1
|
Silva IR, Souza MACE, Machado RR, Oliveira RBD, Leite EA, César IDC. Enhancing oral bioavailability of an antifungal thiazolylhydrazone derivative: Development and characterization of a self-emulsifying drug delivery system. Int J Pharm 2024; 655:124011. [PMID: 38493843 DOI: 10.1016/j.ijpharm.2024.124011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
RN104 (2-[2-(cyclohexylmethylene)hydrazinyl)]-4-phenylthiazole) is a thiazolylhydrazone derivative with prominent antifungal activity. This work aimed to develop a self-emulsifying drug delivery system (SEDDS) loaded with RN104 to improve its biopharmaceutical properties and enhance its oral bioavailability. Medium chain triglycerides, sorbitan monooleate, and polysorbate 80 were selected as components for the SEDDS formulation based on solubility determination and a pseudo-ternary phase diagram. The formulation was optimized using the central composite design in response surface methodology. The optimized condition consisted of medium chain triglycerides, sorbitan monooleate, and polysorbate 80 in a mass ratio of 65.5:23.0:11.5, achieving maximum drug loading (10 mg/mL) and minimum particle size (118.4 ± 0.7 nm). The developed RN104-SEDDS was fully characterized using dynamic light scattering, in vitro release studies, stability assessments, polarized light microscopy, and transmission electron microscopy. In vivo pharmacokinetic studies in mice demonstrated that RN104-SEDDS significantly improved oral bioavailability compared to free RN104 (the relative bioavailability was 2133 %). These results clearly indicated the successful application of SEDDS to improve the pharmacokinetic profile and to enhance the oral bioavailability of RN104, substantiating its potential as a promising antifungal drug candidate.
Collapse
Affiliation(s)
- Iara Rinco Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Araújo Castro E Souza
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Renes Resende Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Amaral Leite
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Isabela da Costa César
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Lima M, Moreira B, Bertuzzi R, Lima-Silva A. Could nanotechnology improve exercise performance? Evidence from animal studies. Braz J Med Biol Res 2024; 57:e13360. [PMID: 38656076 PMCID: PMC11027182 DOI: 10.1590/1414-431x2024e13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
This review provides the current state of knowledge regarding the use of nutritional nanocompounds on exercise performance. The reviewed studies used the following nanocompounds: resveratrol-loaded lipid nanoparticles, folic acid into layered hydroxide nanoparticle, redox-active nanoparticles with nitroxide radicals, and iron into liposomes. Most of these nutritional nanocompounds seem to improve performance in endurance exercise compared to the active compound in the non-nanoencapsulated form and/or placebo. Nutritional nanocompounds also induced the following physiological and metabolic alterations: 1) improved antioxidant activity and reduced oxidative stress; 2) reduction in inflammation status; 3) maintenance of muscle integrity; 4) improvement in mitochondrial function and quality; 5) enhanced glucose levels during exercise; 6) higher muscle and hepatic glycogen levels; and 7) increased serum and liver iron content. However, all the reviewed studies were conducted in animals (mice and rats). In conclusion, nutritional nanocompounds are a promising approach to improving exercise performance. As the studies using nutritional nanocompounds were all conducted in animals, further studies in humans are necessary to better understand the application of nutritional nanocompounds in sport and exercise science.
Collapse
Affiliation(s)
- M.R. Lima
- Grupo de Pesquisa em Desempenho Humano, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| | - B.J. Moreira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | - R. Bertuzzi
- Grupo de Estudos em Desempenho Aeróbio, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A.E. Lima-Silva
- Grupo de Pesquisa em Desempenho Humano, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
3
|
Silva RA, Damasio DS, Coelho LD, de Morais-Teixeira E, Queiroz-Junior CM, Souza PE, Azevedo RB, Tedesco A, Ferreira LA, Oliveira MC, Aguiar MG. Combination of the Topical Photodynamic Therapy of Chloroaluminum Phthalocyanine Liposomes with Fexinidazole Oral Self-Emulsifying System as a New Strategy for Cutaneous Leishmaniasis Treatment. Pharmaceutics 2024; 16:509. [PMID: 38675171 PMCID: PMC11054953 DOI: 10.3390/pharmaceutics16040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical disease. The treatment is restricted to drugs, such as meglumine antimoniate and amphotericin B, that exhibit toxic effects, high cost, long-term treatment, and limited efficacy. The development of new alternative therapies, including the identification of effective drugs for the topical and oral treatment of CL, is of great interest. In this sense, a combination of topical photodynamic therapy (PDT) with chloroaluminum phthalocyanine liposomes (Lip-ClAlPc) and the oral administration of a self-emulsifying drug delivery system containing fexinidazole (SEDDS-FEX) emerges as a new strategy. The aim of the present study was to prepare, characterize, and evaluate the efficacy of combined therapy with Lip-ClAlPc and SEDDS-FEX in the experimental treatment of Leishmania (Leishmania) major. Lip-ClAlPc and SEDDS-FEX were prepared, and the antileishmanial efficacy study was conducted with the following groups: 1. Lip-ClAlPc (0.05 mL); 2. SEDDS-FEX (50 mg/kg/day); 3. Lip-ClAlPc (0.05 mL)+SEDDS-FEX (50 mg/kg/day) combination; 4. FEX suspension (50 mg/kg/day); and 5. control (untreated). BALB/c mice received 10 sessions of topical Lip-ClAlPc on alternate days and 20 consecutive days of SEDDS-FEX or FEX oral suspension. Therapeutical efficacy was evaluated via the parasite burden (limiting-dilution assay), lesion size (mm), healing of the lesion, and histological analyses. Lip-ClAlPc and SEDDS-FEX presented physicochemical characteristics that are compatible with the administration routes used in the treatments. Lip-ClAlPc+SEDDS-FEX led to a significant reduction in the parasitic burden in the lesion and spleen when compared to the control group (p < 0.05) and the complete healing of the lesion in 43% of animals. The Lip-ClAlPc+SEDDS-FEX combination may be promising for the treatment of CL caused by L. major.
Collapse
Affiliation(s)
- Raphaela Ariany Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| | - Danielle Soter Damasio
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| | - Larissa Dutra Coelho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| | - Eliane de Morais-Teixeira
- Clinical Research and Public Policy Group on Infectious and Parasitic Diseases, Instituto René Rachou, Fundação Oswaldo Cruz—FIOCRUZ, Belo Horizonte 330190-002, Brazil;
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Paulo Eduardo Souza
- Laboratory of Software and Instrumentation in Applied Physics and Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasília, Brasília 70910-900, Brazil;
| | - Ricardo Bentes Azevedo
- Nanobiotechnology Laboratory, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil;
| | - Antônio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering—Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil;
| | - Lucas Antônio Ferreira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| | - Marta Gontijo Aguiar
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| |
Collapse
|
4
|
Khairnar H, Jain S, Chatterjee B. Lactoferrin Reduces Surfactant Content in the Self-Emulsifying Drug Delivery System. ACS OMEGA 2024; 9:13612-13620. [PMID: 38559959 PMCID: PMC10976358 DOI: 10.1021/acsomega.3c06645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Self-emulsifying drug delivery systems (SEDDSs) can effectively be employed to formulate drugs with poor oral bioavailability due to low aqueous solubility and high first-pass metabolism. High surfactant content is an existing challenge toward the successful application of SEDDS. A SEDDS is developed with lactoferrin, a natural emulsifier to reduce the Tween content of a fenofibrate (FEN) formulation. FEN SEDDS (SEDDS without lactoferrin) and FEN Lf-SEDDS (SEDDS with lactoferrin) were developed with 30% and 21% Tween content, respectively. Both formulations containing Crodamol GTCC as a lipid component were thermodynamically stable. No significant difference was observed in zeta potential (-9.25 to -12.63 mV), drug content (>85%), and percentage transmittance (>99%) between the two formulations. FEN Lf-SEDDS resulted in higher viscosity and larger particle size than FEN SEDDS. Solidified SEDDS with Aerosil 200 significantly improved in vitro drug release from both formulations than pure FEN. However, FEN SEDDS and FEN Lf-SEDDS did not show a significant difference in cumulative percent release or dissolution efficiency at 120 min. It can be concluded that lactoferrin containing SEDDS with 27% lesser synthetic surfactants (Tween 80 and Span 80) can result in similar physicochemical characteristics. Oral pharmacokinetic study of FEN Lf-SEDDS in a rat model resulted in 1.3 and 5.5 times higher relative bioavailability than marketed product and pure drug, respectively. The addition of lactoferrin could substitute synthetic surfactants in self-emulsifying drug delivery systems significantly.
Collapse
Affiliation(s)
- Harish Khairnar
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai 400056, India
| | - Sanya Jain
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai 400056, India
| | - Bappaditya Chatterjee
- Gitam
School of Pharmacy, Gitam (Deemed to be)
University, Hyderabad, Telangana 502329, India
| |
Collapse
|
5
|
Okur NÜ, Çağlar EŞ, Kaynak MS, Diril M, Özcan S, Karasulu HY. Enhancing Oral Bioavailability of Domperidone Maleate: Formulation, In vitro Permeability Evaluation In-caco-2 Cell Monolayers and In situ Rat Intestinal Permeability Studies. Curr Drug Deliv 2024; 21:1010-1023. [PMID: 36786136 PMCID: PMC11092562 DOI: 10.2174/1567201820666230214091509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND The domperidone maleate, a lipophilic agent classified as a Biopharmaceutical Classification System Class II substance with weak water solubility. Self- Emulsifying Drug Delivery System is a novel approach to improve water solubility and, ultimately bioavailability of drugs. OBJECTIVE This study aimed to develop and characterize new domperidone-loaded self-emulsifying drug delivery systems as an alternative formulation and to evaluate the permeability of domperidone-loaded self-emulsifying drug delivery systems by using Caco-2 cells and via single-pass intestinal perfusion method. METHODS Three self-emulsifying drug delivery systems were prepared and characterized in terms of pH, viscosity, droplet size, zeta potential, polydispersity index, conductivity, etc. Each formulation underwent 10, 100, 200, and 500 times dilution in intestinal buffer pH 6.8 and stomach buffer pH 1.2, respectively. Female Sprague Dawley rats were employed for in situ single-pass intestinal perfusion investigations. RESULTS Results of the study revealed that the ideal self-emulsifying drug delivery systems formulation showed narrow droplet size, ideal zeta potential, and no conductivity. Additionally, as compared to the control groups, the optimum formulation had better apparent permeability (12.74 ± 0.02×10-4) from Caco-2 cell monolayer permeability experiments. The study also revealed greater Peff values (2.122 ± 0.892×10-4 cm/s) for the optimal formulation from in situ intestinal perfusion analyses in comparison to control groups (Domperidone; 0.802 ± 0.418×10-4 cm/s). CONCLUSION To conclude, prepared formulations can be a promising way of oral administration of Biopharmaceutical Classification System Class II drugs.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Sinan Kaynak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Mine Diril
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Saniye Özcan
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Hatice Yeşim Karasulu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
6
|
Sherif AY, Harisa GI, Alanazi FK. The Chimera of TPGS and Nanoscale Lipid Carriers as Lymphatic Drug Delivery Vehicles to Fight Metastatic Cancers. Curr Drug Deliv 2024; 21:525-543. [PMID: 37183467 DOI: 10.2174/1567201820666230512122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
The lymphatic system (LS) plays a crucial role in fluid balance, transportation of macromolecules, and immune response. Moreover, LS is a channel for microbial invasion and cancer metastasis. Particularly, solid tumors, including lung, breast, melanoma, and prostate cancers, are metastasized across highways of LS. Subsequently, the fabrication of chimeric lymphatic drug delivery systems (LDDS) is a promising strategy to fight cancer metastasis and control microbial pandemics. In this regard, LDDS, in terms of PEG-nanoscaled lipid carriers, elicited a revolution during the COVID-19 pandemic as cargoes for mRNA vaccines. The drug delivered by the lymphatic pathway escapes first-pass metabolism and enhances the drug's bioavailability. Ample approaches, including synthesis of prodrugs, trigging of chylomicron biosynthesis, and fabrication of nanocarriers, facilitate lymphatic drug delivery. Specifically, nanoscales lipid cargoes have the propensity to lymphatic trafficking. Interestingly, TPGSengineered nanoscale lipid cargoes enhance lymphatic trafficking, increase tissue permeation, and, specifically, uptake. Moreover, they overcome biological barriers, control biodistribution, and enhance organelles localization. Most anticancer agents are non-specific, have low bioavailability, and induced drug resistance. Therefore, TPGS-engineered nanoscale lipid chimeras improve the therapeutic impact of anticancer agents. This review highlights lymphatic cancer metastasis, nanoscales lipid cargoes as LDDS, and their influence on lymphatic trafficking, besides the methods of LDD studies.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Marwah H, Dewangan HK. Advancements in Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Breast Cancer Therapy. Curr Pharm Des 2024; 30:2922-2936. [PMID: 39150028 DOI: 10.2174/0113816128319233240725103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 08/17/2024]
Abstract
Solid Lipid Nanocarriers (SLNs) offer a promising avenue for breast cancer treatment, a disease that accounts for 12.5% of global cancer cases. Despite strides in combined therapies (surgery, chemotherapy, radiation, and endocrine therapy), challenges like systemic toxicity, drug resistance, and adverse effects persist. The manuscript offers several novel contributions to the field of breast cancer treatment through the use of SLNs, and these are innovative drug delivery systems, multifunctionality, and biocompatibility, the potential to overcome drug resistance, integration with emerging therapies, focus on personalized medicine, ongoing and future research directions and potential for reduced side effects. SLNs present a novel strategy due to their unique physicochemical properties. They can encapsulate both hydrophilic and hydrophobic drugs, ensuring controlled release and targeted delivery, thus enhancing solubility and bioavailability and reducing side effects. The multifunctional nature of SLNs improves drug delivery while their biocompatibility supports their potential in cancer therapy. Challenges for pharmacists include maintaining stability, effective drug loading, and timed delivery. Combining SLNs with emerging therapies like gene and immunotherapy holds promise for more effective breast cancer treatments. SLNs represent a significant advancement, providing precise drug delivery and fewer side effects, with the potential for overcoming drug resistance. Ongoing research will refine SLNs for breast cancer therapy, targeting cells with minimal side effects and integrating with other treatments for comprehensive approaches. Advances in nanotechnology and personalized medicine will tailor SLNs to specific breast cancer subtypes, enhancing effectiveness. Clinical trials and new treatment developments are crucial for realizing SLNs' full potential in breast cancer care. In conclusion, SLNs offer a transformative approach to breast cancer treatment, addressing issues of drug delivery and side effects. Ongoing research aims to optimize SLNs for targeted therapy, potentially revolutionizing breast cancer care and providing hope for patients.
Collapse
Affiliation(s)
- Harneet Marwah
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
8
|
Zheng K, Zhao J, Wang Q, Zhao Y, Yang H, Yang X, He L. Design and Evaluation of Ginkgolides Gastric Floating Controlled Release Tablets Based on Solid Supersaturated Self-nanoemulsifying. AAPS PharmSciTech 2023; 25:7. [PMID: 38147267 DOI: 10.1208/s12249-023-02717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
Ginkgolides are receptor antagonist of platelet activating factor with great clinical prospect, but its application is limited by its low solubility, short half-life and poor alkaline environment stability. It is difficult to solve these problems with a single drug delivery system. In this study, supersaturated self-nanoemulsifying gastric floating tablets of ginkgolides were developed through the combination of solid supersaturated self-nanoemulsifying drug delivery system (solid S-SNEDDS) and gastric retentive floating drug delivery system (GFDDS) to solve these problems of ginkgolides. Solid S-SNEDDS was prepared by D-optimal mixture design, normalization method and single factor experiment. The properties of solid-S-SNEDDS were studied by TEM, PXRD, FT-IR, SEM and in vitro drug release profile. Then, the optimal formulation of stomach floating tablet was obtained through single factor experiment and center composite design, followed by the study of in vitro release, model and mechanism of release, in vitro buoyancy and kinetics of erosion and swelling. PXRD and FT-IR showed that the drug in solid S-SNEDDS existed in an amorphous manner and formed hydrogen bond with excipients. The results showed that the cumulative release of GA and GB in the optimal tablets was 96.12% and 92.57% higher than the simple tablets within 12 h. The release mechanism of the tablet was skeleton erosion and drug diffusion. In 12 h, the optimal tablets can float stably in vitro and release the drug at a constant rate, with a cumulative release of more than 80%. In summary, the combination of SNEDDS and GFDDS is a promising means to solve the problems of ginkgolides.
Collapse
Affiliation(s)
- Kai Zheng
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Jing Zhao
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Qiuli Wang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Yuyang Zhao
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Husheng Yang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Xinggang Yang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China.
| | - Lian He
- Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Shenyang, 110042, China.
- Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, China.
| |
Collapse
|
9
|
Saraswat A, Vartak R, Hegazy R, Fu Y, Rao TJR, Billack B, Patel K. Oral lipid nanocomplex of BRD4 PROteolysis TArgeting Chimera and vemurafenib for drug-resistant malignant melanoma. Biomed Pharmacother 2023; 168:115754. [PMID: 37871557 DOI: 10.1016/j.biopha.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BRAF inhibitors (BRAFi) like vemurafenib (VEM) provide initial regression in mutated melanoma but rapidly develop resistance. Molecular pathways responsible for development of resistance against VEM finally converge towards the activation of oncogenic c-Myc. We identified an epigenetic approach to inhibit the c-Myc expression and resensitize BRAFi-resistant melanoma cells. ARV-825 (ARV) was employed as a BRD4 targeted PROteolysis TArgeting Chimera that selectively degrades the BRD4 to downregulate c-Myc. ARV synergistically enhanced the cytotoxicity of VEM in vitro to overcome its resistance in melanoma. Development of ARV and VEM-loaded lipid nanocomplex (NANOVB) significantly improved their physicochemical properties for oral delivery. Most importantly, oral administration of NANOVB substantially inhibited tumor growth at rate of 41.07 mm3/day in nude athymic mice. NANOVB treatment resulted in prolonged survival with 50% of mice surviving until the experimental endpoint. Histopathological analysis revealed significant tumor necrosis and downregulation of Ki-67 and BRD4 protein in vivo. Promising in vivo antitumor activity and prolonged survival demonstrated by NANOVB signifies its clinical translational potential for BRAFi-resistant melanoma.
Collapse
Affiliation(s)
- Aishwarya Saraswat
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Richa Vartak
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Rehab Hegazy
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yige Fu
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | | | - Blase Billack
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
10
|
Preeti, Sambhakar S, Saharan R, Narwal S, Malik R, Gahlot V, Khalid A, Najmi A, Zoghebi K, Halawi MA, Albratty M, Mohan S. Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review. Saudi Pharm J 2023; 31:101870. [PMID: 38053738 PMCID: PMC10694332 DOI: 10.1016/j.jsps.2023.101870] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
This review aims to provide a thorough examination of the benefits, challenges, and advancements in utilizing lipids for more effective drug delivery, ultimately contributing to the development of innovative approaches in pharmaceutical science. Lipophilic drugs, characterized by low aqueous solubility, present a formidable challenge in achieving effective delivery and absorption within the human body. To address this issue, one promising approach involves harnessing the potential of lipids. Lipids, in their diverse forms, serve as carriers, leveraging their unique capacity to enhance solubility, stability, and absorption of these challenging drugs. By facilitating improved intestinal solubility and selective lymphatic absorption of porously permeable drugs, lipids offer an array of possibilities for drug delivery. This versatile characteristic not only bolsters the pharmacological efficacy of drugs with low bioavailability but also contributes to enhanced therapeutic performance, ultimately reducing the required dose size and associated costs. This comprehensive review delves into the strategic formulation approaches that employ lipids as carriers to ameliorate drug solubility and bioavailability. Emphasis is placed on the critical considerations of lipid type, composition, and processing techniques when designing lipid-based formulations. This review meticulously examines the multifaceted challenges that come hand in hand with lipid-based formulations for lipophilic drugs, offering an insightful perspective on future trends. Regulatory considerations and the broad spectrum of potential applications are also thoughtfully discussed. In summary, this review presents a valuable repository of insights into the effective utilization of lipids as carriers, all aimed at elevating the bioavailability of lipophilic drugs.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
| | - Renu Saharan
- Maharishi Markandeswar Deemed to be University, Mullana, Ambala, Haryana 133203, India
| | - Sonia Narwal
- Panipat Institute of Engineering & Technology, Department of Pharmacy, GT Road, Samalkha, Panipat 132102, Haryana, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Vinod Gahlot
- HIMT College of Pharmacy, Knowledge Park - 1, Greater Noida, District - Gautam Buddh Nagar, UP 201310, India
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum 11111, Sudan
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Maryam A. Halawi
- Department of Cinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| |
Collapse
|
11
|
Dong J, Wang S, Mao J, Wang Z, Zhao S, Ren Q, Kang J, Ye J, Xu X, Zhu Y, Zhang Q. Preparation of Dihydromyricetin-Loaded Self-Emulsifying Drug Delivery System and Its Anti-Alcoholism Effect. Pharmaceutics 2023; 15:2296. [PMID: 37765265 PMCID: PMC10535266 DOI: 10.3390/pharmaceutics15092296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Intraperitoneal injection of dihydromyricetin (DMY) has shown promising potential in the treatment of alcoholism. However, its therapeutic effect is limited due to its low solubility, poor stability, and high gut-liver first-pass metabolism, resulting in very low oral bioavailability. In this study, we developed a DMY-loaded self-emulsifying drug delivery system (DMY-SEDDS) to enhance the oral bioavailability and anti-alcoholism effect of DMY. DMY-SEDDS improved the oral absorption of DMY by facilitating lymphatic transport. The area under the concentration-time curve (AUC) of DMY in the DMY-SEDDS group was 4.13-fold higher than in the DMY suspension group. Furthermore, treatment with DMY-SEDDS significantly enhanced the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in the liver of mice (p < 0.05). Interestingly, DMY-SEDDS also increased ADH activity in the stomach of mice with alcoholism (p < 0.01), thereby enhancing ethanol metabolism in the gastrointestinal tract and reducing ethanol absorption into the bloodstream. As a result, the blood alcohol concentration of mice with alcoholism was significantly decreased after DMY-SEDDS treatment (p < 0.01). In the acute alcoholism mice model, compared to saline treatment, DMY-SEDDS prolonged the onset of LORR (loss of righting reflex) (p < 0.05) and significantly shortened the duration of LORR (p < 0.01). Additionally, DMY-SEDDS treatment significantly reduced gastric injury in acute alcoholism mice. Collectively, these findings demonstrate the potential of DMY-SEDDS as a treatment in the treatment of alcoholism.
Collapse
Affiliation(s)
- Jianxia Dong
- Department of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (J.D.); (S.W.)
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (J.K.)
| | - Shu Wang
- Department of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (J.D.); (S.W.)
| | - Jiamin Mao
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Zhidan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (J.K.)
| | - Shiying Zhao
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Qiao Ren
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Jialing Kang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (J.K.)
| | - Jing Ye
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Xiaohong Xu
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Yujin Zhu
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Quan Zhang
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
- Chengdu Nature’s Grace Biological Technology Co., Ltd., Chengdu 610213, China
| |
Collapse
|
12
|
Rathee J, Malhotra S, Pandey M, Jain N, Kaul S, Gupta G, Nagaich U. Recent Update on Nanoemulsion Impregnated Hydrogel: a Gleam into the Revolutionary Strategy for Diffusion-Controlled Delivery of Therapeutics. AAPS PharmSciTech 2023; 24:151. [PMID: 37438613 DOI: 10.1208/s12249-023-02611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Since earlier times, dermatological remedies have been utilized to treat diseases associated with pain, irritation, and skin conditions. Compared to other routes of drug delivery, topical delivery of drugs offers several benefits. Scientists are investigating different alterations in dosage forms in addition to existing topical formulations such as ointments, gels, creams, lotions, and ointments to significantly improve the permeation of drugs and enhance the pharmacological efficacy of medications that are poorly absorbed via the skin. Conventional formulations have a plethora of problems viz. poor absorption, no target specificity, low spreadability, and inadequate bioavailability which leads the researchers toward developing novel formulations like nanoemulsions. The nanoemulsion can enhance the gradient in concentration and thermodynamic movement toward the epidermis and enhance the penetration of its constituents. However, due to its difficult application, nanoemulsion's lower viscosity limited its use in transdermal delivery. Thus, the development of nanoemulsion-based hydrogels has shown to be a successful strategy for removing obstacles from existing drug formulations. The simple application, expedient spreadability, non-stickiness, safety, and effectiveness of nanoemulsion-based hydrogel have led to substantial growth in their research in recent years. This review gives a brief idea about the prevalence of skin diseases, skin as an obstacle for drug delivery, and recent research insights to combat these obstacles. The work highlights the mechanism of drug release via nanoemulsion, hydrogels, and nanoemulsion-based hydrogels with reference to recent research on hydrophobic and hydrophilic drugs.
Collapse
Affiliation(s)
- Jatin Rathee
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Sakshi Malhotra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India.
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India.
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| |
Collapse
|
13
|
Mirzaeei S, Tahmasebi N, Islambulchilar Z. Optimization of a Self-microemulsifying Drug Delivery System for Oral Administration of the Lipophilic Drug, Resveratrol: Enhanced Intestinal Permeability in Rat. Adv Pharm Bull 2023; 13:521-531. [PMID: 37646050 PMCID: PMC10460816 DOI: 10.34172/apb.2023.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/12/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose This study aimed to formulate Resveratrol, a practically water-insoluble antioxidant in a self-microemulsifying drug delivery system (SMEDDS) to improve the solubility, release rate, and intestinal permeability of the drug. Methods The suitable oil, surfactant, and co-surfactant were chosen according to the drug solubility study. Utilizing the design of experiment (DoE) method, the pseudo-ternary phase diagram was plotted based on the droplet size. In vitro dissolution study and the single-pass intestinal perfusion were performed for the investigation of in vitro and in-situ permeability for drugs formulated as SMEDDS in rat intestine using High-Performance Liquid Chromatography. Results Castor oil, Cremophor® RH60, and PEG 1500 were selected as oil, surfactant, and co-surfactant. According to the pseudo-ternary phase diagram, nine formulations developed microemulsions with sizes ranging between 145-967 nm. Formulations passed the centrifuge and freeze-thaw stability tests. The optimum formulation possessed an almost 2.5-fold higher cumulative percentage of in vitro released resveratrol, in comparison to resveratrol aqueous suspension within 120 minutes. The results of the in-situ permeability study suggested a 2.6-fold higher intestinal permeability for optimum formulation than that of the resveratrol suspension. Conclusion SMEDDS can be considered suitable for the oral delivery of resveratrol according to the observed increased intestinal permeability, which could consequently enhance the bioavailability and therapeutic efficacy of the drug.
Collapse
Affiliation(s)
- Shahla Mirzaeei
- Nano Drug Delivery Research Centre, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Centre, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Tahmasebi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ziba Islambulchilar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Nazlı H, Mesut B, Akbal-Dağıstan Ö, Özsoy Y. A Novel Semi-Solid Self-Emulsifying Formulation of Aprepitant for Oral Delivery: An In Vitro Evaluation. Pharmaceutics 2023; 15:pharmaceutics15051509. [PMID: 37242751 DOI: 10.3390/pharmaceutics15051509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Aprepitant is the first member of a relatively new antiemetic drug class called NK1 receptor antagonists. It is commonly prescribed to prevent chemotherapy-induced nausea and vomiting. Although it is included in many treatment guidelines, its poor solubility causes bioavailability issues. A particle size reduction technique was used in the commercial formulation to overcome low bioavailability. Production with this method consists of many successive steps that cause the cost of the drug to increase. This study aims to develop an alternative, cost-effective formulation to the existing nanocrystal form. We designed a self-emulsifying formulation that can be filled into capsules in a melted state and then solidified at room temperature. Solidification was achieved by using surfactants with a melting temperature above room temperature. Various polymers have also been tested to maintain the supersaturated state of the drug. The optimized formulation consists of CapryolTM 90, Kolliphor® CS20, Transcutol® P, and Soluplus®; it was characterized by DLS, FTIR, DSC, and XRPD techniques. A lipolysis test was conducted to predict the digestion performance of formulations in the gastrointestinal system. Dissolution studies showed an increased dissolution rate of the drug. Finally, the cytotoxicity of the formulation was tested in the Caco-2 cell line. According to the results, a formulation with improved solubility and low toxicity was obtained.
Collapse
Affiliation(s)
- Hakan Nazlı
- Department of Pharmaceutical Technology, Trakya University, 22030 Edirne, Turkey
| | - Burcu Mesut
- Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey
| | - Özlem Akbal-Dağıstan
- Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey
| |
Collapse
|
15
|
Damasio DSDN, Antunes PA, Lages EB, Morais-Teixeira ED, Vital KD, Cardoso VN, Fernandes SOA, Aguiar MG, Ferreira LAM. A new oral self-emulsifying drug delivery system improves the antileishmania efficacy of fexinidazole in vivo. Int J Pharm 2023; 631:122505. [PMID: 36549405 DOI: 10.1016/j.ijpharm.2022.122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The aim of this study was to develop, characterize and evaluate the in vivo oral efficacy of self-emulsifying drug delivery systems (SEDDS) containing fexinidazole (FEX) in the experimental treatment of visceral leishmaniasis (VL). The developed FEX-SEDDS formulation presented as a clear, yellowish liquid, with absence of precipitate. The droplet size, polydispersion index and zeta potential after dilution in water (1:200) was of 91 ± 3 nm, 0.242 ± 0.005 and -16.7 ± 0.2, respectively. In the simulated gastric and intestinal media, the FEX-SEDDS had a size of 97 ± 1 and 106 ± 9 nm, respectively. The FEX retention in droplet after SEDDS dilution in simulated gastrointestinal media was almost 100 %. Antileishmanial efficacy studies showed that FEX-SEDDS was the only treatment able to significantly (p < 0.05) reduce the parasite burden in the liver and spleen of animals experimentally infected with Leishmania infantum. Our intestinal permeability data suggest that FEX-SEDDS showed no evidence of injury to the intestinal mucosa. These findings suggest that FEX-SEDDS can be a promising oral alternative for the treatment of VL caused by L. infantum.
Collapse
Affiliation(s)
| | - Patrícia Andrade Antunes
- Department of Pharmaceutical Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Eduardo Burgarelli Lages
- Department of Pharmaceutical Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Eliane de Morais-Teixeira
- Clinical Research and Public Policy Group on Infectious and Parasitic Diseases - René Rachou Institute - Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| | - Kátia Duarte Vital
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Simone Odılia Antunes Fernandes
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Marta Gontijo Aguiar
- Department of Pharmaceutical Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | |
Collapse
|
16
|
Rezvanjou SN, Niavand MR, Heydari Shayesteh O, Yeganeh EM, Ahmadi Moghadam D, Derakhshandeh K, Mahjub R. Preparation and characterisation of self-emulsifying drug delivery system (SEDDS) for enhancing oral bioavailability of metformin hydrochloride using hydrophobic ion pairing complexation. J Microencapsul 2023; 40:53-66. [PMID: 36649282 DOI: 10.1080/02652048.2023.2170488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM The aim of this study was preparation of a self-emulsifying drug delivery system (SEEDS) containing metformin hydrochloride. METHODS Hydrophobic ion paired complexes were prepared by electrostatic interaction between metformin and sodium lauryl sulphate (SLS). The nanodroplets were optimised using two-level full factorial methodology and their morphology were examined. In vitro release of metformin from SEDDS was evaluated in simulated gastric and intestinal fluids. Finally, the ex-vivo efficacy of the optimised formulation in enhancing the intestinal permeability of metformin was evaluated using non-everted intestinal sac. RESULTS The data revealed that in weight ratio 1:4(metformin: SLS), the highest recovery was achieved. The physico-chemical properties of the optimised nano-droplets including size, polydispersity index (PdI), zeta potential, and loading efficiency (%) were 192.33 ± 9.9 nm, 0.275 ± 0.051; -1.52 mV, and 93.75 ± 0.77% (w/w), respectively. CONCLUSIONS The data obtained from the intestinal transport study demonstrated that SEDDS can significantly enhance the oral permeability of the compound.
Collapse
Affiliation(s)
- Seyedeh Nika Rezvanjou
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Niavand
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Omid Heydari Shayesteh
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ehsan Mehrani Yeganeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Davood Ahmadi Moghadam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
17
|
Xin J, Qin M, Ye G, Gong H, Li M, Sui X, Liu B, Fu Q, He Z. Hydrophobic ion pairing-based self-emulsifying drug delivery systems: a new strategy for improving the therapeutic efficacy of water-soluble drugs. Expert Opin Drug Deliv 2023; 20:1-11. [PMID: 36408589 DOI: 10.1080/17425247.2023.2150758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are formulations consisting of oil phase, emulsifiers, and co-emulsifiers, which can be spontaneously emulsified in the body to form O/W microemulsion. Traditionally, SEDDS are used commercially for the improvement of oral absorption and in vivo performances for poorly water-soluble drugs. However, SEDDS formulations were rarely reported for the delivery of water-soluble drugs. Recent studies have found that SEDDS have the potential for water-soluble macromolecular drugs by the application of the hydrophobic ion pairing (HIP) technology. AREAS COVERED This review summarized the characteristics of HIP complexes in SEDDS and introduced their advantages and discussed the future prospects of HIP-based SEDDS in drug delivery. EXPERT OPINION Hydrophobic ion pairing (HIP) is a technology that combines lipophilic structures on polar counterions to increase the lipophilicity through electrostatic interaction. Recent studies showed that HIP-based SEDDS offer an effective way to increase the mucosal permeability and improve the chemical stability for antibiotics, proteases, DNA-based drugs, and other water-soluble macromolecular drugs. It is believed that HIP-based SEDDS offer a potential and attractive method capable of delivering hydrophilic macromolecules with ionizable groups for oral administration.
Collapse
Affiliation(s)
- Jinghan Xin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mengdi Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Genyang Ye
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Gong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110036, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
18
|
Natesan V, Kim SJ. The Trend of Organic Based Nanoparticles in the Treatment of Diabetes and Its Perspectives. Biomol Ther (Seoul) 2023; 31:16-26. [PMID: 36122910 PMCID: PMC9810454 DOI: 10.4062/biomolther.2022.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/27/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes is an untreatable metabolic disorder characterized by alteration in blood sugar homeostasis, with submucosal insulin therapy being the primary treatment option. This route of drug administration is attributed to low patient comfort due to the risk of pain, distress, and local inflammation/infections. Nanoparticles have indeed been suggested as insulin carriers to allow the drug to be administered via less invasive routes other than injection, such as orally or nasally. The organic-based nanoparticles can be derived from various organic materials (for instance, polysaccharides, lipids, and so on) and thus are prevalently used to enhance the physical and chemical consistency of loaded bioactive compounds (drug) and thus their bioavailability. This review presents various forms of organic nanoparticles (for example, chitosan, dextron, gums, nanoemulsion, alginate, and so on) for enhanced hypoglycemic drug delivery relative to traditional therapies.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-961-0868
| |
Collapse
|
19
|
Shukla E, Kara DD, Katikala T, Rathnanand M. Self-nanoemulsifying drug delivery systems (SNEDDS) of anti-cancer drugs: a multifaceted nanoplatform for the enhancement of oral bioavailability. Drug Dev Ind Pharm 2023; 49:1-16. [PMID: 36803270 DOI: 10.1080/03639045.2023.2182124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE A significant problem faced by the health care industry today is that though there are numerous drugs available to tackle diseases like cancer, their intrinsic properties make it difficult to be delivered to patients in a feasible manner. One of the key players that have helped researchers overcome poor solubility and permeability of drugs is Nanotechnology, this article further iterates on the same. SIGNIFICANCE Nanotechnology is used as an umbrella term in pharmaceutics and describes under it multiple technologies. Upcoming nanotechnology is a Self Nanoemulsifying System which is considered to be a futuristic delivery system both due to its scientific simplicity and relative ease of patient delivery. METHODS Self-Nano Emulsifying Drug Delivery Systems (SNEDDS) are homogenous lipidic concoctions containing the drug solubilized in the oil phase and surfactants. The choice of components depends on the physicochemical properties of the drugs, the solubilization capability of oils and the physiological fate of the drug. The article contains further details of various methodologies that have been adopted by scientists to formulate and optimize such systems in order to make anticancer drugs orally deliverable. RESULTS The results that have been generated by scientists across the globe have been summarized in the article and all of the data supports the claim that SNEDDS significantly enhance the solubility and bioavailability of hydrophobic anticancer drugs. CONCLUSIONS This article mainly provides the application of SNEDDS in cancer therapy and concludes to provide a step for the oral administration of several BCS class II and IV anticancer drugs.
Collapse
Affiliation(s)
- Eesha Shukla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Tanvi Katikala
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
20
|
Bhat SZ, Dobs AS. Testosterone Replacement Therapy: A Narrative Review with a Focus on New Oral Formulations. TOUCHREVIEWS IN ENDOCRINOLOGY 2022; 18:133-140. [PMID: 36694887 PMCID: PMC9835814 DOI: 10.17925/ee.2022.18.2.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
Male hypogonadism affects 10-30% of the male population and is often under-recognized and under-treated. Different replacement formulations exist, each with specific benefits and limitations. These replacements include gels, patches and short- and long-acting injectables. JATENZO® (oral testosterone undecanoate; Clarus Therapeutics Inc., Northbrook, IL, US) is the first oral formulation of testosterone approved by the US Food and Drug Administration. TLANDO® (oral testosterone undecanoate; Lipocine Inc., Salt Lake City, UT, US), another oral testosterone formulation, has also recently been approved by the US Food and Drug Administration. Based on unique chemistry using a self-emulsifying drug delivery system and lymphatic absorption, JATENZO and TLANDO address some of the limitations of other dosing routes while providing a safe option without evidence of liver dysfunction. This review discusses various testosterone treatment options, focusing on the role and pharmacokinetics of the new oral formulations.
Collapse
Affiliation(s)
- Salman Z Bhat
- Department of Endocrinology, Diabetes and Metabolism, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Adrian S Dobs
- Department of Endocrinology, Diabetes and Metabolism, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | |
Collapse
|
21
|
Schmied FP, Bernhardt A, Klein S. Preparation of Solid Self-Nanoemulsifying Drug Delivery Systems (S-SNEDDS) by Co-Extrusion of Liquid SNEDDS and Polymeric Carriers-A New and Promising Formulation Approach to Improve the Solubility of Poorly Water-Soluble Drugs. Pharmaceuticals (Basel) 2022; 15:ph15091135. [PMID: 36145356 PMCID: PMC9505398 DOI: 10.3390/ph15091135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The present study focused on a new formulation approach to improving the solubility of drugs with poor aqueous solubility. A hot melt extrusion (HME) process was applied to prepare drug-loaded solid self-nanoemulsifying drug delivery systems (S-SNEDDS) by co-extrusion of liquid SNEDDS (L-SNEDDS) and different polymeric carriers. Experiments were performed with L-SNEDDS formulations containing celecoxib, efavirenz or fenofibrate as model drugs. A major objective was to identify a polymeric carrier and process parameters that would enable the preparation of stable S-SNEDDS without impairing the release behavior and storage stability of the L-SNEDDS used and, if possible, even improving them further. In addition to commercially available (co)polymers already used in the field of HME, a particular focus was on the evaluation of different variants of a recently developed aminomethacrylate-based copolymer (ModE) that differed in Mw. Immediately after preparation, the L-SNEDDS and S-SNEDDS formulations were tested for amorphicity by differential scanning calorimetry. Furthermore, solubility and dissolution tests were performed. In addition, the storage stability was investigated at 30 °C/65% RH over a period of three and six months, respectively. In all cases, amorphous formulations were obtained and, especially for the model drug celecoxib, S-SNEDDS were developed that maintained the rapid and complete drug release of the underlying L-SNEDDS even over an extended storage period. Overall, the data obtained in this study suggest that the presented S-SNEDDS approach is very promising, provided that drug-loaded L-SNEDDS are co-processed with a suitable polymeric carrier. In the case of celecoxib, the E-173 variant of the novel ModE copolymer proved to be a novel polymeric carrier with great potential for application in S-SNEDDS. The presented approach will, therefore, be pursued in future studies to establish S-SNEDDS as an alternative formulation to other amorphous systems.
Collapse
Affiliation(s)
- Fabian-Pascal Schmied
- Institute of Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany or
- Research, Development & Innovation, Evonik Operations GmbH, Kirschenallee, 64293 Darmstadt, Germany
| | - Alexander Bernhardt
- Research, Development & Innovation, Evonik Operations GmbH, Kirschenallee, 64293 Darmstadt, Germany
| | - Sandra Klein
- Institute of Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany or
- Correspondence: ; Tel.: +49-3834-420-4897
| |
Collapse
|
22
|
Schmied FP, Bernhardt A, Baudron V, Beine B, Klein S. Development and Characterization of Celecoxib Solid Self-nanoemulsifying Drug Delivery Systems (S-SNEDDS) Prepared Using Novel Cellulose-Based Microparticles as Adsorptive Carriers. AAPS PharmSciTech 2022; 23:213. [PMID: 35918561 DOI: 10.1208/s12249-022-02347-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) represent an interesting platform for improving the oral bioavailability of poorly soluble lipophilic drugs. While Liquid-SNEDDS (L-SNEDDS) effectively solubilize the drug in vivo, they have several drawbacks, including poor storage stability. Solid-SNEDDS (S-SNEDDS) combine the advantages of L-SNEDDS with those of solid dosage forms, particularly stability. The aim of the present study was to convert celecoxib L-SNEDDS into S-SNEDDS without altering their release behavior. Various commercially available adsorptive carrier materials were investigated, as well as novel cellulose-based microparticles prepared by spray drying from an aqueous dispersion containing Diacel® 10 and methyl cellulose or gum arabic as a binder prior to their use. Particle size and morphology of the carrier materials were screened by scanning electron microscopy and their effects on the loading capacity for L-SNEDDS were investigated, and comparative in vitro dissolution studies of celecoxib L-SNEDDS and the different S-SNEDDS were performed immediately after preparation and after 3 months of storage. Among the adsorptive carrier materials, the novel cellulose-based microparticles were found to be the most suitable for the preparation of celecoxib S-SNEDDS from L-SNEDDS, enabling the preparation of a solid, stable formulation while preserving the in vitro release performance of the L-SNEDDS formulation.
Collapse
Affiliation(s)
- Fabian-Pascal Schmied
- University of Greifswald, Department of Pharmacy, Institute of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany.,Evonik Operations GmbH, Research, Development & Innovation, Kirschenallee, 64293, Darmstadt, Germany
| | - Alexander Bernhardt
- Evonik Operations GmbH, Research, Development & Innovation, Kirschenallee, 64293, Darmstadt, Germany
| | - Victor Baudron
- Evonik Operations GmbH, Research, Development & Innovation, Rodenbacher Chaussee 4, 63457, Hanau, Germany
| | - Birte Beine
- Evonik Operations GmbH, Research, Development & Innovation, Paul-Baumann-Str. 1, 55772, Marl, Germany
| | - Sandra Klein
- University of Greifswald, Department of Pharmacy, Institute of Biopharmaceutics and Pharmaceutical Technology, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany.
| |
Collapse
|
23
|
van Staden D, Haynes RK, Viljoen JM. Adapting Clofazimine for Treatment of Cutaneous Tuberculosis by Using Self-Double-Emulsifying Drug Delivery Systems. Antibiotics (Basel) 2022; 11:antibiotics11060806. [PMID: 35740212 PMCID: PMC9219976 DOI: 10.3390/antibiotics11060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/10/2022] Open
Abstract
Although chemotherapeutic treatment regimens are currently available, and considerable effort has been lavished on the development of new drugs for the treatment of tuberculosis (TB), the disease remains deeply intractable and widespread. This is due not only to the nature of the life cycle and extraordinarily disseminated habitat of the causative pathogen, principally Mycobacterium tuberculosis (Mtb), in humans and the multi-drug resistance of Mtb to current drugs, but especially also to the difficulty of enabling universal treatment of individuals, immunocompromised or otherwise, in widely differing socio-economic environments. For the purpose of globally eliminating TB by 2035, the World Health Organization (WHO) introduced the "End-TB" initiative by employing interventions focusing on high impact, integrated and patient-centered approaches, such as individualized therapy. However, the extraordinary shortfall in stipulated aims, for example in actual treatment and in TB preventative treatments during the period 2018-2022, latterly and greatly exacerbated by the COVID-19 pandemic, means that even greater pressure is now placed on enhancing our scientific understanding of the disease, repurposing or repositioning old drugs and developing new drugs as well as evolving innovative treatment methods. In the specific context of multidrug resistant Mtb, it is furthermore noted that the incidence of extra-pulmonary TB (EPTB) has significantly increased. This review focusses on the potential of utilizing self-double-emulsifying drug delivery systems (SDEDDSs) as topical drug delivery systems for the dermal route of administration to aid in treatment of cutaneous TB (CTB) and other mycobacterial infections as a prelude to evaluating related systems for more effective treatment of CTB and other mycobacterial infections at large. As a starting point, we consider here the possibility of adapting the highly lipophilic riminophenazine clofazimine, with its potential for treatment of multi-drug resistant TB, for this purpose. Additionally, recently reported synergism achieved by adding clofazimine to first-line TB regimens signifies the need to consider clofazimine. Thus, the biological effects and pharmacology of clofazimine are reviewed. The potential of plant-based oils acting as emulsifiers, skin penetration enhancers as well as these materials behaving as anti-microbial components for transporting the incorporated drug are also discussed.
Collapse
|
24
|
Kadian R, Nanda A. A Comprehensive Insight on Self Emulsifying Drug Delivery Systems. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:16-44. [PMID: 34875995 DOI: 10.2174/2667387815666211207112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/13/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The oral route is a highly recommended route for the delivery of a drug. But most lipophilic drugs are difficult to deliver via this route due to their low aqueous solubility. Selfemulsifying drug delivery systems (SEDDS) have emerged as a potential approach of increasing dissolution of a hydrophobic drug due to spontaneous dispersion in micron or nano sized globules in the GI tract under mild agitation. OBJECTIVE The main motive of this review article is to describe the mechanisms, advantages, disadvantages, factors affecting, effects of excipients, possible mechanisms of enhancing bioavailability, and evaluation of self-emulsifying drug delivery systems. RESULTS Self emulsifying systems incorporate the hydrophobic drug inside the oil globules, and a monolayer is formed by surfactants to provide the low interfacial tension, which leads to improvement in the dissolution rate of hydrophobic drugs. The globule size of self-emulsifying systems depends upon the type and ratio of excipients in which they are used. The ternary phase diagram is constructed to find out the range of concentration of excipients used. This review article also presents recent and updated patents on self-emulsifying drug delivery systems. Self-emulsifying systems have the ability to enhance the oral bioavailability and solubility of lipophilic drugs. CONCLUSION This technique offers further advantages such as bypassing the first pass metabolism via absorption of drugs through the lymphatic system, easy manufacturing, reducing enzymatic hydrolysis, inter and intra subject variability, and food effects.
Collapse
Affiliation(s)
- Renu Kadian
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Arun Nanda
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
25
|
Vincent M, Simon L, Brabet P, Legrand P, Dorandeu C, Him JLK, Durand T, Crauste C, Begu S. Formulation and Evaluation of SNEDDS Loaded with Original Lipophenol for the Oral Route to Prevent Dry AMD and Stragardt’s Disease. Pharmaceutics 2022; 14:pharmaceutics14051029. [PMID: 35631617 PMCID: PMC9147958 DOI: 10.3390/pharmaceutics14051029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Dry age-related macular degeneration (Dry AMD) and Stargardt’s disease (STGD1) are common eye diseases, characterized by oxidative and carbonyl stress (COS)-inducing photoreceptor degeneration and vision loss. Previous studies have demonstrated the protective effect of photoreceptors after the intravenous administration of a new lipophenol drug, phloroglucinol-isopropyl-DHA (IP-DHA). In this study, we developed an oral formulation of IP-DHA (BCS Class IV) relying on a self-nanoemulsifying drug delivery system (SNEDDS). SNEDDS, composed of Phosal® 53 MCT, Labrasol®, and Transcutol HP® at a ratio of 25/60/15 (w/w/w), led to a homogeneous nanoemulsion (NE) with a mean size of 53.5 ± 4.5 nm. The loading of IP-DHA in SNEDDS (SNEDDS-IP-DHA) was successful, with a percentage of IP-DHA of 99.7% in nanoemulsions. The in vivo study of the therapeutic potency of SNEDDS-IP-DHA after oral administration on mice demonstrated photoreceptor protection after the induction of retinal degeneration with acute light stress (73–80%) or chronic light stress (52–69%). Thus, SNEDDS formulation proved to increase the solubility of IP-DHA, improving its stability in intestinal media and allowing its passage through the intestinal barrier after oral force-fed administration, while maintaining its biological activity. Therefore, SNEDDS-IP-DHA is a promising future preventive treatment for dry AMD and STGD1.
Collapse
Affiliation(s)
- Maxime Vincent
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (M.V.); (L.S.); (P.L.); (C.D.)
| | - Laurianne Simon
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (M.V.); (L.S.); (P.L.); (C.D.)
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, 34000 Montpellier, France
- Correspondence: (P.B.); (C.C.); (S.B.)
| | - Philippe Legrand
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (M.V.); (L.S.); (P.L.); (C.D.)
| | - Christophe Dorandeu
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (M.V.); (L.S.); (P.L.); (C.D.)
| | - Josephine Lai Kee Him
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, 34000 Montpellier, France;
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France;
| | - Céline Crauste
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France;
- Correspondence: (P.B.); (C.C.); (S.B.)
| | - Sylvie Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (M.V.); (L.S.); (P.L.); (C.D.)
- Correspondence: (P.B.); (C.C.); (S.B.)
| |
Collapse
|
26
|
Amorphization of Drugs for Transdermal Delivery-a Recent Update. Pharmaceutics 2022; 14:pharmaceutics14050983. [PMID: 35631568 PMCID: PMC9143970 DOI: 10.3390/pharmaceutics14050983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/10/2022] Open
Abstract
Amorphous solid dispersion is a popular formulation approach for orally administered poorly water-soluble drugs, especially for BCS class II. But oral delivery could not be an automatic choice for some drugs with high first-pass metabolism susceptibility. In such cases, transdermal delivery is considered an alternative if the drug is potent and the dose is less than 10 mg. Amorphization of drugs causes supersaturation and enhances the thermodynamic activity of the drugs. Hence, drug transport through the skin could be improved. The stabilization of amorphous system is a persistent challenge that restricts its application. A polymeric system, where amorphous drug is dispersed in a polymeric carrier, helps its stability. However, high excipient load often becomes problematic for the polymeric amorphous system. Coamorphous formulation is another approach, where one drug is mixed with another drug or low molecular weight compound, which stabilizes each other, restricts crystallization, and maintains a single-phase homogenous amorphous system. Prevention of recrystallization along with enhanced skin permeation has been observed by the transdermal coamorphous system. But scalable manufacturing methods, extensive stability study and in-depth in vivo evaluation are lacking. This review has critically studied the mechanistic aspects of amorphization and transdermal permeation by analyzing recent researches in this field to propose a future direction.
Collapse
|
27
|
USTA DYILMAZ, TIMUR B, TEKSIN ZS. Formulation development, optimization by Box- Behnken design, characterization, in vitro, ex-vivo, and in vivo evaluation of bosentan-loaded self-nanoemulsifying drug delivery system: A novel alternative dosage form for pulmonary arterial hypertension treatment. Eur J Pharm Sci 2022; 174:106159. [DOI: 10.1016/j.ejps.2022.106159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/01/2022]
|
28
|
Seo EB, du Plessis LH, Viljoen JM. Solidification of Self-Emulsifying Drug Delivery Systems as a Novel Approach to the Management of Uncomplicated Malaria. Pharmaceuticals (Basel) 2022; 15:ph15020120. [PMID: 35215233 PMCID: PMC8877057 DOI: 10.3390/ph15020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria affects millions of people annually, especially in third-world countries. The mainstay of treatment is oral anti-malarial drugs and vaccination. An increase in resistant strains of malaria parasites to most of the current anti-malarial drugs adds to the global burden. Moreover, existing and new anti-malarial drugs are hampered by significantly poor aqueous solubility and low permeability, resulting in low oral bioavailability and patient noncompliance. Lipid formulations are commonly used to increase solubility and efficacy and decrease toxicity. The present review discusses the findings from studies focusing on specialised oral lipophilic drug delivery systems, including self-emulsifying drug delivery systems (SEDDSs). SEDDSs facilitate the spontaneous formation of liquid emulsions that effectively solubilise the incorporated drugs into the gastrointestinal tract and thereby improve the absorption of poorly-soluble anti-malaria drugs. However, traditional SEDDSs are normally in liquid dosage forms, which are delivered orally to the site of absorption, and are hampered by poor stability. This paper discusses novel solidification techniques that can easily and economically be up-scaled due to already existing industrial equipment that could be utilised. This method could, furthermore, improve product stability and patient compliance. The possible impact that solid oral SEDDSs can play in the fight against malaria is highlighted.
Collapse
|
29
|
Stephen S, Gorain B, Choudhury H, Chatterjee B. Exploring the role of mesoporous silica nanoparticle in the development of novel drug delivery systems. Drug Deliv Transl Res 2022; 12:105-123. [PMID: 33604837 DOI: 10.1007/s13346-021-00935-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
The biocompatible nature of mesoporous silica nanoparticles (MSN) attracted researchers' attention to deliver therapeutic agents in the treatment of various diseases, where their porous nature, high drug loading efficiency, and suitability to functionalize with a specific ligand of MSN helped to obtain the desired outcome. The application of MSN has been extended to deliver small chemicals to large-sized peptides or proteins to fight against complex diseases. Recently, formulation researches with MSN have been progressed for various non-conventional drug delivery systems, including liposome, microsphere, oro-dispersible film, 3D-printed formulation, and microneedle. Low bulk density, retaining mesoporous structure during downstream processing, and lack of sufficient in vivo studies are some of the important issues towards the success of mesoporous silica-based advanced drug delivery systems. The present review has aimed to evaluate the application of MSN in advanced drug delivery systems to critically analyze the role of MSN in the respective formulation over other functionalized polymers. Finally, an outlook on the future direction of MSN-based advanced drug delivery systems has been drawn against the existing challenges with this platform.
Collapse
Affiliation(s)
- Senitta Stephen
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L Mehta Road, Vile Parle(W), Mumbai, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil , 57000, Kuala Lumpur, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L Mehta Road, Vile Parle(W), Mumbai, India.
| |
Collapse
|
30
|
Schmied FP, Bernhardt A, Engel A, Klein S. A Customized Screening Tool Approach for the Development of a Self-Nanoemulsifying Drug Delivery System (SNEDDS). AAPS PharmSciTech 2021; 23:39. [PMID: 34961897 PMCID: PMC8816498 DOI: 10.1208/s12249-021-02176-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
The present study focused on establishing a novel, (pre-)screening approach that enables the development of promising performing self-nanoemulsifying drug delivery systems (SNEDDSs) with a limited number of experiments. The strategic approach was based on first identifying appropriate excipients (oils/lipids, surfactants, and co-solvents) providing a high saturation solubility for lipophilic model compounds with poor aqueous solubility. Excipients meeting these requirements were selected for SNEDDS development, and a special triangular mixture design was applied for determining excipient ratios for the SNEDDS formulations. Celecoxib and fenofibrate were used as model drugs. Formulations were studied applying a specific combination of in vitro characterization methods. Specifications for a promising SNEDDS formulation were self-imposed: a very small droplet size (< 50 nm), a narrow size distribution of these droplets (PDI < 0.15) and a high transmittance following SNEDDS dispersion in water (> 99% in comparison with purified water). Excipients that provided a nanoemulsion after dispersion were combined, and ratios were optimized using a customized mapping method in a triangular mixture design. The best performing formulations were finally studied for their in vitro release performance. Results of the study demonstrate the efficiency of the customized screening tool approach. Since it enables successful SNEDDS development in a short time with manageable resources, this novel screening tool approach could play an important role in future SNEDDS development. Graphical abstract ![]()
Collapse
|
31
|
Relative bioavailability enhancement of simvastatin via dry emulsion systems: comparison of spray drying and fluid bed layering technology. Eur J Pharm Biopharm 2021; 172:228-239. [PMID: 34942336 DOI: 10.1016/j.ejpb.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
Comprehensive comparisons of similar lipid based drug delivery systems produced by different technologies are scarce. Spray drying and fluid bed layering technologies were compared with respect to the process and product characteristics of otherwise similar simvastatin loaded dry emulsion systems. Fluid bed layering provided higher process yield (83.3% vs 71.5%), encapsulation efficiency (80.0% vs 68.4 %), relative one month product stability (93.8% vs 85.5%), larger and more circular particles (336 µm vs 56 µm) and lower median oil droplet size after product reconstitution in water (2.85 µm vs 4.27 µm), compared to spray drying. However, spray dried products exhibited higher drug content (22.2 mg/g vs 9.34 mg/g). An in-vivo pharmacokinetic study in rats was performed and a pharmacokinetic model was developed in order to compare the optimised simvastatin loaded dry emulsion systems, a simvastatin glyceride mimetic loaded in the dry emulsion and a simvastatin loaded SMEDDS with a reference physical mixture. Of the formulation tested, fluid bed layered pellets excelled and provided a 115% relative increase in bioavailability. Among the two technologies, fluid bed layering provided dry emulsion products with higher relative bioavailability and better product characteristics for further processing into final dosage forms.
Collapse
|
32
|
Guruge AG, Warren DB, Benameur H, Ford L, Williams HD, Jannin V, Pouton CW, Chalmers DK. Computational and Experimental Models of Type III Lipid-Based Formulations of Loratadine Containing Complex Nonionic Surfactants. Mol Pharm 2021; 18:4354-4370. [PMID: 34807627 DOI: 10.1021/acs.molpharmaceut.1c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type III lipid-based formulations (LBFs) combine poorly water-soluble drugs with oils, surfactants, and cosolvents to deliver the drugs into the systemic circulation. However, the solubility of the drug can be influenced by the colloidal phases formed in the gastrointestinal tract as the formulation is dispersed and makes contact with bile and other materials present within the GI tract. Thus, an understanding of the phase behavior of LBFs in the gut is critical for designing efficient LBFs. Molecular dynamics (MD) simulation is a powerful tool for the study of colloidal systems. In this study, we modeled the internal structures of five type III LBFs of loratadine containing poly(ethylene oxide) nonionic surfactants polysorbate 80 and polyoxyl hydrogenated castor oil (Kolliphor RH40) using long-timescale MD simulations (0.4-1.7 μs). We also conducted experimental investigations (dilution of formulations with water) including commercial Claritin liquid softgel capsules. The simulations show that LBFs form continuous phase, water-swollen reverse micelles, and bicontinuous and phase-separated systems at different dilutions, which correlate with the experimental observations. This study supports the use of MD simulation as a predictive tool to determine the fate of LBFs composed of medium-chain lipids, polyethylene oxide surfactants, and polymers.
Collapse
Affiliation(s)
- Amali G Guruge
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Dallas B Warren
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Leigh Ford
- Lonza Pharma Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hywel D Williams
- Lonza Pharma Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Vincent Jannin
- Lonza Pharma Sciences, 10 Rue Timken, Colmar 68027, France
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
33
|
Gao H, Jia H, Dong J, Yang X, Li H, Ouyang D. Integrated in silico formulation design of self-emulsifying drug delivery systems. Acta Pharm Sin B 2021; 11:3585-3594. [PMID: 34900538 PMCID: PMC8642610 DOI: 10.1016/j.apsb.2021.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The drug formulation design of self-emulsifying drug delivery systems (SEDDS) often requires numerous experiments, which are time- and money-consuming. This research aimed to rationally design the SEDDS formulation by the integrated computational and experimental approaches. 4495 SEDDS formulation datasets were collected to predict the pseudo-ternary phase diagram by the machine learning methods. Random forest (RF) showed the best prediction performance with 91.3% for accuracy, 92.0% for sensitivity and 90.7% for specificity in 5-fold cross-validation. The pseudo-ternary phase diagrams of meloxicam SEDDS were experimentally developed to validate the RF prediction model and achieved an excellent prediction accuracy (89.51%). The central composite design (CCD) was used to screen the best ratio of oil-surfactant-cosurfactant. Finally, molecular dynamic (MD) simulation was used to investigate the molecular interaction between excipients and drugs, which revealed the diffusion behavior in water and the role of cosurfactants. In conclusion, this research combined machine learning, central composite design, molecular modeling and experimental approaches for rational SEDDS formulation design. The integrated computer methodology can decrease traditional drug formulation design works and bring new ideas for future drug formulation design.
Collapse
|
34
|
Sumaila M, Marimuthu T, Kumar P, Choonara YE. Lipopolysaccharide Nanosystems for the Enhancement of Oral Bioavailability. AAPS PharmSciTech 2021; 22:242. [PMID: 34595578 DOI: 10.1208/s12249-021-02124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Nanosystems that incorporate both polymers and lipids have garnered attention as emerging nanotechnology approach for oral drug delivery. These hybrid systems leverage on the combined properties of polymeric and lipid-based nanocarriers while eliminating their inherent limitations. In view of the safety-related benefits of naturally occurring polymers, we have focused on systems incorporating polysaccharides and derivatives into the hybrid structure. The aim of this review is to evaluate existing biopolymers with specific focus on lipopolysaccharide hybrid systems and their advancement toward enhancing oral drug delivery. Furthermore, we shall identify future research areas that require further exploration toward achieving an optimized hybrid system for easy translation into clinical use. In this review, we have appraised formulations that combined polysaccharides/derivatives with lipids in a single nanocarrier system. These formulations were grouped into lipid-core-polysaccharide-shell systems, polysaccharide-core-lipid-shell systems, self-emulsifying lipopolysaccharide hybrid systems, and hybrid lipopolysaccharide matrix systems. In these systems, we highlighted how the polysaccharide phase enhances the oral absorption of encapsulated bioactives with regard to their function and mechanism. The various lipopolysaccharide designs presented in this review demonstrated significant improvement in pharmacokinetics of bioactives. A multitude of studies found lipopolysaccharide hybrid systems as nascent nanoplatforms for the oral delivery of challenging bioactives due to features that favor gastrointestinal absorption and bioavailability improvement. With future research already geared toward product optimization and scaling up processes, as well as detailed pharmacological and toxicology pre-clinical testing, these versatile systems will have remarkable impact in clinical application.
Collapse
|
35
|
Keemink J, Hedge OJ, Bianco V, Hubert M, Bergström CAS. Comparison of Cellular Monolayers and an Artificial Membrane as Absorptive Membranes in the in vitro Lipolysis-permeation Assay. J Pharm Sci 2021; 111:175-184. [PMID: 34516987 DOI: 10.1016/j.xphs.2021.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Permeation across Caco-2 cells in lipolysis-permeation setups can predict the rank order of in vivo drug exposure obtained with lipid-based formulations (LBFs). However, Caco-2 cells require a long differentiation period and do not capture all characteristics of the human small intestine. We therefore evaluated two in vitro assays with artificial lecithin-in-dodecane (LiDo) membranes and MDCK cells as absorptive membranes in the lipolysis-permeation setup. Fenofibrate-loaded LBFs were used and the results from the two assays compared to literature plasma concentrations in landrace pigs administered orally with the same formulations. Aqueous drug concentrations, supersaturation, and precipitation were determined in the digestion chamber and drug permeation in the receiver chamber. Auxiliary in vitro parameters were assessed, such as permeation of the taurocholate, present in the simulated intestinal fluid used in the assay, and size of colloidal structures in the digestion medium over time. The LiDo membrane gave a similar drug distribution as the Caco-2 cells and accurately reproduced the equivalent rank-order of fenofibrate exposure in plasma. Permeation of fenofibrate across MDCK monolayers did not, however, reflect the in vivo exposure rankings. Taurocholate flux was negligible through either membrane. This process was therefore not considered to significantly affect the in vitro distribution of fenofibrate. We conclude that the artificial LiDo membrane is a promising tool for lipolysis-permeation assays to evaluate LBF performance.
Collapse
Affiliation(s)
- Janneke Keemink
- Department of Pharmacy, Uppsala University, Uppsala, Sweden; F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Oliver J Hedge
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Madlen Hubert
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
36
|
Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. J Control Release 2021; 337:646-660. [PMID: 34384795 DOI: 10.1016/j.jconrel.2021.08.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A significant proportion of recently approved drug molecules possess poor aqueous solubility which further restrains their desired bioavailability. Poor aqueous solubility of these drugs poses significant hurdles in development of novel drug delivery systems and achieving target response. Self-emulsifying drug delivery systems (SEDDS) emerged as an insightful approach for delivering highly hydrophobic entities to enhance their bioavailability. Conventional SEDDS were developed in a liquid form which owned numerous shortcomings like low stability and drug loading efficiency, fewer choices of dosage forms and irreversible precipitation of drug or excipients. To address these curbs solid-SEDDS (S-SEDDS) was introduced as an efficient strategy that combined advantages of solid dosage forms such as increased stability, portability and patient compliance along with substantial improvement in the bioavailability. S-SEDDS are isotropic mixtures of oil, surfactant, solvent and co-solvents generated by solidification of liquid or semisolid self-emulsifying ingredients onto powders. The present review highlights components of S-SEDDS, their peculiarities to be considered while designing solid dosage forms and various methods of fabrication. Lastly, key challenges faced during development, applications and future directions for the research in this area are thoroughly summarized.
Collapse
|
37
|
Zhu Y, Ye J, Zhang Q. Self-emulsifying Drug Delivery System Improve Oral Bioavailability: Role of Excipients and Physico-chemical Characterization. Pharm Nanotechnol 2021; 8:290-301. [PMID: 32781978 DOI: 10.2174/2211738508666200811104240] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Self-emulsifying drug delivery system (SEDDS) is a kind of solid or liquid formulation composed of drugs, oil, surfactant and cosurfactant. It could form a fine emulsion (micro/nano) in the gastrointestinal tract after oral administration. Later on, the formed emulsion is absorbed through the lymphatic pathway. The oral bioavailability of drugs in SEDDS would be improved for bypassing the first-pass effect of the liver. Therefore, SEDDS has become a vital strategy to increase the oral bioavailability of poor watersoluble drugs. In addition, there is no aqueous phase in SEDDS, thus SEDDS is a homogeneous system, consequently being suitable for large-scale production and more stable than conventional emulsion. However, the role of formulation aspects in the biological property of SEDDS is not fully clear. In order to prepare the satisfying SEDDS to improve oral drug bioavailability, we need to fully understand the various factors that affect the in vivo behavior of SEDDS. In this review, we would explore the role of ingredient (drugs, oils, surfactant and cosurfactant) of SEDDS in increasing oral drug bioavailability. We would also discuss the effect of physicochemical property (particle size and zeta potential) of SEDDS on the oral drug bioavailability enhancement. This review would provide an approach to develop a rational SEDDS to improving oral drug bioavailability. Lay Summary: Self-emulsifying drug-delivery system (SEDDS) has been proven to be promising in ameliorating the oral bioavailability of poor water-soluble drugs. This review highlighted the influence of excipients and physicochemical property of SEDDS on the formation of emulsion and the oral absorption of drugs in the body.
Collapse
Affiliation(s)
- Yujin Zhu
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jing Ye
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Quan Zhang
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
38
|
Kumar M, Bishnoi RS, Shukla AK, Jain CP. Development and optimization of drug-loaded nanoemulsion system by phase inversion temperature (PIT) method using Box-Behnken design. Drug Dev Ind Pharm 2021; 47:977-989. [PMID: 34278910 DOI: 10.1080/03639045.2021.1957920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of the present investigation was to develop a stable and optimized drug-loaded nanoemulsion system using the phase inversion temperature (PIT) method. SIGNIFICANCE The PIT method has been widely used for the development of food-grade nanoemulsion systems. For the first time, a simple and cost-effective, PIT method was used for the development of a stable drug-loaded nanoemulsion system. METHODS Box-Behnken experimental design was used for the development of an optimized drug-loaded nanoemulsion system by the PIT method. The independent variables were optimized for responses by using the desirability function. The hydrophobic drug, benidipine was used as a modal drug. Optimized oil phase (blend of long-chain triglycerides oil, medium-chain triglycerides oil and essential oil) was used for the development of oil in water (O/W) nanoemulsion system. RESULTS Optimum nanoemulsion formulation was stable, transparent and contained 50% of oil to surfactant percentage with a droplet size of 96.57 ± 1.61 nm. The optimum formulation also showed higher in-vitro drug diffusion from dialysis membrane as compared to the marketed formulation. Nanoemulsion droplets were observed as spherical in the transmission electron microscopy (TEM) images. Box-Behnken statistical analysis revealed that all the independent variables had a significant impact on characteristics of nanoemulsion and the predicated value of independent variables was found to be valid. CONCLUSION It was concluded that the PIT method produces a stable and efficient drug-loaded nanoemulsion system. Further, the optimized oil phase can be used as an alternative to costly, commercial medium-chain triglycerides (MCT) oils, for the development of a stable nanoemulsion system.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | - Ram Singh Bishnoi
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | - Ajay Kumar Shukla
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | | |
Collapse
|
39
|
Development of a self-emulsifying drug delivery system (SEDDS) to improve the hypoglycemic activity of Passiflora ligularis leaves extract. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Ye J, Gao Y, Ji M, Yang Y, Wang Z, Wang B, Jin J, Li L, Wang H, Xu X, Liao H, Lian C, Xu Y, Li R, Sun T, Gao L, Li Y, Chen X, Liu Y. Oral SMEDDS promotes lymphatic transport and mesenteric lymph nodes target of chlorogenic acid for effective T-cell antitumor immunity. J Immunother Cancer 2021; 9:jitc-2021-002753. [PMID: 34272308 PMCID: PMC8287630 DOI: 10.1136/jitc-2021-002753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mesenteric lymph nodes (MLNs) are critical draining lymph nodes of the immune system that accommodate more than half of the body's lymphocytes, suggesting their potential value as a cancer immunotherapy target. Therefore, efficient delivery of immunomodulators to the MLNs holds great potential for activating immune responses and enhancing the efficacy of antitumor immunotherapy. Self-microemulsifying drug delivery systems (SMEDDS) have attracted increasing attention to improving oral bioavailability by taking advantage of the intestinal lymphatic transport pathway. Relatively little focus has been given to the lymphatic transport advantage of SMEDDS for efficient immunomodulators delivery to the MLNs. In the present study, we aimed to change the intestinal lymphatic transport paradigm from increasing bioavailability to delivering high concentrations of immunomodulators to the MLNs. METHODS Chlorogenic acid (CHA)-encapsulated SMEDDS (CHA-SME) were developed for targeted delivery of CHA to the MLNs. The intestinal lymphatic transport, immunoregulatory effects on immune cells, and overall antitumor immune efficacy of CHA-SME were investigated through in vitro and in vivo experiments. RESULTS CHA-SME enhanced drug permeation through intestinal epithelial cells and promoted drug accumulation within the MLNs via the lymphatic transport pathway. Furthermore, CHA-SME inhibited tumor growth in subcutaneous and orthotopic glioma models by promoting dendritic cell maturation, priming the naive T cells into effector T cells, and inhibiting the immunosuppressive component. Notably, CHA-SME induced a long-term immune memory effect for immunotherapy. CONCLUSIONS These findings indicate that CHA-SME have great potential to enhance the immunotherapeutic efficacy of CHA by activating antitumor immune responses.
Collapse
Affiliation(s)
- Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ling Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoyan Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Chunfang Lian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yaqi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Renjie Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Tong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China .,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
41
|
Arshad R, Tabish TA, Naseem AA, Hassan MRU, Hussain I, Hussain SS, Shahnaz G. Development of poly-L-lysine multi-functionalized muco-penetrating self- emulsifying drug delivery system (SEDDS) for improved solubilization and targeted delivery of ciprofloxacin against intracellular Salmonella typhi. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Supersaturable self-microemulsifying delivery systems: an approach to enhance oral bioavailability of benzimidazole anticancer drugs. Drug Deliv Transl Res 2021; 11:675-691. [PMID: 33738676 DOI: 10.1007/s13346-021-00904-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
This study explored the design of supersaturable self-microemulsifying drug delivery systems (S-SMEDDS) to address poor solubility and oral bioavailability of a novel benzimidazole derivative anticancer drug (BI). Firstly, self-microemulsifying drug delivery systems SMEDDS made of Miglyol® 812, Kolliphor® RH40, Transcutol® HP, and ethanol were prepared and loaded with the BI drug. Upon dispersion, the systems formed neutrally charged droplets of around 20 nm. However, drug precipitation was observed following incubation with simulated gastric fluid (pH 1.2). Aiming at reducing this precipitation and enhancing drug payload, supersaturable systems were then prepared by adding 1% hydroxypropyl cellulose as precipitation inhibitor. Supersaturable systems maintained a higher amount of drug in a supersaturated state in gastric medium compared with conventional formulations and were stable in simulated intestinal medium (pH 6.8). In vitro cell studies using Caco-2 cell line showed that these formulations reduced in a transient manner the transepithelial electrical resistance of the monolayers without toxicity. Accordingly, confocal images revealed that the systems accumulated at tight junctions after a 2 h exposure. In vivo pharmacokinetic studies carried out following oral administration of BI-loaded S-SMEDDS, SMEDDS, and free drug to healthy mice showed that supersaturable systems promoted drug absorption compared with the other formulations. Overall, these data highlight the potential of using the supersaturable approach as an alternative to conventional SMEDDS for improving oral systemic absorption of lipophilic drugs.
Collapse
|
43
|
Zhang X, Chen Z, Tao C, Zhang J, Zhang M, Zhang J, Liu Z, Lin J, Xu H, Zhang Q, Song H. Effect of Surface Property on the Release and Oral Absorption of Solid Sirolimus-Containing Self-microemulsifying Drug Delivery System. AAPS PharmSciTech 2021; 22:108. [PMID: 33718989 DOI: 10.1208/s12249-021-01978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Abstract
The combination of self-microemulsifying drug delivery system (SMEDDS) and mesoporous silica materials favors the oral delivery of poorly water-soluble drugs (PWSD). However, the influence of the surface property of the mesopores towards the drug release and in vivo pharmacokinetics is still unknown. In this study, SBA-15 with hydroxyl groups (SBA-15-H), methyl groups (SBA-15-M), amino groups (SBA-15-A), or carboxyl groups (SBA-15-C) was combined with SMEDDS containing sirolimus (SRL). The diffusion and self-emulsifying of SMEDDS greatly improved the drug release over the raw SRL and SRL-SBA-15-R (R referred to as the functional groups). Results of drug absorption and X-ray photoelectron spectroscopy (XPS) showed strong hydrogen binding between SRL and the amino groups of SBA-15-A, which hindered the drug release and oral bioavailability of SRL-SMEDDS-SBA-15-A. The favorable release of SRL-SMEDDS-SBA-15-C (91.31 ± 0.57%) and SRL-SMEDDS-SBA-15-M (91.76 ± 3.72%) contributed to enhancing the maximum blood concentration (Cmax) and the area under the concentration-time curve (AUC0→48). In conclusion, the release of SRL-SMEDDS-SBA-15-R was determined by the surface affinity of the SBA-15-R and the interaction between the SRL molecules and the surface of SBA-15-R. This study suggested that the SMEDDS-SBA-15 was a favorable carrier for PWSD, and the surface property of the mesopores should be considered for the optimization of the SMEDDS-SBA-15.
Collapse
|
44
|
Murakami T, Bodor E, Bodor N. Factors and dosage formulations affecting the solubility and bioavailability of P-glycoprotein substrate drugs. Expert Opin Drug Metab Toxicol 2021; 17:555-580. [PMID: 33703995 DOI: 10.1080/17425255.2021.1902986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Expression of P-glycoprotein (P-gp) increases toward the distal small intestine, implying that the duodenum is the preferential absorption site for P-gp substrate drugs. Oral bioavailability of poorly soluble P-gp substrate drugs is low and varied but increases with high-fat meals that supply lipoidal components and bile in the duodenum.Areas covered: Absorption properties of P-gp substrate drugs along with factors and oral dosage formulations affecting their solubility and bioavailability were reviewed with PubMed literature searches. An overview is provided from the viewpoint of the 'spring-and-parachute approach' that generates supersaturation of poorly soluble P-gp substrate drugs.Expert opinion: The oral bioavailability of P-gp substrate drugs is difficult to predict because of their low solubility, preferential absorption sites, and overlapping substrate specificities with CYP3A4, along with the scattered intestinal P-gp expression/function. To attain high and steady oral bioavailability of poorly soluble P-gp substrate drugs, physicochemical modification of drugs to improve solubility, or oral dosage formulations that generate long-lasting supersaturation in the duodenum, is preferred. In particular, supersaturable lipid-based drug delivery systems that can increase passive diffusion and/or lymphatic absorption are effective and applicable to many poorly soluble P-gp substrate drugs.
Collapse
Affiliation(s)
| | | | - Nicholas Bodor
- Bodor Laboratories, Miami, Florida, USA.,College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
45
|
Therapeutic potential of annatto tocotrienol with self-emulsifying drug delivery system in a rat model of postmenopausal bone loss. Biomed Pharmacother 2021; 137:111368. [PMID: 33582449 DOI: 10.1016/j.biopha.2021.111368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Tocotrienol has been shown to prevent bone loss in animal models of postmenopausal osteoporosis, but the low oral bioavailability might limit its use. A self-emulsifying drug delivery system (SEDDS) could increase the bioavailability of tocotrienol. However, evidence of this system in improving the skeletal effects of tocotrienol is scanty. This study aims to evaluate the therapeutic efficacy of annatto tocotrienol with SEDDS in a rat model of postmenopausal bone loss. Ten-month-old female Sprague Dawley rats were randomized into six groups. The baseline group was euthanatized at the onset of the study. Four other groups underwent ovariectomy to induce estrogen deficiency. The sham underwent similar surgery procedure, but their ovaries were retained. Eight weeks after surgery, the ovariectomized rats received one of the four different regimens orally daily: (a) SEDDS, (b) annatto tocotrienol [60 mg/kg body weight (b.w.)] without SEDDS, (c) annatto-tocotrienol (60 mg/kg b.w.) with SEDDS, (d) raloxifene (1 mg/kg b.w.). After eight weeks of treatment, blood was collected for the measurement of delta-tocotrienol level and oxidative stress markers. The rats were euthanized and their bones were harvested for the evaluation of the bone microstructure, calcium content and strength. Circulating delta-tocotrienol level was significantly higher in rats receiving annatto tocotrienol with SEDDS compared to the group receiving unformulated annatto-tocotrienol (p < 0.05). Treatment with unformulated or SEDDS-formulated annatto tocotrienol improved cortical bone thickness, preserved bone calcium content, increased bone biomechanical strength and increased antioxidant enzyme activities compared with the ovariectomized group (p < 0.05). Only SEDDS-formulated annatto tocotrienol improved trabecular microstructure, bone stiffness and lowered malondialdehyde level (p < 0.05 vs the ovariectomized group). The improvement caused by annatto tocotrienol was comparable to raloxifene. In conclusion, SEDDS improves the bioavailability and skeletal therapeutic effects of annatto tocotrienol in a rat model of postmenopausal bone loss. This formulation should be tested in a human clinical trial to validate its efficacy.
Collapse
|
46
|
Mahmoudian M, Valizadeh H, Löbenberg R, Zakeri-Milani P. Bortezomib-loaded lipidic-nano drug delivery systems; formulation, therapeutic efficacy, and pharmacokinetics. J Microencapsul 2021; 38:192-202. [PMID: 33530812 DOI: 10.1080/02652048.2021.1876175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Nano drug delivery systems can provide the opportunity to reduce side effects and improve the therapeutic aspect of a variety of drugs. Bortezomib (BTZ) is a proteasome inhibitor approved for the treatment of multiple myeloma and mantle cell lymphoma. Severe side effects of BTZ are the major dose-limiting factor. Particulate drug delivery systems for BTZ are polymeric and lipidic drug delivery systems. This review focussed on lipidic-nano drug delivery systems (LNDDSs) for the delivery of BTZ. RESULTS LNDDSs including liposomes, solid lipid nanoparticles, and self-nanoemulsifying drug delivery systems showed reduce systemic side effects, improved therapeutic efficacy, and increased intestinal absorption. Besides LNDDSs were used to target-delivery of BTZ to cancer. CONCLUSION Overall, LNDDSs can be considered as a novel delivery system for BTZ to resolve the treatment-associated restrictions.
Collapse
Affiliation(s)
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Parvin Zakeri-Milani
- Faculty of Pharmacy, Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Al-Japairai KAS, Alkhalidi HM, Mahmood S, Almurisi SH, Doolaanea AA, Al-Sindi TA, Chatterjee B. Lyophilized Amorphous Dispersion of Telmisartan in a Combined Carrier-Alkalizer System: Formulation Development and In Vivo Study. ACS OMEGA 2020; 5:32466-32480. [PMID: 33376884 PMCID: PMC7758947 DOI: 10.1021/acsomega.0c04588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 05/08/2023]
Abstract
Telmisartan suffers from low oral bioavailability due to its poor water solubility. The research work presents a formulation of solid dispersed (SD) telmisartan formulation as a ternary mixture of a drug, a polymeric carrier (poly(vinylpyrrolidone) (PVP) K30), and an alkalizer (Na2CO3). The preparation method, which was lyophilization of an aqueous solution containing the ingredients, was free from any organic solvent. The developed SD formulations resulted in a significant improvement in in vitro dissolution (>90% drug dissolution in 15 min) compared to pure telmisartan. Solid-state characterization by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) studies indicated the conversion of crystalline telmisartan into an amorphous form. Fourier transform infrared (FTIR) spectroscopy revealed the drug-polymer interaction that was responsible for reducing the chances of recrystallization. A short-term stability study showed that selected SD formulations were stable in terms of in vitro dissolution and retained their amorphous structure in ambient and accelerated conditions over 2 months. Selected formulations (drug/PVP K30/Na2CO3 as 1:1:2 or 1:2:2 weight ratio) resulted in >2.48 times relative oral bioavailability compared to marketed formulations. It was considered that the incorporation of an alkalizer and a hydrophilic polymer, and amorphization of telmisartan by lyophilization, could enhance in vitro dissolution and improve oral bioavailability.
Collapse
Affiliation(s)
- Khater A. S. Al-Japairai
- Department of Pharmaceutical
Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
- Department of Pharmaceutical Technology,
Kulliyyah of Pharmacy, International Islamic
University Malaysia (IIUM), Kuantan 25200, Malaysia
| | - Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty
of Pharmacy, King Abdulaziz University, Jeddah 21441, Saudi Arabia
| | - Syed Mahmood
- Department of Pharmaceutical
Engineering, Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang, Gambang 26300, Malaysia
| | - Samah H. Almurisi
- Department of Pharmaceutical Technology,
Kulliyyah of Pharmacy, International Islamic
University Malaysia (IIUM), Kuantan 25200, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology,
Kulliyyah of Pharmacy, International Islamic
University Malaysia (IIUM), Kuantan 25200, Malaysia
| | - Taha A. Al-Sindi
- Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 25200, Malaysia
| | - Bappaditya Chatterjee
- Department of Pharmaceutical Technology,
Kulliyyah of Pharmacy, International Islamic
University Malaysia (IIUM), Kuantan 25200, Malaysia
- SPP School of Pharmacy & Technology
Management, SVKM’s NMIMS, Vile Parle (East), Mumbai 400056, India
- . Tel: +91 22 42332000
| |
Collapse
|
48
|
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int J Nanomedicine 2020; 15:10215-10240. [PMID: 33364755 PMCID: PMC7751584 DOI: 10.2147/ijn.s285134] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
In view of the worldwide serious health threat of type 2 diabetes mellitus (T2DM), natural sources of chemotherapies have been corroborated as the promising alternatives, with the excellent antidiabetic activities, bio-safety, and more cost-effective properties. However, their clinical application is somewhat limited, because of the poor solubility, instability in the gastrointestinal tract (GIT), low bioavailability, and so on. Nowadays, to develop nanoscaled systems has become a prominent strategy to improve the drug delivery of phytochemicals. In this review, we primarily summarized the intervention mechanisms of phytocompounds against T2DM and presented the recent advances in various nanosystems of antidiabetic phytocompounds. Selected nanosystems were grouped depending on their classification and structures, including polymeric NPs, lipid-based nanosystems, vesicular systems, inorganic nanocarriers, and so on. Based on this review, the state-of-the-art nanosystems for phytocompounds in T2DM treatment have been presented, suggesting the preponderance and potential of nanotechnologies.
Collapse
Affiliation(s)
- Xin Nie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999087, People’s Republic of China
| | - Lan Pang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Huajuan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Yi Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Bo Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| |
Collapse
|
49
|
Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020; 12:E1194. [PMID: 33317067 PMCID: PMC7764143 DOI: 10.3390/pharmaceutics12121194] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.
Collapse
Affiliation(s)
- Aristote B. Buya
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| | - Patrick B. Memvanga
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| |
Collapse
|
50
|
Timur SS, Gürsoy RN. Design and in vitro evaluation of solid SEDDS for breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|