1
|
Elhabal SF, Al-Zuhairy SAS, El-Nabarawi M, Mohamed Elrefai MF, Shoela MS, Hababeh S, Nelson J, Abdel Khalek MA, Fady M, Elzohairy NA, Amin ME, Khamis GM, Rizk A, Ahmed SM, El-Rashedy AA, Mohany M, Al-Roujayee AS, Faheem AM, Amin A. Enhancing Photothermal Therapy for Antibiofilm Wound Healing: Insights from Graphene Oxide-Cranberry Nanosheet Loaded Hydrogel in vitro, in silico, and in vivo Evaluation. Int J Nanomedicine 2024; 19:12999-13027. [PMID: 39651355 PMCID: PMC11625196 DOI: 10.2147/ijn.s482836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Background Diabetic foot ulcers present a formidable challenge due to colonization by biofilm-forming microorganisms, heightened oxidative stress, and continuous wound maceration caused by excessive exudation. Methods To address these issues, we developed a robust, stretchable, electro-conductive, self-healing, antioxidant, and antibiofilm hydrogel. This hydrogel was synthesized through the crosslinking of polyvinyl alcohol (PVA) and chitosan (CH) with boric acid. To enhance its antimicrobial efficacy, graphene oxide (GO), produced via electrochemical exfoliation in a zinc ion-based electrolyte medium, was incorporated. For optimal antibiofilm performance, GO was functionalized with cranberry (CR) phenolic extracts, forming a graphene oxide-cranberry nanohybrid (GO-CR). Results The incorporation of GO-CR into the hydrogel significantly improved its stretchability (280% for PVA/CH/GO-CR compared to 200% for PVA/CH). Additionally, the hydrogel demonstrated efficient photothermal conversion under near-infrared (NIR) light, enabling dynamic exudate removal, which is expected to minimize retained exudate between the wound and the dressing, reducing the risk of wound maceration. The hydrogel effectively reduced levels of lipopolysaccharide (LPS)-induced skin inflammation markers, significantly lowering the expression of NLRP3, TNF-α, IL-6, and IL-1β by 39.2%, 31.9%, 41%, and 52.3%, respectively. Histopathological and immunohistochemical analyses further confirmed reduced inflammation and enhanced wound healing. Conclusion The PVA/CH/GO-CR hydrogel exhibits multifunctional properties that enhance wound healing ulcers. Its superior mechanical, antibacterial, and anti-inflammatory properties and ability to promote angiogenesis make it a promising candidate for effective wound management in diabetic patients.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | | | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Fathi Mohamed Elrefai
- Department of Anatomy, physiology and Biochemistry, Faculty of Medicine, the Hashemite University, Zarqa, Jordan
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mai S Shoela
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sandra Hababeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jakline Nelson
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mohamed A Abdel Khalek
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Marwa Fady
- Zagazig University Hospitals, Infection Control Unit, Zagazig, 44519, Egypt
- Modern University for Technology & Information, Department of Microbiology and Immunology, Pharmacy College., Cairo Governorat, Egypt
| | - Nahla A Elzohairy
- Modern University for Technology & Information, Department of Microbiology and Immunology, Pharmacy College., Cairo Governorat, Egypt
- Air Force Specialized Hospital, Cairo, Egypt
| | - Mariam E Amin
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Gehad M Khamis
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira Rizk
- Food Science and technology, Department Faculty of Agricultural, Tanta University, Tanta, Egypt
| | - Sara Mohamed Ahmed
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, 12585, Egypt
| | - Ahmed A El-Rashedy
- Chemistry of Natural and Microbial Products Department, National Research Center (NRC), Giza, Egypt
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz S Al-Roujayee
- Department of Dermatology and Venereology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ahmed Mohsen Faheem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amr Amin
- College of Medicine, Sharjah University, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Budiman A, Anastasya G, Handini AL, Lestari IN, Subra L, Aulifa DL. Characterization of Drug with Good Glass-Forming Ability Loaded Mesoporous Silica Nanoparticles and Its Impact Toward in vitro and in vivo Studies. Int J Nanomedicine 2024; 19:2199-2225. [PMID: 38465205 PMCID: PMC10924831 DOI: 10.2147/ijn.s453873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Solid oral dosage forms are mostly preferred in pharmaceutical formulation development due to patient convenience, ease of product handling, high throughput, low manufacturing costs, with good physical and chemical stability. However, 70% of drug candidates have poor water solubility leading to compromised bioavailability. This phenomenon occurs because drug molecules are often absorbed after dissolving in gastrointestinal fluid. To address this limitation, delivery systems designed to improve the pharmacokinetics of drug molecules are needed to allow controlled release and target-specific delivery. Among various strategies, amorphous formulations show significantly high potential, particularly for molecules with solubility-limited dissolution rates. The ease of drug molecules to amorphized is known as their glass-forming ability (GFA). Specifically, drug molecules categorized into class III based on the Taylor classification have a low recrystallization tendency and high GFA after cooling, with substantial "glass stability" when heated. In the last decades, the application of mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS) has gained significant attention in various investigations and the pharmaceutical industry. This is attributed to the unique physicochemical properties of MSNs, including high loading capacity, recrystallization inhibition, excellent biocompatibility, and easy functionalization. Therefore, this study aimed to discuss the current state of good glass former drug loaded mesoporous silica and shows its impact on the pharmaceutical properties including dissolution and physical stability, along with in vivo study. The results show the importance of determining whether mesoporous structures are needed in amorphous formulations to improve the pharmaceutical properties of drug with a favorable GFA.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Gracia Anastasya
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Ira Novianty Lestari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Laila Subra
- Department of Pharmacy, Universiti Geomatika Malaysia, Kuala Lumpur, Malaysia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
3
|
Aldeeb RAE, Mahdy MAEG, El-Nahas HM, Musallam AA. Design of mirtazapine solid dispersion with different carriers' systems: optimization, in vitro evaluation, and bioavailability assessment. Drug Deliv Transl Res 2023:10.1007/s13346-023-01316-9. [PMID: 36940079 PMCID: PMC10382405 DOI: 10.1007/s13346-023-01316-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/21/2023]
Abstract
The solid dispersion technique is the most effective and widely used approach for increasing the solubility and release of drugs that have low water solubility. Mirtazapine (MRT) is an atypical antidepressant used to treat severe depression. MRT has a low oral bioavailability (about 50%) due to its low water solubility (BCS class II). The study's goal was to determine optimum conditions for incorporating MRT into various polymer types utilizing the solid dispersion (SD) technique, with the goal of selecting the most suitable formula with the optimal aqueous solubility, loading efficiency, and dissolution rate. The D-optimal design was used to pick the optimal response. The optimum formula was subjected to physicochemical evaluation by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM). In vivo bioavailability study was conducted on white rabbits' plasma samples. MRT-SDs were prepared by the solvent evaporation method using Eudragit (RL-100, RS-100, E-100, L-100-55), PVP K-30, and PEG 4000 with different drug/polymer percentages (33.33%, 49.99%, and 66.66%). Results showed that the optimum formula obtained using PVP K-30 at a drug percentage of 33.33% gave a loading efficiency of 100.93%, an aqueous solubility of 0.145 mg/ml, and a dissolution rate of 98.12% after 30 min. These findings demonstrated promising enhancement of MRT properties and increasing its oral bioavailability by 1.34-fold more than plain drug.
Collapse
Affiliation(s)
- Reem Abd Elhameed Aldeeb
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, 12582, Egypt.
| | | | | | - Abeer Abdelaziz Musallam
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, 12582, Egypt
| |
Collapse
|
4
|
Han J, Zhang C, Zhang Y, Liu X, Wang J. Mechanistic insight into gel formation of co-amorphous resveratrol and piperine during dissolution process. Int J Pharm 2023; 634:122644. [PMID: 36716831 DOI: 10.1016/j.ijpharm.2023.122644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Different from previous co-amorphous systems, co-amorphous resveratrol and piperine (namely RES-PIP CM) showed much lower dissolution in comparison to the original two crystalline drugs owing to its gel formation during dissolution. The purpose of this study is to investigate the mechanism of gel formation and seek strategies to eliminate such gelation. It was found that the dissolution performance of RES-PIP CM and the properties of formed gels were significantly affected by the medium temperature and stoichiometric ratio of components. Multiple characterization results confirmed that the gelation process underwent the decrease of Tg caused by water plasticization, and then entered into its supercooled liquid state with high viscosity, accompanied by self-assembly of molecules. Furthermore, the study answered the question that whether such gelation of RES-PIP CM could be eliminated by porous carrier materials. The materials, mesoporous silica (MES) and attapulgite (ATT), provided barrier and well separation between molecules and particles of RES-PIP CM by the pore steric hindrance, and impeded the self-assembly and aggregation, hence achieving the degelation and dissolution improvement. The present study highlights the importance of recognizing gelation potential of some co-amorphous formulations, and provides an effective strategy to eliminate gelation in developing high quality co-amorphous drug products.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China
| | - Chuchu Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China
| | - Yanpei Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China.
| |
Collapse
|
5
|
Raffaini G, Catauro M. Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study. MATERIALS 2022; 15:ma15082759. [PMID: 35454451 PMCID: PMC9028380 DOI: 10.3390/ma15082759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022]
Abstract
Biomaterial-based drug delivery systems for a controlled drug release are drawing increasing attention thanks to their possible pharmaceutical and biomedical applications. It is important to control the local administration of drugs, especially when the drug exhibits problems diffusing across biological barriers. Thus, in an appropriate concentration, it would be released in situ, reducing side effects due to interactions with the biological environment after implantation. A theoretical study based on Molecular Mechanics and Molecular Dynamics methods is performed to investigate possible surface interactions between the amorphous SiO2 surface and the ketoprofen molecules, an anti-inflammatory drug, considering the role of drug concentration. These theoretical results are compared with experimental data obtained by analyzing, through Fourier transform infrared spectroscopy (FT-IR), the interaction between the SiO2 amorphous surface and two percentages of the ketoprofen drug entrapped in a silica matrix obtained via the sol–gel method and dried materials. The loaded drug in these amorphous bioactive material forms hydrogen bonds with the silica surface, as found in this theoretical study. The surface interactions are essential to have a new generation of biomaterials not only important for biocompatibility, with specific structural and functional properties, but also able to incorporate anti-inflammatory agents for release into the human body.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering ‘‘Giulio Natta’’, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy
- Correspondence: (G.R.); (M.C.)
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
- Correspondence: (G.R.); (M.C.)
| |
Collapse
|
6
|
Dadej A, Woźniak-Braszak A, Bilski P, Piotrowska-Kempisty H, Józkowiak M, Pawełczyk A, Dadej D, Łażewska D, Jelińska A. Improved solubility of lornoxicam by inclusion into SBA-15: Comparison of loading methods. Eur J Pharm Sci 2022; 171:106133. [DOI: 10.1016/j.ejps.2022.106133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/09/2021] [Accepted: 01/19/2022] [Indexed: 11/03/2022]
|
7
|
Dadej A, Woźniak-Braszak A, Bilski P, Piotrowska-Kempisty H, Józkowiak M, Geszke-Moritz M, Moritz M, Dadej D, Jelińska A. Modification of the Release of Poorly Soluble Sulindac with the APTES-Modified SBA-15 Mesoporous Silica. Pharmaceutics 2021; 13:pharmaceutics13101693. [PMID: 34683986 PMCID: PMC8537723 DOI: 10.3390/pharmaceutics13101693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of oral drug administration is related to the solubility of a drug in the gastrointestinal tract and its ability to penetrate the biological membranes. As most new drugs are poorly soluble in water, there is a need to develop novel drug carriers that improve the dissolution rate and increase bioavailability. The aim of this study was to analyze the modification of sulindac release profiles in various pH levels with two APTES ((3-aminopropyl)triethoxysilane)-modified SBA-15 (Santa Barbara Amorphous-15) silicas differing in 3-aminopropyl group content. Furthermore, we investigated the cytotoxicity of the analyzed molecules. The materials were characterized by differential scanning calorimetry, powder X-ray diffraction, scanning and transmission electron microscopy, proton nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Sulindac loaded on the SBA-15 was released in the hydrochloric acidic medium (pH 1.2) and phosphate buffers (pH 5.8, 6.8, and 7.4). The cytotoxicity studies were performed on Caco-2 cell line. The APTES-modified SBA-15 with a lower adsorption capacity towards sulindac released the drug in a less favorable manner. However, both analyzed materials improved the dissolution rate in acidic pH, as compared to crystalline sulindac. Moreover, the SBA-15, both before and after drug adsorption, exhibited insignificant cytotoxicity towards Caco-2 cells. The presented study evidenced that SBA-15 could serve as a non-toxic drug delivery system that enhances the dissolution rate of sulindac and improves its bioavailability.
Collapse
Affiliation(s)
- Adrianna Dadej
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland;
- Correspondence:
| | - Aneta Woźniak-Braszak
- Functional Materials Physics Division, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Paweł Bilski
- Medical Physics and Radiospectroscopy Division, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (H.P.-K.); (M.J.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (H.P.-K.); (M.J.)
| | - Małgorzata Geszke-Moritz
- Medical Biotechnology and Laboratory Medicine, Department of Pharmacognosy and Natural Medicines, Faculty of Pharmacy, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Michał Moritz
- Medical Biotechnology and Laboratory Medicine, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Daniela Dadej
- Chair and Department of Endocrinology, Metabolism and Internal Diseases, Faculty of Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Anna Jelińska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland;
| |
Collapse
|
8
|
Experimental and theoretical studies of the interaction of ketoprofen in halloysite nanotubes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Mesoporous Silica-Bioglass Composite Pellets as Bone Drug Delivery System with Mineralization Potential. Int J Mol Sci 2021; 22:ijms22094708. [PMID: 33946793 PMCID: PMC8124432 DOI: 10.3390/ijms22094708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, local bone drug delivery systems have been investigated in terms of their application in regenerative medicine. Among them, inorganic polymers based on amorphous silica have been widely explored. In this work, we combined two types of amorphous silica: bioglass and doxycycline-loaded mesoporous silica MCM-41 into the form of spherical granules (pellets) as a bifunctional bone drug delivery system. Both types of silica were obtained in a sol-gel method. The drug adsorption onto the MCM-41 was performed via adsorption from concentrated doxycycline hydrochloride solution. Pellets were obtained on a laboratory scale using the wet granulation-extrusion-spheronization method and investigated in terms of physical properties, drug release, antimicrobial activity against Staphylococcus aureus, mineralization properties in simulated body fluid, and cytotoxicity towards human osteoblasts. The obtained pellets were characterized by satisfactory mechanical properties which eliminated the risk of pellets cracking during further investigations. The biphasic drug release from pellets was observed: burst stage (44% of adsorbed drug released within the first day) followed by prolonged release with zero-order kinetics (estimated time of complete drug release was 19 days) with maintained antimicrobial activity. The progressive biomimetic apatite formation on the surface of the pellets was observed. No cytotoxic effect of pellets towards human osteoblasts was noticed.
Collapse
|
10
|
Wu Q, Feng D, Huang Z, Chen M, Yang D, Pan X, Lu C, Quan G, Wu C. Supersaturable organic-inorganic hybrid matrix based on well-ordered mesoporous silica to improve the bioavailability of water insoluble drugs. Drug Deliv 2020; 27:1292-1300. [PMID: 32885715 PMCID: PMC7580725 DOI: 10.1080/10717544.2020.1815898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 12/01/2022] Open
Abstract
Mesoporous silica with uniform 2-D hexagonal pores has been newly employed as facile reservoir to impove the dissolution rate of water insoluble drugs. However, rapid drug release from mesoporous silica is usually accompanied by the generation of supersaturated solution, which leads to the drug precipitation and compromised absorption. To address this issue, a supersaturated ternary hybrid system was constructed in this study by utilizing inorganic mesoporous silica and organic precipitation inhibitor. Vinylprrolidone-vinylacetate copolymer (PVP VA64) with similar solubility parameter to model drug fenofibrate (FNB) was expected to well inhibit the precipitation. Mesoporous silica Santa Barbara amorphous-15 (SBA-15) was synthesized in acidic media and hybrid matrix was produced by hot melt extrusion technique. The results of in vitro supersaturation dissolution test obviously revealed that the presence of PVP VA64 could effectively sustain a higher apparent concentration. PVP VA64 was suggested to simultaneously reduce the rate of nucleation and crystal growth and subsequently maintain a metastable supersaturated state. The absorption of FNB delivered by the organic-inorganic hybrid matrix was remarkably enhanced in beagle dogs, and its AUC value was 1.92-fold higher than that of FNB loaded mesoporous silica without PVP VA 64. In conclusion, the supersaturated organic-inorganic hybrid matrix can serve as a modular strategy to enhance the oral availability of water insoluble drugs.
Collapse
Affiliation(s)
- Qiaoli Wu
- College of Pharmacy, Jinan University, Guangzhou, China
- Department of Pharmacy, Zengcheng District People’s Hospital, Guangzhou, China
| | - Disang Feng
- College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Yang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Sato Y, Ikoma T, Wakita R, Fukayama H. Interfacial interaction of anesthetic lidocaine and mesoporous silica nanoparticles in aqueous solutions and its release properties. J Mater Chem B 2019; 7:7026-7032. [PMID: 31638628 DOI: 10.1039/c9tb01999e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lidocaine has been used as a local anesthetic by injection. The controlled release of lidocaine loaded into nanospheres is necessary to reduce the onset time of the anesthetic effect or increase the anesthetic analgesia duration. In this study, mesoporous silica nanoparticles (MSNs) with a large specific surface area were prepared by a sol-gel method, and the interfacial interaction between MSNs and lidocaine positively charged in aqueous solutions at different concentrations was investigated by adsorption tests, Fourier-transformed infrared spectroscopy, thermogravimetry-differential thermal analysis, and Brunauer-Emmett-Teller (BET) measurements. The electrostatic interaction between Si-OH on MSNs and lidocaine-NH+ was of importance for the adsorption phenomenon in aqueous solutions, indicating the monolayer adsorption of lidocaine. BET measurements also supported the decrease of pore volumes, and the hysteresis loop of the isotherm curve was not closed since the condensation of lidocaine in the mesopores formed micropores of less than 1.5 nm in size. The release profiles in phosphate buffered saline containing calcium and magnesium ions showed a rapid and higher release of lidocaine compared with that in phosphate buffered saline without divalent cations. The released lidocaine concentrations were sufficient for the expression of the anesthetic effect in dental anesthesia.
Collapse
Affiliation(s)
- Yu Sato
- Tokyo Medical and Dental University, School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | | | | | | |
Collapse
|
12
|
Shah P, Rajput SJ. Investigation of in vitro permeability and in vivo pharmacokinetic behavior of bare and functionalized MCM-41 and MCM-48 mesoporous silica nanoparticles: a burst and controlled drug release system for raloxifene. Drug Dev Ind Pharm 2019; 45:587-602. [PMID: 30633575 DOI: 10.1080/03639045.2019.1569028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the present work, MCM-41 and MCM-48 type of nanoparticles were successfully engineered. Effect of nanosize and amine functionalization on drug release, in vitro intestinal absorption and in vivo pharmacokinetic behavior was investigated in a comprehensive manner. The tailor-made bare and surface decorated MCM-41 and MCM-48 were synthesized and evaluated for their mesoporous skeleton, pore size, particle size, surface area, zeta potential, etc. by nitrogen sorption, DLS, TEM, etc. Incorporation of raloxifene (RLF) was affirmed using optimized immersion-solvent evaporation technique and its success confirmed by DSC, IR, and XRD analysis. TGA analysis revealed higher %grafting of amine groups on the exterior and larger RLF encapsulation into mesoporous derivate. The detailed in vitro release study revealed SGF to be the most compatible media for RLF showing an initial burst release from pristine nanoparticles and a delayed release from surface coated nanoparticles. Furthermore, release kinetics model data demonstrated Weibull and Higuchi as the best fit models for bare and amine-functionalized nanoparticles respectively. Moreover, an in vitro permeability study on Caco-2 cell line revealed higher absorption by engineered nanoparticle as compared to pure RLF and its marketed formulation. The supremacy in the in vivo pharmacokinetic parameters of RLF-41 and RLF-48 was demonstrated with 3.33 and 3.50 times enhancement in the bioavailability of RLF with respect to RLF suspension. To sum up, the results obtained were superior and promising for synthesized nanoparticles and more precisely for MCM-48 amongst them.
Collapse
Affiliation(s)
- Priya Shah
- a Department of Pharmaceutical Quality Assurance , Center for Excellence in Drug Delivery, The Maharaja Sayajirao University of Baroda , Vadodara , Gujarat , India
| | - Sadhana J Rajput
- a Department of Pharmaceutical Quality Assurance , Center for Excellence in Drug Delivery, The Maharaja Sayajirao University of Baroda , Vadodara , Gujarat , India
| |
Collapse
|
13
|
Saroj S, Rajput SJ. Composite smart mesoporous silica nanoparticles as promising therapeutic and diagnostic candidates: Recent trends and applications. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Riikonen J, Xu W, Lehto VP. Mesoporous systems for poorly soluble drugs – recent trends. Int J Pharm 2018; 536:178-186. [DOI: 10.1016/j.ijpharm.2017.11.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
|
15
|
Wei Y, Gao L, Wang L, Shi L, Wei E, Zhou B, Zhou L, Ge B. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv 2017; 24:681-691. [PMID: 28414557 PMCID: PMC8241003 DOI: 10.1080/10717544.2017.1309475] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
We reported a simple polydopamine (PDA)-based surface modification method to prepare novel targeted doxorubicin-loaded mesoporous silica nanoparticles and peptide CSNRDARRC conjugation (DOX-loaded MSNs@PDA-PEP) for enhancing the therapeutic effects on bladder cancer. Drug-loaded NPs were characterized in terms of size, size distribution, zeta potential, transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area and drug loading content. In vitro drug release indicated that DOX-loaded MSNs@PDA and MSNs@PDA-PEP had similar release kinetic profiles of DOX. The PDA coating well controlled DOX release and was highly sensitive to pH value. Confocal laser scanning microscopy (CLSM) showed that drug-loaded MSNs could be internalized by human bladder cancer cell line HT-1376, and DOX-loaded MSNs@PDA-PEP had the highest cellular uptake efficiency due to ligand-receptor recognition. The antitumor effects of DOX-loaded nanoparticles were evaluated by the MTT assay in vitro and by a xenograft tumor model in vivo, demonstrating that targeted nanocarriers DOX-loaded MSNs@PDA-PEP were significantly superior to free DOX and DOX-loaded MSNs@PDA. The novel DOX-loaded MSNs@PDA-PEP, which specifically recognized HT-1376 cells, can be used as a potential targeted drug delivery system for bladder cancer therapy.
Collapse
Affiliation(s)
- Yi Wei
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| | - Li Gao
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| | - Lu Wang
- b College of Biotechnology , and
| | - Lin Shi
- c Pharmaceutical College, Guilin Medical University , Guilin , P.R. China
| | - Erdong Wei
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| | - Baotong Zhou
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| | - Li Zhou
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| | - Bo Ge
- a Department of Urology , Affiliated Hospital of Guilin Medical University , Guilin , P.R. China
| |
Collapse
|
16
|
Andreu V, Arruebo M. Current progress and challenges of nanoparticle-based therapeutics in pain management. J Control Release 2017; 269:189-213. [PMID: 29146243 DOI: 10.1016/j.jconrel.2017.11.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023]
Abstract
Pain is a widespread and growing health problem worldwide that exerts a considerable social and economic impact on both patients and healthcare systems and, therefore, on society in general. Although current treatment modalities include a wide variety of pharmacological and non-pharmacological approaches, due to the complexity of pain and individual differences in clinical response these options are not always effective in mitigating and relieving pain. In addition, some pain drugs such as non-steroidal anti-inflammatory drugs (NSAIDs), local anesthetics and opioids show several unfavorable side effects. Therefore, current research advances in this medical field are based on the development of potential treatments to address many of the unmet needs and to overcome the existing limitations in pain management. Nanoparticle drug delivery systems present an exciting opportunity as alternative platforms to improve efficacy and safety of medications currently in use. Herein, we review a broad range of nanoparticle formulations (organic nanostructures and inorganic nanoparticles), which have been developed to encapsulate an array of painkillers, paying special attention to the key advantages that these systems offer, (compared to the use of the free drug), as well as to the more relevant results of preclinical studies in animal models. Additionally, we will briefly discuss the impact of some of these nanoformulations in clinical trials.
Collapse
Affiliation(s)
- Vanesa Andreu
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS), Aragón, 50009 Zaragoza, Spain.
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS), Aragón, 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
17
|
Jog R, Burgess DJ. Pharmaceutical Amorphous Nanoparticles. J Pharm Sci 2017; 106:39-65. [DOI: 10.1016/j.xphs.2016.09.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 01/18/2023]
|