1
|
Cedrone E, Ishaq A, Grabarnik E, Edmondson E, Skoczen S, Neun BW, Freer M, Shuttleworth S, Sviland L, Dickinson A, Dobrovolskaia MA. In vitro assessment of nanomedicines' propensity to cause palmar-plantar erythrodysesthesia: A Doxil vs. doxorubicin case study. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102780. [PMID: 39181221 PMCID: PMC11513236 DOI: 10.1016/j.nano.2024.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Palmar-plantar erythrodysesthesia (PPE), also known as hand and foot syndrome, is a condition characterized by inflammation-mediated damage to the skin on the palms and soles of the hands and feet. PPE limits the successful therapeutic applications of anticancer drugs. However, identifying this toxicity during preclinical studies is challenging due to the lack of accurate in vitro and in vivo animal-based models. Therefore, there is a need for reliable models that would allow the detection of this toxicity early during the drug development process. Herein, we describe the use of an in vitro skin explant assay to assess traditional DXR, Doxil reference listed drug (RLD) and two generic PEGylated liposomal DXR formulations for their abilities to cause inflammation and skin damage. We demonstrate that the results obtained with the in vitro skin explant assay model for traditional DXR and Doxil correlate with the clinical data.
Collapse
Affiliation(s)
- Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Abbas Ishaq
- Alcyomics Ltd., Biosphere Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, United Kingdom
| | - Emma Grabarnik
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Elijah Edmondson
- Molecular Histopathology Laboratory, Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Sarah Skoczen
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Barry W Neun
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Matthew Freer
- Alcyomics Ltd., Biosphere Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, United Kingdom
| | - Siannah Shuttleworth
- Alcyomics Ltd., Biosphere Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, United Kingdom
| | - Lisbet Sviland
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Norway
| | - Anne Dickinson
- Alcyomics Ltd., Biosphere Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, United Kingdom.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA.
| |
Collapse
|
2
|
Salata GC, Malagó ID, Carvalho Dartora VFM, Marçal Pessoa AF, Fantini MCDA, Costa SKP, Machado-Neto JA, Lopes LB. Microemulsion for Prolonged Release of Fenretinide in the Mammary Tissue and Prevention of Breast Cancer Development. Mol Pharm 2021; 18:3401-3417. [PMID: 34482696 DOI: 10.1021/acs.molpharmaceut.1c00319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The need of pharmacological strategies to preclude breast cancer development motivated us to develop a non-aqueous microemulsion (ME) capable of forming a depot after administration in the mammary tissue and uptake of interstitial fluids for prolonged release of the retinoid fenretinide. The selected ME was composed of phosphatidylcholine/tricaprylin/propylene glycol (45:5:50, w/w/w) and presented a droplet diameter of 175.3 ± 8.9 nm. Upon water uptake, the ME transformed successively into a lamellar phase, gel, and a lamellar phase-containing emulsion in vitro as the water content increased and released 30% of fenretinide in vitro after 9 days. Consistent with the slow release, the ME formed a depot in cell cultures and increased fenretinide IC50 values by 68.3- and 13.2-fold in MCF-7 and T-47D cells compared to a solution, respectively. At non-cytotoxic concentrations, the ME reduced T-47D cell migration by 75.9% and spheroid growth, resulting in ∼30% smaller structures. The depot formed in vivo prolonged a fluorochrome release for 30 days without producing any sings of local irritation. In a preclinical model of chemically induced carcinogenesis, ME administration every 3 weeks for 3 months significantly reduced (4.7-fold) the incidence of breast tumors and increased type II collagen expression, which might contribute to limit spreading. These promising results support the potential ME applicability as a preventive therapy of breast cancer.
Collapse
Affiliation(s)
- Giovanna Cassone Salata
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| | - Isabella D Malagó
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| | - Vanessa F M Carvalho Dartora
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| | - Ana Flávia Marçal Pessoa
- Departamento de Cirurgia, LIM26, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, São Paulo 01246903, Brazil
| | - Márcia Carvalho de Abreu Fantini
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo, São Paulo 05508-090, Brazil
| | - Soraia K P Costa
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| | - João Agostinho Machado-Neto
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| | - Luciana B Lopes
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
3
|
Chaudhuri S, Fowler MJ, Baker C, Stopka SA, Regan MS, Sablatura L, Broughton CW, Knight BE, Stabenfeldt SE, Agar NYR, Sirianni RW. β-Cyclodextrin-poly (β-Amino Ester) Nanoparticles Are a Generalizable Strategy for High Loading and Sustained Release of HDAC Inhibitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20960-20973. [PMID: 33905245 PMCID: PMC8153536 DOI: 10.1021/acsami.0c22587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Therapeutic development of histone deacetylase inhibitors (HDACi) has been hampered by a number of barriers to drug delivery, including poor solubility and inadequate tissue penetration. Nanoparticle encapsulation could be one approach to improve the delivery of HDACi to target tissues; however, effective and generalizable loading of HDACi within nanoparticle systems remains a long-term challenge. We hypothesized that the common terminally ionizable moiety on many HDACi molecules could be capitalized upon for loading in polymeric nanoparticles. Here, we describe the simple, efficient formulation of a novel library of β-cyclodextrin-poly (β-amino ester) networks (CDN) to achieve this goal. We observed that network architecture was a critical determinant of CDN encapsulation of candidate molecules, with a more hydrophobic core enabling effective self-assembly and a PEGylated surface enabling high loading (up to ∼30% w/w), effective self-assembly of the nanoparticle, and slow release of drug into aqueous media (up to 24 days) for the model HDACi panobinostat. We next constructed a library of CDNs to encapsulate various small, hydrophobic, terminally ionizable molecules (panobinostat, quisinostat, dacinostat, givinostat, bortezomib, camptothecin, nile red, and cytarabine), which yielded important insights into the structural requirements for effective drug loading and CDN self-assembly. Optimized CDN nanoparticles were taken up by GL261 cells in culture and a released panobinostat was confirmed to be bioactive. Panobinostat-loaded CDNs were next administered by convection-enhanced delivery (CED) to mice bearing intracranial GL261 tumors. These studies confirm that CDN encapsulation enables a higher deliverable dose of drug to effectively slow tumor growth. Matrix-assisted laser desorption/ionization (MALDI) analysis on tissue sections confirms higher exposure of tumor to drug, which likely accounts for the therapeutic effects. Taken in sum, these studies present a novel nanocarrier platform for encapsulation of HDACi via both ionic and hydrophobic interactions, which is an important step toward better treatment of disease via HDACi therapy.
Collapse
Affiliation(s)
- Sauradip Chaudhuri
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Martha J. Fowler
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Cassandra Baker
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Sylwia A. Stopka
- Department
of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael S. Regan
- Department
of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lindsey Sablatura
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Colton W. Broughton
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Brandon E. Knight
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Sarah E. Stabenfeldt
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Nathalie Y. R. Agar
- Department
of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Rachael W. Sirianni
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
4
|
Akbari A, Akbarzadeh A, Rafiee Tehrani M, Ahangari Cohan R, Chiani M, Mehrabi MR. Development and Characterization of Nanoliposomal Hydroxyurea Against BT-474 Breast Cancer Cells. Adv Pharm Bull 2020; 10:39-45. [PMID: 32002360 PMCID: PMC6983993 DOI: 10.15171/apb.2020.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Hydroxyurea (HU) is a well-known chemotherapy drug with several side effects which limit its clinical application. This study was conducted to improve its therapeutic efficiency against breast cancer using liposomes as FDA-approved drug carriers.
Methods: PEGylated nanoliposomes-containing HU (NL-HU) were made via a thin-film hydration method, and assessed in terms of zeta potential, size, morphology, release, stability, cellular uptake, and cytotoxicity. The particle size and zeta potential of NL-HU were specified by zeta-sizer. The drug release from liposomes was assessed by dialysis diffusion method. Cellular uptake was evaluated by flow cytometry. The cytotoxicity was designated by methyl thiazolyl diphenyl-tetrazolium bromide (MTT) test.
Results: The size and zeta value of NL-HU were gotten as 85 nm and -27 mV, respectively. NL-HU were spherical.NL-HU vesicles were detected to be stable for two months. The slow drug release and Weibull kinetic model were obtained. Liposomes considerably enhanced the uptake of HU into BT-474 human breast cancer cells. The cytotoxicity of NL-HU on BT-474 cells was found to be significantly more than that of free HU.
Conclusion: The results confirmed these PEGylated nanoliposomes containing drug are potentially suitable against in vitro model of breast cancer.
Collapse
Affiliation(s)
- Azam Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Azim Akbarzadeh
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Rafiee Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
5
|
Merino M, Contreras A, Casares N, Troconiz IF, Ten Hagen TL, Berraondo P, Zalba S, Garrido MJ. A new immune-nanoplatform for promoting adaptive antitumor immune response. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:13-25. [PMID: 30654186 DOI: 10.1016/j.nano.2018.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023]
Abstract
Immunoliposomes (ILs), obtained with monoclonal antibodies (mAbs) decorating the liposome surface, are used for cancer treatment. These mAbs provide the recognition of molecules upregulated in cancer cells, like Programmed Death-Ligand 1 (PD-L1), an immune-checkpoint involved in tumor resistance, forming a complex that blocks this molecule and thereby, induces antitumor immune response. This mechanism introduces a new concept for ILs. ILs coupled to anti-PD-L1 or its Fab' fragment have been developed and in vitro/in vivo characterized. Factors such as coupling methods, PEG density and ligand size were optimized. In vitro data showed that Fab'-ILs displayed the highest PD-L1 cell interaction, correlating with a higher in vivo tumor accumulation and an increase of effector cytotoxic CD8+ T cells, providing tumor shrinkage and total regression in 20% of mice. Therefore, a novel immune-nanoplatform able to modulate the immune system has been developed, allowing the encapsulation of several agents for combinatorial therapies.
Collapse
Affiliation(s)
- María Merino
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdisNA)
| | - Ana Contreras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdisNA)
| | - Noelia Casares
- Program of Immunology and Immunotherapy, CIMA, Pamplona, Spain; Navarra Institute for Health Research (IdisNA)
| | - Iñaki F Troconiz
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdisNA)
| | - Timo Lm Ten Hagen
- Laboratory of Experimental Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, CIMA, Pamplona, Spain; Navarra Institute for Health Research (IdisNA)
| | - Sara Zalba
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdisNA)
| | - María J Garrido
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdisNA).
| |
Collapse
|
6
|
Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology: State of the art and future perspectives. J Control Release 2018; 275:162-176. [DOI: 10.1016/j.jconrel.2018.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 02/02/2023]
|
7
|
Dicheva BM, Koning GA. Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery to solid tumors. Expert Opin Drug Deliv 2013; 11:83-100. [PMID: 24320104 DOI: 10.1517/17425247.2014.866650] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Currently available chemotherapy is hampered by a lack in tumor specificity and resulting toxicity. Small and long-circulating liposomes can preferentially deliver chemotherapeutic drugs to tumors upon extravasation from tumor vasculature. Although clinically used liposomal formulations demonstrated significant reduction in toxicity, enhancement of therapeutic activity has not fully met expectations. AREAS COVERED Low drug bioavailability from liposomal formulations and limited tumor accumulation remain major challenges to further improve therapeutic activity of liposomal chemotherapy. The aim of this review is to highlight strategies addressing these challenges. A first strategy uses hyperthermia and thermosensitive liposomes to improve tumor accumulation and trigger liposomal drug bioavailability. Image-guidance can aid online monitoring of heat and drug delivery and further personalize the treatment. A second strategy involves tumor-specific targeting to enhance drug delivery specificity and drug internalization. In addition, we review the potential of combinations of the two in one targeted thermosensitive-triggered drug delivery system. EXPERT OPINION Heat-triggered drug delivery using thermosensitive liposomes as well as the use of tumor vasculature or tumor cell-targeted liposomes are both promising strategies to improve liposomal chemotherapy. Preclinical evidence has been encouraging and both strategies are currently undergoing clinical evaluation. A combination of both strategies rendering targeted thermosensitive liposomes (TTSL) may appear as a new and attractive approach promoting tumor drug delivery.
Collapse
Affiliation(s)
- Bilyana M Dicheva
- Innovative Targeting Group, Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center , Room Ee151b, PO Box 2040, 3000 CA Rotterdam , The Netherlands +31 10 7043963
| | | |
Collapse
|
8
|
Mao Y, Triantafillou G, Hertlein E, Towns W, Stefanovski M, Mo X, Jarjoura D, Phelps M, Marcucci G, Lee LJ, Goldenberg DM, Lee RJ, Byrd JC, Muthusamy N. Milatuzumab-conjugated liposomes as targeted dexamethasone carriers for therapeutic delivery in CD74+ B-cell malignancies. Clin Cancer Res 2013; 19:347-56. [PMID: 23209030 PMCID: PMC3793126 DOI: 10.1158/1078-0432.ccr-12-2046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Corticosteroids are widely used for the treatment of B-cell malignancies, including non-Hodgkin lymphoma, chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia; however, this class of drug is associated with undesirable off-target effects. Herein, we developed novel milatuzumab-conjugated liposomes as a targeted dexamethasone carrier for therapeutic delivery in CD74(+) B-cell malignancies and explored its effect against the disease. EXPERIMENTAL DESIGN The targeting efficiency of milatuzumab-targeted liposomes to CD74(+) cells was evaluated in vitro. The effect of CD74-targeted liposomal dexamethasone was compared with free dexamethasone in primary CLL cells and cell lines in vitro. The therapeutic efficacy of CD74-targeted liposomal dexamethasone was evaluated in a Raji-severe combined immunodeficient (SCID) xenograft model in vivo. RESULTS Milatuzumab-targeted liposomes promoted selective incorporation of carrier molecules into transformed CD74-positive B cells as compared with CD74-negative T-cells. The CD74-dexamethasone-targeted liposomes (CD74-IL-DEX) promoted and increased killing in CD74-positive tumor cells and primary CLL cells. Furthermore, the targeted drug liposomes showed enhanced therapeutic efficacy against a CD74-positive B-cell model as compared with free, or non-targeted, liposomal dexamethasone in SCID mice engrafted with Raji cells in vivo. CONCLUSIONS These studies provide evidence and support for a potential use of CD74-targeted liposomal dexamethasone as a new therapy for B-cell malignancies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Line, Tumor
- Dexamethasone/administration & dosage
- Dexamethasone/pharmacology
- Disease Models, Animal
- Female
- Histocompatibility Antigens Class II/metabolism
- Humans
- Leukemia, B-Cell/drug therapy
- Leukemia, B-Cell/metabolism
- Leukemia, B-Cell/mortality
- Liposomes
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/mortality
- Mice
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yicheng Mao
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio
| | - Georgia Triantafillou
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Erin Hertlein
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William Towns
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Matthew Stefanovski
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - David Jarjoura
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Mitch Phelps
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio
| | - Guido Marcucci
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ly James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - David M. Goldenberg
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, New Jersey
| | - Robert J. Lee
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio
| | - John C. Byrd
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Natarajan Muthusamy
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
9
|
Jayanna P, Bedi D, Gillespie J, DeInnocentes P, Wang T, Torchilin V, Bird R, Petrenko V. Landscape phage fusion protein-mediated targeting of nanomedicines enhances their prostate tumor cell association and cytotoxic efficiency. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2010; 6:538-46. [PMID: 20138246 PMCID: PMC2952829 DOI: 10.1016/j.nano.2010.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 12/27/2009] [Accepted: 01/07/2010] [Indexed: 11/28/2022]
Abstract
Tumor-specific cytotoxicity of drugs can be enhanced by targeting them to tumor receptors using tumor-specific ligands. Phage display offers a high-throughput approach to screen for the targeting ligands. We have successfully isolated phage fusion peptides selective and specific for PC3 prostate cancer cells. Also, we have demonstrated a novel approach of targeting liposomes through tumor-specific phage fusion coat proteins, exploiting the intrinsic properties of the phage coat protein as an integral membrane protein. Here we describe the production of Rhodamine-labeled liposomes as well as doxorubicin-loaded long-circulating liposomes targeted to PC3 prostate tumor cells via PC-specific phage peptides, as an extension of our previous studies. Targeting of labeled liposomes was demonstrated using fluorescence microscopy as well as flow cytometry. Targeting of doxorubicin-loaded liposomes enhanced their cytotoxic effect against PC3 cells in vitro, indicating a possible therapeutic advantage. The simplicity of the approach for generating targeted liposomes coupled with the ability to rapidly obtain tumor-specific phage fusion proteins via phage display may contribute to a combinatorial system for the production of targeted liposomal therapeutics for advanced stages of prostate tumor. From the clinical editor: This paper demonstrates targeting cytotoxic agents to tumor receptors using tumor-specific ligands. The authors describe the production of Rhodamine-labeled liposomes as well as doxorubicin loaded long circulating liposomes targeted to PC3 prostate tumor cells via PC-specific phage peptides. This approach may be especially relevant for advanced prostate tumors.
Collapse
Affiliation(s)
- P.K. Jayanna
- Department of Pathobiology, Auburn University, AL-36849
| | - D Bedi
- Department of Pathobiology, Auburn University, AL-36849
| | | | | | - T Wang
- Department of Pathobiology, Auburn University, AL-36849
| | - V.P Torchilin
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA-02115
| | - R.C. Bird
- Department of Pathobiology, Auburn University, AL-36849
| | - V.A. Petrenko
- Department of Pathobiology, Auburn University, AL-36849
| |
Collapse
|
10
|
Abstract
The paradigm of using nanoparticulate pharmaceutical carriers has been well established over the past decade, both in pharmaceutical research and in the clinical setting. Drug carriers are expected to stay in the blood for long time, accumulate in pathological sites with affected and leaky vasculature (tumors, inflammations, and infarcted areas) via the enhanced permeability and retention (EPR) effect, and facilitate targeted delivery of specific ligand-modified drugs and drug carriers into poorly accessible areas. Among various approaches to specifically target drug-loaded carrier systems to required pathological sites in the body, two seem to be most advanced--passive (EPR effect-mediated) targeting, based on the longevity of the pharmaceutical carrier in the blood and its accumulation in pathological sites with compromised vasculature, and active targeting, based on the attachment of specific ligands to the surface of pharmaceutical carriers to recognize and bind pathological cells. Here, we will consider and discuss these two targeting approaches using tumor targeting as an example.
Collapse
|
11
|
Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26:523-80. [PMID: 20402623 PMCID: PMC2885142 DOI: 10.1615/critrevtherdrugcarriersyst.v26.i6.10] [Citation(s) in RCA: 553] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nanoemulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We conclude with a few examples of clinically successful formulations of currently available lipid-based nanoparticles.
Collapse
Affiliation(s)
- Anu Puri
- Center for Cancer Research Nanobiology Program, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Vladimir Torchilin
- Northeastern University, Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, 360 Huntington Avenue, Boston, MA 02115, USA ;
| |
Collapse
|
13
|
Cheng WW, Allen TM. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: A comparison of whole monoclonal antibody, Fab′ fragments and single chain Fv. J Control Release 2008; 126:50-8. [DOI: 10.1016/j.jconrel.2007.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
14
|
Effect of cyclosporin A on the brain regional distribution of doxorubicin in rats. Int J Pharm 2007; 350:265-71. [PMID: 17935917 DOI: 10.1016/j.ijpharm.2007.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 08/29/2007] [Accepted: 09/03/2007] [Indexed: 11/21/2022]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that possesses broad-spectrum antineoplastic activity, and is one of the most important anticancer agents. The purpose of this study was to investigate the effects of cyclosporine A (CsA) on the brain regional distribution of DOX and its liposome DOX formulation (Lipo-Dox). Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to measure DOX in rat plasma and in various brain regions (cerebral cortex, hippocampus, striatum, midbrain, cerebellum, and the rest of brain). Good linearity was achieved over the 5-5000ng/mL range, with coefficients of correlation greater than 0.995. The limit of quantification for doxorubicin was 5ng/mL. This study was divided into the following four groups: DOX alone, DOX+CsA, Lipo-Dox alone and Lipo-Dox+CsA. After administering DOX (5mg/kg, i.v.) alone and DOX+CsA (10mg/kg, i.v.), it was undetectable in various brain regions. When the same dose of Lipo-Dox (5mg/kg, i.v.) and Lipo-Dox+CsA (10mg/kg, i.v.) were given individually, the plasma level and the brain regional level of DOX were much greater than those of DOX given alone. These results indicate that Lipo-Dox prolongs the DOX level in plasma and enhances brain distribution of DOX. The disposition of DOX might be regulated by P-glycoprotein.
Collapse
|