EPR system, 4 ms scans were acquired in forward and reverse directions so that images with 2-scan 3,136 projections were acquired in 25 s. Head images were achieved with resolutions of 0.4 mm, enabling visualization of probe localization and uptake across the blood-brain barrier. CONCLUSIONS This resonator design provides good sensitivity, high stability, and B1 field homogeneity for in vivo fast scan EPR of the mouse head and brain, enabling faster measurements and higher resolution imaging of probe uptake, localization, and metabolism than previously possible.
Collapse
Affiliation(s)
- Alexandre Samouilov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Denis Komarov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Sergey Petryakov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Arkadiy Iosilevich
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Jay L. Zweier
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
4
|
Biller JR, McPeak JE. EPR Everywhere. APPLIED MAGNETIC RESONANCE 2021; 52:1113-1139. [PMID: 33519097 PMCID: PMC7826499 DOI: 10.1007/s00723-020-01304-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
This review is inspired by the contributions from the University of Denver group to low-field EPR, in honor of Professor Gareth Eaton's 80th birthday. The goal is to capture the spirit of innovation behind the body of work, especially as it pertains to development of new EPR techniques. The spirit of the DU EPR laboratory is one that never sought to limit what an EPR experiment could be, or how it could be applied. The most well-known example of this is the development and recent commercialization of rapid-scan EPR. Both of the Eatons have made it a point to remain knowledgeable on the newest developments in electronics and instrument design. To that end, our review touches on the use of miniaturized electronics and applications of single-board spectrometers based on software-defined radio (SDR) implementations and single-chip voltage-controlled oscillator (VCO) arrays. We also highlight several non-traditional approaches to the EPR experiment such as an EPR spectrometer with a "wand" form factor for analysis of the OxyChip, the EPR-MOUSE which enables non-destructive in situ analysis of many non-conforming samples, and interferometric EPR and frequency swept EPR as alternatives to classical high Q resonant structures.
Collapse
Affiliation(s)
| | - Joseph E. McPeak
- University of Denver, Denver, CO 80210 USA
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPINS), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
5
|
Hyodo F, Ito S, Eto H, Elhelaly AE, Murata M, Akahoshi T, Utsumi H, Matuso M. Free radical imaging of endogenous redox molecules using dynamic nuclear polarisation magnetic resonance imaging. Free Radic Res 2020; 55:343-351. [PMID: 33307891 DOI: 10.1080/10715762.2020.1859109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Redox reactions accompanied by the oxidation-reduction of endogenous molecules play important roles in maintaining homeostasis in living organisms. In humans, numerous endogenous molecules that contribute towards maintaining physiological conditions form free radicals via electron transfer. A typical example of this is the mitochondrial electron transport chain, which is involved in energy production. If free radicals derived from endogenous molecules could be visualised and exploited as biological and functional probes, redox reactions mediated by endogenous molecules could be detected non-invasively. We succeeded in visualising the free radicals derived from endogenous molecules using an in vivo dynamic nuclear polarisation (DNP) magnetic resonance imaging (MRI) system. In this review, we describe the visualisation of endogenous redox molecules, such as flavins and ubiquinones, which are mitochondrial electron carriers, as well as vitamin E and vitamin C (ascorbate). In addition, we describe the application of melanin free radicals for the in vivo visualisation of metabola without using probes via in vivo DNP-MRI.
Collapse
Affiliation(s)
- Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan
| | - Shinji Ito
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Hinako Eto
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Gifu University, Gifu, Japan.,Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismalia, Egypt
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Tomohiko Akahoshi
- Graduate School of Medicine, Advanced Medical Medicine, Disaster and Emergency medicine, Kyushu University, Fukuoka, Japan
| | - Hideo Utsumi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | |
Collapse
|
6
|
Uchida T, Togashi H, Kuroda Y, Yamashita A, Itoh N, Haga K, Sadahiro M, Kayama T. In vivo analysis of redox status in organs - from bench to bedside. Free Radic Res 2020; 54:961-968. [PMID: 32458704 DOI: 10.1080/10715762.2020.1772470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS) such as superoxide, hydroxyl radical, and hydrogen peroxide play an important role in the maintenance of life. However, production of excessive ROS and/or deficiency of the antioxidant system lead to oxidative stress and cause a variety of diseases. In the present study, we used electron spin resonance (ESR) to detect ROS in vivo to clarify its roles in redox dynamics and organ damage. However, the limited permeability of microwaves and low anatomic resolution of ESR equipment made it difficult to apply clinically. Nitroxide is widely used as a sensitive redox sensor for in vivo ESR analysis. The unpaired electrons of nitroxide are known to cause the T1 relaxation time-shortening effect of water protons, creating magnetic resonance imaging (MRI) effects. The remarkable development of MRI has facilitated the spatiotemporal analysis of nitroxide, which was previously impossible. In a rat model, we have been able to image and analyze the process of nitroxide reduction using MRI. MRI using nitroxide as a contrast medium is considered to be clinically applicable for evaluation of organ redox, imaging of ROS (which cause organ damage), and evaluation of therapeutic effects. In this review, we describe current advances in the analysis of in vivo redox capacity in animals using ESR and MRI equipment. We consider that redox evaluation using MRI can contribute to advances in clinical medicine.
Collapse
Affiliation(s)
- Tetsuro Uchida
- Second Department of Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hitoshi Togashi
- Health Administration Center, Yamagata University, Yamagata, Japan
| | - Yoshinori Kuroda
- Second Department of Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Atsushi Yamashita
- Second Department of Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Nanami Itoh
- Health Administration Center, Yamagata University, Yamagata, Japan
| | - Kazuyuki Haga
- Radiation Department, Yamagata University Hospital, Yamagata, Japan
| | - Mitsuaki Sadahiro
- Second Department of Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Takamasa Kayama
- Global Center of Excellence, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
7
|
Takeshita K, Okazaki H, Tsukamoto M, Okazaki S. Differences in pharmacokinetic behaviors of two lipophilic 3-substituted 2,2,5,5-tetramethylpyrrolidine-N-oxyl radicals, in vivo probes to assess the redox status in the brain using magnetic resonance techniques. Magn Reson Med 2020; 85:560-569. [PMID: 32905631 DOI: 10.1002/mrm.28499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE The pharmacokinetics of 3-methoxycarbonyl- and 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl radicals (MCP and HMP, respectively), magnetic resonance probes to assess the brain redox status, were examined in healthy mouse brains. METHODS The time course of the concentration of the radical form of the probe in the brain was examined by signal enhancements on T1 -weighted MR image after an intravenous injection. The distribution of the total probe (sum of radical and reduced forms) was investigated using brain homogenates. RESULTS MCP distributed to the brain more than HMP. MCP exhibited biphasic decay with fast and slow components, whereas HMP exhibited monophasic decay with a similar rate constant to the slow component of MCP. Similar profiles were observed in various regions of the brain. The total probe for MCP exhibited monophasic decay at a similar rate constant to the slow component of the radical form; however, the initial content of the total probe was similar to its radical form. For HMP, decay of the total probe coincided with that of the radical form. CONCLUSION The decay of MCP needs to consider the reduction of the probe in and its elimination from the brain, while the decay of HMP may mainly result from its elimination from the brain.
Collapse
Affiliation(s)
- Keizo Takeshita
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.,DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Hana Okazaki
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Megumi Tsukamoto
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Shoko Okazaki
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
8
|
Guo S, Wang X, Dai Y, Dai X, Li Z, Luo Q, Zheng X, Gu Z, Zhang H, Gong Q, Luo K. Enhancing the Efficacy of Metal-Free MRI Contrast Agents via Conjugating Nitroxides onto PEGylated Cross-Linked Poly(Carboxylate Ester). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000467. [PMID: 32714757 PMCID: PMC7375229 DOI: 10.1002/advs.202000467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/21/2020] [Indexed: 02/05/2023]
Abstract
Herein, two water-soluble PROXYL-based magnetic resonance imaging (MRI) macromolecular organic contrast agents (mORCAs) are designed and synthesized: linear and cross-linked PCE-mPEG-Ppa-PROXYL. They are prepared by conjugating linear and cross-linked poly(carboxylate ester) (PCE) with poly(ethylene glycol) (mPEG2000)-modified nitroxides (PROXYL), respectively. Both mORCAs form self-assembled aggregates in an aqueous phase and PROXYL is protected inside a hydrophobic core to achieve great resistance to reduction in the physiological environment, and they have low toxicity. Since cross-linked PCE-mPEG-Ppa-PROXYL possess a branched architecture, its self-assembled aggregate is more stable and compact with a greater particle size. Cross-linked PCE-mPEG-Ppa-PROXYL outperform the linear one in the following aspects: 1) its longitudinal relaxivity (r 1 = 0.79 mm -1 s-1) is higher than that of the linear one (r 1 = 0.64 mm -1 s-1) and both excel the best mORCA reported so far (r 1 = 0.42 mm -1 s-1); 2) its blood retention time (≈48 h) is longer than that of its linear counterpart (≈10 h); 3) cross-linked PCE-mPEG-Ppa-PROXYL provided better MR imaging contrast resolution in normal organs (liver and kidney) and tumor of mice than the linear one. Overall, cross-linked PCE-mPEG-Ppa-PROXYL may have great potential to be a novel metal-free macromolecular contrast agent for MR imaging.
Collapse
Affiliation(s)
- Shiwei Guo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical UniversitySouthwest Medical UniversityLuzhouSichuan Province646000P. R. China
| | - Xiaoming Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
- Department of Radiology, Chongqing General HospitalUniversity of Chinese Academy of Sciences (UCAS)104 Pipashan Zheng StreetChongqing400014P. R. China
| | - Yan Dai
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical UniversitySouthwest Medical UniversityLuzhouSichuan Province646000P. R. China
| | - Xinghang Dai
- West China School of MedicineSichuan UniversityChengdu610041P. R. China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xiuli Zheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Hu Zhang
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
9
|
Sun HJ, Lee WT, Leng B, Wu ZY, Yang Y, Bian JS. Nitroxyl as a Potential Theranostic in the Cancer Arena. Antioxid Redox Signal 2020; 32:331-349. [PMID: 31617376 DOI: 10.1089/ars.2019.7904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: As one-electron reduced molecule of nitric oxide (NO), nitroxyl (HNO) has gained enormous attention because of its novel physiological or pharmacological properties, ranging from cardiovascular protective actions to antitumoricidal effects. Recent Advances: HNO is emerging as a new entity with therapeutic advantages over its redox sibling, NO. The interests in the chemical, pharmacological, and biological characteristics of HNO have broadened our current understanding of its role in physiology and pathophysiology. Critical Issues: In particular, the experimental evidence suggests the therapeutic potential of HNO in tumor pharmacology, such as neuroblastoma, gastrointestinal tumor, ovarian, lung, and breast cancers. Indeed, HNO donors have been demonstrated to attenuate tumor proliferation and angiogenesis. Future Directions: In this review, the generation and detection of HNO are outlined, and the roles of HNO in cancer progression are further discussed. We anticipate that the completion of this review might give novel insights into the roles of HNO in cancer pharmacology and open up a novel field of cancer therapy based on HNO.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bin Leng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
10
|
Nakamura M, Yamasaki T, Ueno M, Shibata S, Ozawa Y, Kamada T, Nakanishi I, Yamada KI, Aoki I, Matsumoto KI. Radiation-induced redox alteration in the mouse brain. Free Radic Biol Med 2019; 143:412-421. [PMID: 31446055 DOI: 10.1016/j.freeradbiomed.2019.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
Time courses of the redox status in the brains of mice after X-ray or carbon-ion beam irradiation were observed by magnetic resonance redox imaging (MRRI). The relationship between radiation-induced oxidative stress on the cerebral nervous system and the redox status in the brain was discussed. The mice were irradiated by 8-Gy X-ray or carbon-ion beam (C-beam) on their head under anesthesia. C-beam irradiation was performed at HIMAC (Heavy-Ion Medical Accelerator in Chiba, NIRS/QST, Chiba, Japan). MRRI measurements using a blood-brain-barrier-permeable nitroxyl contrast agent, MCP or TEMPOL, were performed using 7-T scanner at several different times, i.e., 5-10 h, 1, 2, 4, and 8 day(s) after irradiation. Decay rates of the nitroxyl-enhanced T1-weighted MR signals in the brains were estimated from MRRI data sets, and variation in the decay rates after irradiation was assessed. The variation in decay rates of MCP and TEMPOL after X-ray or C-beam irradiation was similar, but different variation patterns were observed between X-ray and C-beam. The apparent decay rate of both MCP and TEMPOL decreased due to the temporal reduction of blood flow in the brain several hours after X-ray and/or C-beam irradiation. After decreasing, the apparent decay rates of nitroxyl radicals in the brain gradually increased during the following days after X-ray irradiation or rapidly increased 1 day after C-beam irradiation. The sequential increase in nitroxyl decay rates may have been due to the oxidative atmosphere in the tissue due to ROS generation. X-ray and C-beam irradiation resulted in different redox responses, which may have been due to time-varying oxidative stress/injury, in the mouse brain. The C-beam irradiation effects were more acute and larger than those of X-ray irradiation.
Collapse
Affiliation(s)
- Mizuki Nakamura
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-88670, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Sayaka Shibata
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshikazu Ozawa
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Tadashi Kamada
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-88670, Japan; Research Center Hospital, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ichio Aoki
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
11
|
Samouilov A, Ahmad R, Boslett J, Liu X, Petryakov S, Zweier JL. Development of a fast-scan EPR imaging system for highly accelerated free radical imaging. Magn Reson Med 2019; 82:842-853. [PMID: 31020713 DOI: 10.1002/mrm.27759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE In continuous wave EPR imaging, the acquisition of high-quality images was previously limited by the requisite long acquisition times of each image projection that was typically greater than 1 second. To accelerate the process of image acquisition facilitating greater numbers of projections and higher image resolution, instrumentation was developed to greatly accelerate the magnetic field scan that is used to obtain each EPR image projection. METHODS A low-inductance solenoidal coil for field scanning was used along with a spherical solenoid air core magnet, and scans were driven by triangular symmetric waves, allowing forward and reverse spectrum acquisition as rapid as 3.8 ms. The uniform distribution of projections was used to optimize the contribution of projections for 3D image reconstruction. RESULTS Using this fast-scan EPR system, high-quality EPR images of phantoms and perfused rat hearts were performed using trityl or nanoparticulate LiNcBuO (lithium octa-n-butoxy-substituted naphthalocyanine) probes with fast-scan EPR imaging at L-band, achieving spatial resolutions of up to 250 micrometers in 1 minute. CONCLUSION Fast-scan EPR imaging can greatly facilitate the efficient and precise mapping of the spatial distribution of free radical and other paramagnetic probes in living systems.
Collapse
Affiliation(s)
- Alexandre Samouilov
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Rizwan Ahmad
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - James Boslett
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Xiaoping Liu
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Sergey Petryakov
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Jay L Zweier
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
12
|
Matsumoto KI, Mitchell JB, Krishna MC. Effects of oxygen challenging to tissue redox and pO 2 status. Free Radic Biol Med 2019; 130:343-347. [PMID: 30391676 PMCID: PMC8202967 DOI: 10.1016/j.freeradbiomed.2018.10.454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 11/23/2022]
Abstract
Nitroxide free radicals can serve as redox-sensitive MRI contrast agents useful to image the redox status of tissue of interest. In this study, the effect of oxygen content in the inspired gas on the kinetics of metabolism of three nitroxides has been evaluated in the muscle and tumor in mice. SCC tumors (approximate size of 1.0 cm3) on the right hind leg of female C3H/Hen MTV- mice were prepared. Three nitroxides, 3-carboxy-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CxP), 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CmP), and 4-hydroxy-tetramethylpiperidine-N-oxyl (TEMPOL), having different lipophilicities were compared using MR redox imaging. T1-mapping of the tissues was obtained using a multi-slice multi-echo (MSME) sequence with several TRs. The three nitroxides showed differences in accumulation and metabolism/clearance in muscle and tumor. The cell impermeable nitroxide CxP displayed kinetic patterns of slow enhancement followed by a slow decline typical of clearance rather than metabolism. The cell permeable CmP on the other hand showed a relatively faster uptake and metabolism with a modestly higher rate of metabolism in the tumor than muscle. The TEMPOL on the other hand displayed a rapid uptake and reduction with a trend of significantly rapid decay rate in tumor tissue, while slightly higher maximum signal intensity and slower decay rate was observed in normal muscle. The reduction rate of TEMPOL in the tumor was significantly enhanced when the breathing gas had 100%-oxygen while it was not significantly different in the muscle. EPR oximetry studies monitoring the oxygen dependent linewidth of TEMPOL showed that the pO2 in the healthy tissue during carbogen breathing significantly increased normal tissue pO2 compared to air breathing whereas breathing 100%-oxygen made normal tissue slight hypoxic. Since TEMPOL is a radioprotector, our studies show that a combination of 100%-oxygen breathing and TEMPOL has a potential to enhance radioprotective effects to normal tissue.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Chiba 263-8555, Japan.
| | - James B Mitchell
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| |
Collapse
|
13
|
Uchida T, Togashi H, Kuroda Y, Haga K, Sadahiro M, Kayama T. In vivo visualization of redox status by high-resolution whole body magnetic resonance imaging using nitroxide radicals. J Clin Biochem Nutr 2018; 63:192-196. [PMID: 30487668 PMCID: PMC6252305 DOI: 10.3164/jcbn.18-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 11/30/2022] Open
Abstract
Various diseases are known to be associated with an imbalance of the redox state, but in vivo detection of free radicals is difficult. The purpose of this study is to establish a method for in vivo visualization of redox status by high-resolution whole-body MRI using nitroxide radicals. A redox-sensitive nitroxide probe, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (carbamoyl-PROXYL), was administered to rats intravenously, and in vivo T1-weighted MRI was performed to virtually visualize the redox status of various organs. In experiments using phantoms, a linear relationship between the MRI signal and the carbamoyl-PROXYL concentration persisted up to 80 mM. Among the phantoms, a sample containing 1 mM carbamoyl-PROXYL was readily identifiable. After intravenous injection of carbamoyl-PROXYL, whole-body T1-weighted MRI of the rat provided clear images with good spatial and temporal resolution. The signal intensities of four selected organs (heart, liver, kidney, and intestine) were analyzed quantitatively. The carbamoyl-PROXYL signal peaked and gradually declined due to reduction after intravenous injection. Among the four organs, the organ-specific reduction rate of carbamoyl-PROXYL was highest in the heart, followed by (in order) the liver, kidney, and intestine, and statistical analysis showed that the inter-organ differences were significant. In conclusion, T1-weighted carbamoyl-PROXYL-enhanced MRI provides excellent spatial and temporal imaging of carbamoyl-PROXYL distribution. Furthermore, it provides important functional information pertaining to blood flow and tissue redox activity in individual organs. MRI in combination with carbamoyl-PROXYL has potential clinical application for evaluation of redox activity in whole organs.
Collapse
Affiliation(s)
- Tetsuro Uchida
- Second Department of Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hitoshi Togashi
- Health Administration Center, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yoshinori Kuroda
- Second Department of Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Kazuyuki Haga
- Radiation Department, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Mitsuaki Sadahiro
- Second Department of Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takamasa Kayama
- Department of Advanced Cancer Science, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|