1
|
Mukherjee S, Joshi V, Reddy KP, Singh N, Das P, Datta P. Biopharmaceutical and pharmacokinetic attributes to drive nanoformulations of small molecule tyrosine kinase inhibitors. Asian J Pharm Sci 2024; 19:100980. [PMID: 39640056 PMCID: PMC11617995 DOI: 10.1016/j.ajps.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Buoyed by the discovery of small-molecule tyrosine kinase inhibitors (smTKIs), significant impact has been made in cancer chemotherapeutics. However, some of these agents still encounter off-target toxicities and suboptimal efficacies due to their inferior biopharmaceutical and/or pharmacokinetic properties. Almost all of these molecules exhibit significant inter- and intra-patient variations in plasma concentration-time profiles. Thus, therapeutic drug monitoring, dose adjustments and precision medicine are being contemplated by clinicians. Complex formulations or nanoformulation-based drug delivery systems offer promising approaches to provide drug encapsulation or spatiotemporal control over the release, overcoming the biopharmaceutical and pharmacokinetic limitations and improving the therapeutic outcomes. In this context, the present review comprehensively tabulates and critically analyzes all the relevant properties (T1/2, solubility, pKa, therapeutic index, IC50, metabolism etc.) of the approved smTKIs. A detailed appraisal is conducted on the advancements made in complex formulations of smTKIs, with a focus on strategies to enhance their pharmacokinetic profile, tumor targeting ability, and therapeutic efficacy. Various nanocarrier platforms, have been discussed, highlighting their unique features and potential applications in cancer therapy. Nanoformulations have been shown to improve area under the curve and peak plasma concentration, and reduce dosing frequency for several smTKIs in animal models. It is inferred that extensive efforts will be made in developing complex formulations of smTKIs in near future. There, the review concludes with key recommendations for the developing of smTKIs to facilitate early clinical translation.
Collapse
Affiliation(s)
| | | | - Kolimi Prashanth Reddy
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Priyanka Das
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| |
Collapse
|
2
|
You J, Guo Y, Dong Z. Polypeptides-Based Nanocarriers in Tumor Therapy. Pharmaceutics 2024; 16:1192. [PMID: 39339228 PMCID: PMC11435007 DOI: 10.3390/pharmaceutics16091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a worldwide problem, and new treatment strategies are being actively developed. Peptides have the characteristics of good biocompatibility, strong targeting, functional diversity, modifiability, membrane permeable ability, and low immunogenicity, and they have been widely used to construct targeted drug delivery systems (DDSs). In addition, peptides, as endogenous substances, have a high affinity, which can not only regulate immune cells but also work synergistically with drugs to kill tumor cells, demonstrating significant potential for application. In this review, the latest progress of polypeptides-based nanocarriers in tumor therapy has been outlined, focusing on their applications in killing tumor cells and regulating immune cells. Additionally, peptides as carriers were found to primarily provide a transport function, which was also a subject of interest to us. At the end of the paper, the shortcomings in the construction of peptide nano-delivery system have been summarized, and possible solutions are proposed therein. The application of peptides provides a promising outlook for cancer treatment, and we hope this article can provide in-depth insights into possible future avenues of exploration.
Collapse
Affiliation(s)
- Juhua You
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhengqi Dong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
3
|
Kim JH, Dareowolabi BO, Thiruvengadam R, Moon EY. Application of Nanotechnology and Phytochemicals in Anticancer Therapy. Pharmaceutics 2024; 16:1169. [PMID: 39339205 PMCID: PMC11435124 DOI: 10.3390/pharmaceutics16091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer is well recognized as a leading cause of mortality. Although surgery tends to be the primary treatment option for many solid cancers, cancer surgery is still a risk factor for metastatic diseases and recurrence. For this reason, a variety of medications has been adopted for the postsurgical care of patients with cancer. However, conventional medicines have shown major challenges such as drug resistance, a high level of drug toxicity, and different drug responses, due to tumor heterogeneity. Nanotechnology-based therapeutic formulations could effectively overcome the challenges faced by conventional treatment methods. In particular, the combined use of nanomedicine with natural phytochemicals can enhance tumor targeting and increase the efficacy of anticancer agents with better solubility and bioavailability and reduced side effects. However, there is limited evidence in relation to the application of phytochemicals in cancer treatment, particularly focusing on nanotechnology. Therefore, in this review, first, we introduce the drug carriers used in advanced nanotechnology and their strengths and limitations. Second, we provide an update on well-studied nanotechnology-based anticancer therapies related to the carcinogenesis process, including signaling pathways related to transforming growth factor-β (TGF-β), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), Wnt, poly(ADP-ribose) polymerase (PARP), Notch, and Hedgehog (HH). Third, we introduce approved nanomedicines currently available for anticancer therapy. Fourth, we discuss the potential roles of natural phytochemicals as anticancer drugs. Fifth, we also discuss the synergistic effect of nanocarriers and phytochemicals in anticancer therapy.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Boluwatife Olamide Dareowolabi
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College, Saveetha University, Chennai 600077, India;
| | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| |
Collapse
|
4
|
Dai J, Ashrafizadeh M, Aref AR, Sethi G, Ertas YN. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today 2024; 29:103981. [PMID: 38614161 DOI: 10.1016/j.drudis.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
The combination of peptides and nanoparticles in cancer therapy has shown synergistic results. Nanoparticle functionalization with peptides can increase their targeting ability towards tumor cells. In some cases, the peptides can develop self-assembled nanoparticles, in combination with drugs, for targeted cancer therapy. The peptides can be loaded into nanoparticles and can be delivered by other drugs for synergistic cancer removal. Multifunctional types of peptide-based nanoparticles, including pH- and redox-sensitive classes, have been introduced in cancer therapy. The tumor microenvironment remolds, and the acceleration of immunotherapy and vaccines can be provided by peptide nanoparticles. Moreover, the bioimaging and labeling of cancers can be mediated by peptide nanoparticles. Therefore, peptides can functionalize nanoparticles in targeted cancer therapy.
Collapse
Affiliation(s)
- Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
5
|
Vári B, Dókus L, Borbély A, Gaál A, Vári-Mező D, Ranđelović I, Sólyom-Tisza A, Varga Z, Szoboszlai N, Mező G, Tóvári J. SREKA-targeted liposomes for highly metastatic breast cancer therapy. Drug Deliv 2023; 30:2174210. [PMID: 36752075 PMCID: PMC9930758 DOI: 10.1080/10717544.2023.2174210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Chemotherapy is still a leading therapeutic approach in various tumor types that is often accompanied by a poor prognosis because of metastases. PEGylated liposomes with CREKA targeting moiety are well-known therapeutic agents, especially in highly metastatic experimental models. CREKA specifically targets tumor-associated ECM, which is present at the primary, as well as metastatic tumor sites. To better understand the function of the targeting moieties, we decided to design various liposome formulations with different amounts of targeting moiety attached to their DSPE-PEG molecules. Moreover, a new tumor-homing pentapeptide (SREKA) was designed, and a novel conjugation strategy between SREKA and DSPE-PEGs. First, the in vitro proliferation inhibition of drug-loaded liposomes and the cellular uptake of their cargo were investigated. Afterward, liposome stability in murine blood and drug accumulation in different tissues were measured. Furthermore, in vivo tumor growth, and metastasis inhibition potencies of the different liposome formulations were examined. According to our comparative studies, SREKA-liposomes have a uniform phenotype after formulation and have similar characteristics and tumor-homing capabilities to CREKA-liposomes. However, the exchange of the N-terminal cysteine to serine during conjugation results in a higher production yield and better stability upon conjugation to DSPE-PEGs. We also showed that SREKA-liposomes have significant inhibition on primary tumor growth and metastasis incidence; furthermore, increase the survival rate of tumor-bearing mice. Besides, we provide evidence that the amount of targeting moiety attached to DSPE-PEGs is largely responsible for the stability of liposomes, therefore it plays an important role in toxicity and targeting.
Collapse
Affiliation(s)
- Balázs Vári
- National Institute of Oncology, Department of Experimental Pharmacology, National Tumor Biology Laboratory, Budapest, Hungary,School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Levente Dókus
- Research Group of Peptide Chemistry, Eötvös Loránd Research Network, Budapest, Hungary
| | - Adina Borbély
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary,MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Budapest, Hungary
| | - Anikó Gaál
- Eötvös, Loránd Research Network, Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Biological Nanochemistry Research Group, Budapest, Hungary
| | - Diána Vári-Mező
- National Institute of Oncology, Department of Experimental Pharmacology, National Tumor Biology Laboratory, Budapest, Hungary,School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Ivan Ranđelović
- National Institute of Oncology, Department of Experimental Pharmacology, National Tumor Biology Laboratory, Budapest, Hungary
| | - Anna Sólyom-Tisza
- Department of Tumor Biology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Zoltán Varga
- Eötvös, Loránd Research Network, Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Biological Nanochemistry Research Group, Budapest, Hungary
| | - Norbert Szoboszlai
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Mező
- Research Group of Peptide Chemistry, Eötvös Loránd Research Network, Budapest, Hungary,Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary,Gábor Mező School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - József Tóvári
- National Institute of Oncology, Department of Experimental Pharmacology, National Tumor Biology Laboratory, Budapest, Hungary,CONTACT József Tóvári National Institute of Oncology, Department of Experimental Pharmacology, National Tumor Biology Laboratory, Budapest, Hungary
| |
Collapse
|
6
|
Fernandes Q, Therachiyil L, Khan AQ, Bedhiafi T, Korashy HM, Bhat AA, Uddin S. Shrinking the battlefield in cancer therapy: Nanotechnology against cancer stem cells. Eur J Pharm Sci 2023; 191:106586. [PMID: 37729956 DOI: 10.1016/j.ejps.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Cancer remains one of the leading causes of mortality worldwide, presenting a significant healthcare challenge owing to the limited efficacy of current treatments. The application of nanotechnology in cancer treatment leverages the unique optical, magnetic, and electrical attributes of nanomaterials to engineer innovative, targeted therapies. Specifically, manipulating nanomaterials allows for enhanced drug loading efficiency, improved bioavailability, and targeted delivery systems, reducing the non-specific cytotoxic effects characteristic of conventional chemotherapies. Furthermore, recent advances in nanotechnology have demonstrated encouraging results in specifically targeting CSCs, a key development considering the role of these cells in disease recurrence and resistance to treatment. Despite these breakthroughs, the clinical approval rates of nano-drugs have not kept pace with research advances, pointing to existing obstacles that must be addressed. In conclusion, nanotechnology presents a novel, powerful tool in the fight against cancer, particularly in targeting the elusive and treatment-resistant CSCs. This comprehensive review delves into the intricacies of nanotherapy, explicitly targeting cancer stem cells, their markers, and associated signaling pathways.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, Qatar University, Doha, Qatar; Translational Cancer Research Facility, Hamad Medical Corporation, National Center for Cancer Care and Research, PO. Box 3050, Doha, Qatar
| | - Lubna Therachiyil
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Abdul Q Khan
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar
| | - Takwa Bedhiafi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- College of Medicine, Qatar University, Doha, Qatar; Academic Health System, Hamad Medical Corporation, Dermatology Institute, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602, India.
| |
Collapse
|
7
|
Czerwonka A, Kałafut J, Nees M. Modulation of Notch Signaling by Small-Molecular Compounds and Its Potential in Anticancer Studies. Cancers (Basel) 2023; 15:4563. [PMID: 37760535 PMCID: PMC10526229 DOI: 10.3390/cancers15184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is responsible for conveying messages between cells through direct contact, playing a pivotal role in tissue development and homeostasis. The modulation of Notch-related processes, such as cell growth, differentiation, viability, and cell fate, offer opportunities to better understand and prevent disease progression, including cancer. Currently, research efforts are mainly focused on attempts to inhibit Notch signaling in tumors with strong oncogenic, gain-of-function (GoF) or hyperactivation of Notch signaling. The goal is to reduce the growth and proliferation of cancer cells, interfere with neo-angiogenesis, increase chemosensitivity, potentially target cancer stem cells, tumor dormancy, and invasion, and induce apoptosis. Attempts to pharmacologically enhance or restore disturbed Notch signaling for anticancer therapies are less frequent. However, in some cancer types, such as squamous cell carcinomas, preferentially, loss-of-function (LoF) mutations have been confirmed, and restoring but not blocking Notch functions may be beneficial for therapy. The modulation of Notch signaling can be performed at several key levels related to NOTCH receptor expression, translation, posttranslational (proteolytic) processing, glycosylation, transport, and activation. This further includes blocking the interaction with Notch-related nuclear DNA transcription. Examples of small-molecular chemical compounds, that modulate individual elements of Notch signaling at the mentioned levels, have been described in the recent literature.
Collapse
Affiliation(s)
- Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (M.N.)
| | | | | |
Collapse
|
8
|
Asrorov AM, Wang H, Zhang M, Wang Y, He Y, Sharipov M, Yili A, Huang Y. Cell penetrating peptides: Highlighting points in cancer therapy. Drug Dev Res 2023; 84:1037-1071. [PMID: 37195405 DOI: 10.1002/ddr.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023]
Abstract
Cell-penetrating peptides (CPPs), first identified in HIV a few decades ago, deserved great attention in the last two decades; especially to support the penetration of anticancer drug means. In the drug delivery discipline, they have been involved in various approaches from mixing with hydrophobic drugs to the use of genetically conjugated proteins. The early classification as cationic and amphipathic CPPs has been extended to a few more classes such as hydrophobic and cyclic CPPs so far. Developing potential sequences utilized almost all methods of modern science: choosing high-efficiency peptides from natural protein sequences, sequence-based comparison, amino acid substitution, obtaining chemical and/or genetic conjugations, in silico approaches, in vitro analysis, animal experiments, etc. The bottleneck effect in this discipline reveals the complications that modern science faces in drug delivery research. Most CPP-based drug delivery systems (DDSs) efficiently inhibited tumor volume and weight in mice, but only in rare cases reduced their levels and continued further processes. The integration of chemical synthesis into the development of CPPs made a significant contribution and even reached the clinical stage as a diagnostic tool. But constrained efforts still face serious problems in overcoming biobarriers to reach further achievements. In this work, we reviewed the roles of CPPs in anticancer drug delivery, focusing on their amino acid composition and sequences. As the most suitable point, we relied on significant changes in tumor volume in mice resulting from CPPs. We provide a review of individual CPPs and/or their derivatives in a separate subsection.
Collapse
Affiliation(s)
- Akmal M Asrorov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
- Department of Natural Substances Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yonghui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mirkomil Sharipov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | - Abulimiti Yili
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, China
| |
Collapse
|
9
|
Azari M, Bahreini F, Uversky VN, Rezaei N. Current therapeutic approaches and promising perspectives of using bioengineered peptides in fighting chemoresistance in triple-negative breast cancer. Biochem Pharmacol 2023; 210:115459. [PMID: 36813121 DOI: 10.1016/j.bcp.2023.115459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Breast cancer is a collation of malignancies that manifest in the mammary glands at the early stages. Among breast cancer subtypes, triple-negative breast cancer (TNBC) shows the most aggressive behavior, with apparent stemness features. Owing to the lack of response to hormone therapy and specific targeted therapies, chemotherapy remains the first line of the TNBC treatment. However, the acquisition of resistance to chemotherapeutic agents increase therapy failure, and promotes cancer recurrence and distant metastasis. Invasive primary tumors are the birthplace of cancer burden, though metastasis is a key attribute of TNBC-associated morbidity and mortality. Targeting the chemoresistant metastases-initiating cells via specific therapeutic agents with affinity to the upregulated molecular targets is a promising step in the TNBC clinical management. Exploring the capacity of peptides as biocompatible entities with the specificity of action, low immunogenicity, and robust efficacy provides a principle for designing peptide-based drugs capable of increasing the efficacy of current chemotherapy agents for selective targeting of the drug-tolerant TNBC cells. Here, we first focus on the resistance mechanisms that TNBC cells acquire to evade the effect of chemotherapeutic agents. Next, the novel therapeutic approaches employing tumor-targeting peptides to exploit the mechanisms of drug resistance in chemorefractory TNBC are described.
Collapse
Affiliation(s)
- Mandana Azari
- School of Chemical Engineering-Biotechnology, College of Engineering, University of Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Bahreini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Zhang M, Xu H. Peptide-assembled nanoparticles targeting tumor cells and tumor microenvironment for cancer therapy. Front Chem 2023; 11:1115495. [PMID: 36762192 PMCID: PMC9902599 DOI: 10.3389/fchem.2023.1115495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Tumor cells and corrupt stromal cells in the tumor microenvironment usually overexpress cancer-specific markers that are absent or barely detectable in normal cells, providing available targets for inhibiting the occurrence and development of cancers. It is noticeable that therapeutic peptides are emerging in cancer therapies and playing more and more important roles. Moreover, the peptides can be self-assembled and/or incorporated with polymeric molecules to form nanoparticles via non-covalent bond, which have presented appealing as well as enhanced capacities of recognizing targeted cells, responding to microenvironments, mediating internalization, and achieving therapeutic effects. In this review, we will introduce the peptide-based nanoparticles and their application advances in targeting tumor cells and stromal cells, including suppressive immune cells, fibrosis-related cells, and angiogenic vascular cells, for cancer therapy.
Collapse
|
12
|
Fatima M, Abourehab MAS, Aggarwal G, Jain GK, Sahebkar A, Kesharwani P. Advancement of cell-penetrating peptides in combating triple-negative breast cancer. Drug Discov Today 2022; 27:103353. [PMID: 36099963 DOI: 10.1016/j.drudis.2022.103353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Extensive research efforts have been made and are still ongoing in the search for an ideal anti-cancer therapy. Almost all chemotherapeutics require a carrier or vehicle, a drug delivery system that can transport the drug specifically to the targeted cancer cells, sparing normal cells. Cell-penetrating peptides (CPPs) provide an effective and efficient pathway for the intra-cellular transportation of various bioactive molecules in several biomedical therapies. They are now well-recognized as facilitators of intracellular cargo delivery and have excellent potential for targeted anti-cancer therapy. In this review, we explain CPPs, recent progress in the development of new CPPs, and their utilization to transport cargoes such as imaging agents, chemotherapeutics, and short-interfering RNAs (siRNA) into tumor cells, contributing to the advancement of novel tumor-specific delivery systems.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
13
|
Guha L, Bhat IA, Bashir A, Rahman JU, Pottoo FH. Nanotechnological Approaches for the Treatment of Triple-Negative Breast Cancer: A Comprehensive Review. Curr Drug Metab 2022; 23:781-799. [PMID: 35676850 DOI: 10.2174/1389200223666220608144551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most prevalent cancer in women around the world, having a sudden spread nowadays because of the poor sedentary lifestyle of people. Comprising several subtypes, one of the most dangerous and aggressive ones is triple-negative breast cancer or TNBC. Even though conventional surgical approaches like single and double mastectomy and preventive chemotherapeutic approaches are available, they are not selective to cancer cells and are only for symptomatic treatment. A new branch called nanotechnology has emerged in the last few decades that offers various novel characteristics, such as size in nanometric scale, enhanced adherence to multiple targeting moieties, active and passive targeting, controlled release, and site-specific targeting. Among various nanotherapeutic approaches like dendrimers, lipid-structured nanocarriers, carbon nanotubes, etc., nanoparticle targeted therapeutics can be termed the best among all for their specific cytotoxicity to cancer cells and increased bioavailability to a target site. This review focuses on the types and molecular pathways involving TNBC, existing treatment strategies, various nanotechnological approaches like exosomes, carbon nanotubes, dendrimers, lipid, and carbon-based nanocarriers, and especially various nanoparticles (NPs) like polymeric, photodynamic, peptide conjugated, antibody-conjugated, metallic, inorganic, natural product capped, and CRISPR based nanoparticles already approved for treatment or are under clinical and pre-clinical trials for TNBC.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, S.A.S Nagar, Punjab 160062, India
| | - Ishfaq Ahmad Bhat
- Northern Railway Hospital, Sri Mata Vaishno Devi, Katra, Reasi 182320, India
| | - Aasiya Bashir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
14
|
V D, P J S, Rajeev N, S AL, Chandran A, G B G, Sadanandan S. Recent Advances in Peptides-Based Stimuli-Responsive Materials for Biomedical and Therapeutic Applications: A Review. Mol Pharm 2022; 19:1999-2021. [PMID: 35730605 DOI: 10.1021/acs.molpharmaceut.1c00983] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Smart materials are engineered materials that have one or more properties that are introduced in a controlled fashion by surrounding stimuli. Engineering of biomacromolecules like proteins into a smart material call for meticulous artistry. Peptides have grabbed notable attention as a preferred source for smart materials in the medicinal field, promoted by their versatile chemical and biophysical attributes of biocompatibility, and biodegradability. Recent advances in the synthesis of multifunctional peptides have proliferated their application in diverse domains: agriculture, nanotechnology, medicines, biosensors, therapeutics, and soft robotics. Stimuli such as pH, temperature, light, metal ions, and enzymes have vitalized physicochemical properties of peptides by augmented sensitivity, stability, and selectivity. This review elucidates recent (2018-2021) advances in the design and synthesis of smart materials, from stimuli-responsive peptides followed by their biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Devika V
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sreelekshmi P J
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Niranjana Rajeev
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Aiswarya Lakshmi S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Amrutha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Gouthami G B
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sandhya Sadanandan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
15
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
16
|
NOTCH1 Intracellular Domain and the Tumor Microenvironment as Prognostic Markers in HNSCC. Cancers (Basel) 2022; 14:cancers14041080. [PMID: 35205828 PMCID: PMC8870336 DOI: 10.3390/cancers14041080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary In the head and neck, a large proportion of squamous cell carcinoma demonstrate a mutation of the NOTCH1 gene. The aim of this project was to investigate the role of NOTCH1 and immunological characteristics and highlight a potential rationale for therapy. We found that a high expression of NOTCH1 intracellular domain in these patients is associated with reduced overall survival. In vitro experiments additionally showed a reduction of migration and proliferation of cancer cells when NOTCH1 was knocked down. NOTCH1 is, therefore, most likely involved in migration and proliferation of head and neck squamous cell carcinoma and is a prognostic marker in these patients. Abstract (1) Background: NOTCH1 is the second most common mutated gene in whole-exome sequencing of HNSCC. The aim of this project was to gain further insight into the relevance of NOTCH1 in HNSCC, potentially establishing NOTCH1 as a prognostic marker or therapeutic target; (2) Methods: NOTCH1 was silenced via RNA interference in six HNSCC cell lines and the impact was evaluated in migration and proliferation assays. Subsequently, the protein expression of NOTCH1 intracellular domain (NICD) and NOTCH1 mRNA expression were examined in 70 oropharyngeal squamous cell cancer tissue samples. Lastly, the NICD expression was compared with the local infiltration of lymphocytes, measured with the immunoscore; (3) Results: Knockdown of NOTCH1 decreased migration and proliferation. A high NICD expression was associated with lower OS. A high immunoscore resulted in significantly better OS. NICD expression was independent of the immunoscore and as a whole differentiated three distinct prognostic groups; (4) Conclusions: These data suggest that NOTCH1 is involved in migration and proliferation of HNSCC cell lines. In vivo, NICD expression was associated with overall survival and could, therefore, be used as a prognostic marker. NICD expression differs from NOTCH1 mRNA levels, potentially explaining the previously suggested bimodal role as an oncogene and tumor suppressor in HNSCC.
Collapse
|
17
|
Longoria-García S, Sánchez-Domínguez CN, Gallardo-Blanco H. Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review). Oncol Lett 2022; 23:103. [PMID: 35154434 PMCID: PMC8822396 DOI: 10.3892/ol.2022.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are small peptides from natural sources or designed from other protein sequences that can penetrate cell membranes. This property has been used in biomedicine to add them to biomolecules to improve their capacity for cell internalization and as a guidance tool for specific cell types. CPPs have been shown to enhance cellular uptake in vitro and in vivo, improving the efficacy of anticancer drugs such as doxorubicin and paclitaxel, while also limiting their cytotoxic effects on healthy cells and tissues. The current study reviews the internalization and major therapeutic results achieved from the functionalization of nanosystems with CPPs for guidance into breast and prostate cancer cells in vitro and in vivo. In addition, the practical results obtained are specifically discussed for use as a starting point for scientists looking to begin research in this field.
Collapse
Affiliation(s)
- Samuel Longoria-García
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Celia Nohemi Sánchez-Domínguez
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Hugo Gallardo-Blanco
- Department of Genetics, University Hospital ‘José Eleuterio González’, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| |
Collapse
|
18
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
19
|
Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021; 166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
Breast cancer, as a malignant disease that seriously threatens women's health, urgently needs to be researched to develop effective and safe therapeutic drugs. Nanoparticle drug delivery systems (NDDS), provide a powerful means for drug targeting to the breast cancer, enhancing the bioavailability and reducing the adverse effects of anticancer drug. However, the breast cancer microenvironment together with heterogeneity of cancer, impedes the tumor targeting effect of NDDS. Breast cancer microenvironment, exerts endogenous stimuli, such as hypoxia, acidosis, and aberrant protease expression, shape a natural shelter for tumor growth, invasion and migration. On the basis of the ubiquitous of endogenous stimuli in the breast cancer microenvironment, researchers exploited them to design the stimuli-responsive NDDS, which response to endogenous stimulus, targeted release drug in breast cancer microenvironment. In this review, we highlighted the effect of the breast cancer microenvironment, summarized innovative NDDS responsive to the internal stimuli in the tumor microenvironment, including the material, the targeting groups, the loading drugs, targeting position and the function of stimuli-responsive nanoparticle drug delivery system. The limitations and potential applications of the stimuli-responsive nanoparticle drug delivery systems for breast cancer treatment were discussed to further the application.
Collapse
Affiliation(s)
- Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yaroslav Mezhuev
- Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, PR China.
| | - Xiaoyu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou 510632, PR China; Cancer Research Institute, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
20
|
Abstract
Multifunctional nanoparticles have been identified as a promising drug-delivery system for sustainable drug release. The structural and size tunability and disease-targeting ability of nanoparticles have made them more suitable for multiple drug loading and delivery, thereby enhancing therapeutic results through synergistic effects. Nanoparticulate carriers with specific features such as target specificity and stimuli-responsiveness enable selective drug delivery with lower potential side effects. In this review we have classified the recently published articles on polymeric and inorganic nanoparticle-mediated drug delivery into three different categories based on functionality and discussed their efficiency for drug delivery and their therapeutic outcomes in preclinical models. Most of the drug-loaded nanodelivery systems discussed have demonstrated negligible or very low systemic toxicity throughout the experimental period in animal models compared with free drug administration. In addition, some challenges associated with the translation of nanoparticle-based drug carrier responses to clinical application are highlighted.
Collapse
|
21
|
Lin X, Wang X, Gu Q, Lei D, Liu X, Yao C. Emerging nanotechnological strategies to reshape tumor microenvironment for enhanced therapeutic outcomes of cancer immunotherapy. Biomed Mater 2021; 16. [PMID: 33601351 DOI: 10.1088/1748-605x/abe7b3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy was emerged as a novel cancer treatment in the last decade, however, efficacious responses to mono-immunotherapy have only been achieved in a relatively small portion of patients whereas combinational immunotherapies often lead to concurrent side effects. It has been proved that the tumor microenvironment (TME) is responsible for tumor immune escape and the ultimate treatment failure. Recently, both the understanding of the TME and the applications of nanotechnological strategies have achieved remarkable progresses, and reviewing the emerging immune-regulatory nanosystems may provide valuable information for specifically modulating the TME at different immune stages. In this review, we focus on comprehending the recently proposed T-cell-based tumor classification and identifying the most promising targets for different tumor phenotypes, and then summarizing the nanotechnological strategies to best target corresponding immune-related factors. For future precise personalized immunotherapy, the tailor-made TME modulation strategies conducted by well-designed nanosystems to alleviate the suppressive TME and then promote anti-tumor immune responses will significantly benefit the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Xinyi Lin
- Xi'an Jiaotong University School of Life Science and Technology, NO. 28 Xianning Xi Road, Xi'an, Shaanxi, 710049, CHINA
| | - Xiaoyan Wang
- Fujian Agriculture and Forestry University, NO.15 Shangdian Road, Fuzhou, 350002, CHINA
| | - Qing Gu
- Xi'an Jiaotong University School of Life Science and Technology, NO.28 Xianning Xi Road, Xi'an, 710049, CHINA
| | - Dongqin Lei
- Xi'an Jiaotong University, NO.28 Xianning Xi Road, Xi'an, 710049, CHINA
| | - Xiaolong Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, NO.312 Xihong Road, Fuzhou, Fujian, 350025, CHINA
| | - Cuiping Yao
- Xi'an Jiaotong University School of Life Science and Technology, NO.28 Xianning Xi Road, Xi'an, Shaanxi, 710049, CHINA
| |
Collapse
|
22
|
Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ. Surface functionalisation of poly-APO-b-polyol ester cross-linked copolymers as core-shell nanoparticles for targeted breast cancer therapy. Sci Rep 2020; 10:21704. [PMID: 33303818 PMCID: PMC7729971 DOI: 10.1038/s41598-020-78601-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Rida Tajau
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Siti Selina Abdul Hamid
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Zainah Adam
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Siti Najila Mohd Janib
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mek Zah Salleh
- Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
23
|
Zohorsky K, Mequanint K. Designing Biomaterials to Modulate Notch Signaling in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:383-410. [PMID: 33040694 DOI: 10.1089/ten.teb.2020.0182] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The design of cell-instructive biomaterials for tissue engineering and regenerative medicine is at a crossroads. Although the conventional tissue engineering approach is top-down (cells seeded to macroporous scaffolds and mature to form tissues), bottom-up tissue engineering strategies are becoming appealing. With such developments, we can study cell signaling events, thus enabling functional tissue assembly in physiologic and diseased models. Among many important signaling pathways, the Notch signaling pathway is the most diverse in its influence during tissue morphogenesis and repair following injury. Although Notch signaling is extensively studied in developmental biology and cancer biology, our knowledge of designing biomaterial-based Notch signaling platforms and incorporating Notch signaling components into engineered tissue systems is limited. By incorporating Notch signaling to tissue engineering scaffolds, we can direct cell-specific responses and improve engineered tissue maturation. This review will discuss recent progress in the development of Notch signaling biomaterials as a promising target to control cellular fate decisions, including the influences of ligand identity, biophysical material cues, ligand presentation strategies, and mechanotransduction. Notch signaling is consequently of interest to direct, control, and reprogram cellular behavior on a biomaterial surface. We anticipate that discussions in this article will allow for enhanced knowledge and insight into designing Notch targeted biomaterials for various tissue engineering and cell fate determinations. Impact statement Notch signaling is recognized as an important pathway in tissue engineering and regenerative medicine; however, there is no systematic review on this topic. The comprehensive review and perspectives presented here provide an in-depth discussion on ligand presentation strategies both in 2D and in 3D cell culture environments involving biomaterials/scaffolds. In addition, this review article provides insight into the challenges in designing cell surrogate biomaterials capable of providing Notch signals. To the best of the authors' knowledge, this is the first review relevant to the fields of tissue engineering.
Collapse
Affiliation(s)
- Kathleen Zohorsky
- School of Biomedical Engineering and The University of Western Ontario, London, Canada
| | - Kibret Mequanint
- School of Biomedical Engineering and The University of Western Ontario, London, Canada.,Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| |
Collapse
|
24
|
Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020; 162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Cancer is the second leading cause of death in the world and its treatment is extremely challenging, mainly due to its complexity. Cell-Penetrating Peptides (CPPs) are peptides that can transport into the cell a wide variety of biologically active conjugates (or cargoes), and are, therefore, promising in the treatment and in the diagnosis of several types of cancer. Some notable examples are TAT and Penetratin, capable of penetrating the central nervous system (CNS) and, therefore, acting in cancers of this system, such as Glioblastoma Multiforme (GBM). These above-mentioned peptides, conjugated with traditional chemotherapeutic such as Doxorubicin (DOX) and Paclitaxel (PTX), have also been shown to induce apoptosis of breast and liver cancer cells, as well as in lung cancer cells, respectively. In other cancers, such as esophageal cancer, the attachment of Magainin 2 (MG2) to Bombesin (MG2B), another CPP, led to pronounced anticancer effects. Other examples are CopA3, that selectively decreased the viability of gastric cancer cells, and the CPP p28. Furthermore, in preclinical tests, the anti-tumor efficacy of this peptide was evaluated on human breast cancer, prostate cancer, ovarian cancer, and melanoma cells in vitro, leading to high expression of p53 and promoting cell cycle arrest. Despite the numerous in vitro and in vivo studies with promising results, and the increasing number of clinical trials using CPPs, few treatments reach the expected clinical efficacy. Usually, their clinical application is limited by its poor aqueous solubility, immunogenicity issues and dose-limiting toxicity. This review describes the most recent advances and innovations in the use of CPPs in several types of cancer, highlighting their crucial importance for various purposes, from therapeutic to diagnosis. Further clinical trials with these peptides are warranted to examine its effects on various types of cancer.
Collapse
|
25
|
Satari N, Taymouri S, Varshosaz J, Rostami M, Mirian M. Preparation and evaluation of inhalable dry powder containing glucosamine-conjugated gefitinib SLNs for lung cancer therapy. Drug Dev Ind Pharm 2020; 46:1265-1277. [PMID: 32594775 DOI: 10.1080/03639045.2020.1788063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gefitinib as an epidermal growth factor receptor tyrosine kinase inhibitor has strong potential in lung cancer therapy. However, a major challenge of using gefitinib is its toxicities. In the present study, we developed a dry powder inhaler dosage form containing gefitinib loaded glucosamine targeted solid lipid nanopaticles (Gef-G-SLNs) to locally transfer anticancer agent to the lung tumor. The Gef-G-SLNs were prepared by emulsion-solvent diffusion and evaporation method and optimized with irregular factorial design. The optimized nanoformulation was tested for action against A549 cells. Mannitol or lactose based dry powders were obtained from Gef-G-SLNs after spray drying and characterized using Anderson Cascade Impactor. The optimized formulation had drug loading of 33.29%, encapsulation efficiency of 97.31 ± 0.23%, zeta potential of -15.53 ± 0.47 mV, particle size of 187.23 ± 14.08 nm, polydispersity index of 0.28 ± 0.02 and release efficiency of 35.46 ± 2.25%. The Gef-G-SLNs showed superior anticancer effect compared to free gefitinib. The increased cellular uptake of G-SLNs in A549 cells was demonstrated compared with non-targeted SLNs using flow cytometry and fluorescence microscopy. The produced mannitol based microparticles showed suitable aerodynamic properties with an acceptable mass median aerodynamic diameter of 4.48 µm and fine particle fraction of 44.41%. Therefore, it can be concluded that this formulation represents promising drug delivery to treatment of lung cancer.
Collapse
Affiliation(s)
- Nazafarin Satari
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Jain V, Kumar H, Anod HV, Chand P, Gupta NV, Dey S, Kesharwani SS. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release 2020; 326:628-647. [PMID: 32653502 DOI: 10.1016/j.jconrel.2020.07.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is one of the most prevalent cancers in women. Triple-negative breast cancer (TNBC) in which the three major receptors i.e. estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), are absent is known to express the most aggressive phenotype and increased metastasis which results in the development of resistance to chemotherapy. It offers various therapeutic advantages in treating BC and TNBC. Nanotechnology offers various unique characteristics such as small size (nanometric), active and passive targeting, and the ability to attach multiple targeting moieties, controlled release, and site-specific targeting. This review focuses on conventional drug therapies, recent treatment strategies, and unique therapeutic approaches available for BC and TNBC. The role of breast cancer stem cells in the recurrence of BC and TNBC has also been highlighted. Several chemotherapeutic agents delivered using nanocarriers such as polymeric nanoparticles/micelles, metallic/inorganic NPs, and lipid-based NPs (Liposome, solid-lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs)), etc. with excellent responses in the treatment of BC/TNBC along with breast cancer stem cells have been discussed in details. Moreover, the application of nanomedicine including CRISPR nanoparticle, exosomes for the treatment of BC/TNBC and other molecular targets available such as poly (ADP-ribose) polymerase (PARP), epidermal growth factor receptor (EGFR), Vascular endothelial growth factor (VEGF), etc. for further exploration have also been discussed.
Collapse
Affiliation(s)
- Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Haritha V Anod
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Pallavi Chand
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Surajit Dey
- College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| | | |
Collapse
|
27
|
Valcourt DM, Dang MN, Wang J, Day ES. Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and Notch Signaling Pathways in Cancer. Ann Biomed Eng 2020; 48:1864-1884. [PMID: 31686312 PMCID: PMC7196499 DOI: 10.1007/s10439-019-02399-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
The Wnt, Hedgehog, and Notch signaling pathways play a crucial role in early development and the maintenance of adult tissues. When dysregulated, these developmental signaling pathways can drive the formation and progression of cancer by facilitating cell survival, proliferation, and stem-like behavior. While this makes these pathways promising targets for therapeutic intervention, their pharmacological inhibition has been challenging due to the substantial complexity that exists within each pathway and the complicated crosstalk that occurs between the pathways. Recently, several small molecule inhibitors, ribonucleic acid (RNA) molecules, and antagonistic antibodies have been developed that can suppress these signaling pathways in vitro, but many of them face systemic delivery challenges. Nanoparticle-based delivery vehicles can overcome these challenges to enhance the performance and anti-cancer effects of these therapeutic molecules. This review summarizes the mechanisms by which the Wnt, Hedgehog, and Notch signaling pathways contribute to cancer growth, and discusses various nanoparticle formulations that have been developed to deliver small molecules, RNAs, and antibodies to cancer cells to inhibit these signaling pathways and halt tumor progression. This review also outlines some of the challenges that these nanocarriers must overcome to achieve therapeutic efficacy and clinical translation.
Collapse
Affiliation(s)
- D M Valcourt
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - M N Dang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - J Wang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - E S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA.
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA.
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, DE, 19713, USA.
| |
Collapse
|
28
|
Huang HL, Lin WJ. Dual Peptide-Modified Nanoparticles Improve Combination Chemotherapy of Etoposide and siPIK3CA Against Drug-Resistant Small Cell Lung Carcinoma. Pharmaceutics 2020; 12:pharmaceutics12030254. [PMID: 32178266 PMCID: PMC7150975 DOI: 10.3390/pharmaceutics12030254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Small cell lung carcinoma (SCLC) is a highly aggressive form of malignancy with rapid recurrence and poor prognosis. The dual peptide-modified nanoparticles (NPs) for improving chemotherapy against drug-resistant small cell lung carcinoma cells has been developed. In this study, the SCLC targeting ligand, antagonist G peptide (AG), and cell-penetrating peptide, TAT, modified NPs were used to encapsulate both anticancer drugs etoposide (ETP) and PIK3CA small-interfering RNA (siPIK3CA). The ETP@NPs and siRNA@NPs had particle size 201.0 ± 1.9-206.5 ± 0.7 nm and 155.3 ± 12.4-169.1 ± 11.2 nm, respectively. The lyophilized ETP@NPs and siRNA@NPs maintained their particle size and zeta potential during 28-day storage without severe aggregation or dissociation. Either ETP@NPs or siRNA@NPs significantly reduced the IC50 of drugs by 2.5-5.5 folds and 2.4-3.9 folds, respectively, as compared to free ETP and siRNA/PEI nanocomplex in drug-resistant CD133(+) H69 cells. Herein, the IC50 of dual-peptide modified ETP@NPs and siRNA@NPs were prominently lower than single-peptide modified NPs. The synergistic effect (CI < 1) was further observed in co-treatment of ETP and siPIK3CA particularly delivered by dual-peptide modified NPs.
Collapse
Affiliation(s)
- Hsin-Lin Huang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| | - Wen Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
- Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
- Correspondence: ; Tel.: +886-2-33668765; Fax: +886-2-23919098
| |
Collapse
|
29
|
Trac NT, Chung EJ. Peptide-based targeting of immunosuppressive cells in cancer. Bioact Mater 2020; 5:92-101. [PMID: 31956738 PMCID: PMC6962647 DOI: 10.1016/j.bioactmat.2020.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer progression is marked by the infiltration of immunosuppressive cells, such as tumor-associated macrophages (TAMs), regulatory T lymphocytes (Tregs), and myeloid-derived suppressor cells (MDSCs). These cells play a key role in abrogating the cytotoxic T lymphocyte-mediated (CTL) immune response, allowing tumor growth to proceed unabated. Furthermore, targeting these immunosuppressive cells through the use of peptides and peptide-based nanomedicine has shown promising results. Here we review the origins and functions of immunosuppressive cells in cancer progression, peptide-based systems used in their targeting, and explore future avenues of research regarding cancer immunotherapy. The success of these studies demonstrates the importance of the tumor immune microenvironment in the propagation of cancer and the potential of peptide-based nanomaterials as immunomodulatory agents.
Collapse
Affiliation(s)
- Noah T. Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Vascular Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Wang J. Combination Treatment of Cervical Cancer Using Folate-Decorated, pH-Sensitive, Carboplatin and Paclitaxel Co-Loaded Lipid-Polymer Hybrid Nanoparticles. Drug Des Devel Ther 2020; 14:823-832. [PMID: 32161442 PMCID: PMC7049774 DOI: 10.2147/dddt.s235098] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/01/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Cervical cancer is one of the most common causes of death among women globally. Combinations of cisplatin, paclitaxel, bevacizumab, carboplatin, topotecan, and gemcitabine are recommended as first-line therapies. METHODS This study focuses on the development of folate-decorated, pH-sensitive lipid-polymer hybrid nanoparticles (LPNs). Loading carboplatin (CBP) and paclitaxel (PTX), LPNs were expected to combine the therapeutic effects of CBP and PTX, thus show synergistic ability on cervical cancer. RESULTS FA-CBP/PTX-LPNs showed the sizes of 169.9 ± 5.6 nm, with a narrow size distribution of 0.151 ± 0.023. FA-CBP/PTX-LPNs exhibited pH-responsive drug release, high cellular uptake efficiency (66.7 ± 3.1%), and prominent cell inhibition capacity (23 ± 1.1%). In vivo tumor distribution and tumor inhibition efficiency of FA-CBP/PTX-LPNs was the highest, with no obvious body weight lost. CONCLUSION High tumor distribution and remarkable antitumor efficiency obtained using in vitro as well as in vivo models further proved the FA-CBP/PTX-LPNs is a promising tool for cervical cancer therapy.
Collapse
Affiliation(s)
- Junjian Wang
- Institution of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang Province, People’s Republic of China
- Department of Gynecological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, Zhejiang Province, People’s Republic of China
- Department of Gynecological Surgery, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang Province, People’s Republic of China
| |
Collapse
|
31
|
Truong DH, Le VKH, Pham TT, Dao AH, Pham TPD, Tran TH. Delivery of erlotinib for enhanced cancer treatment: An update review on particulate systems. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Sharma A, Kumar P, Ambasta RK. Cancer Fighting SiRNA-RRM2 Loaded Nanorobots. Pharm Nanotechnol 2020; 8:79-90. [PMID: 32003677 DOI: 10.2174/2211738508666200128120142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Silencing of several genes is critical for cancer therapy. These genes may be apoptotic gene, cell proliferation gene, DNA synthesis gene, etc. The two subunits of Ribonucleotide Reductase (RR), RRM1 and RRM2, are critical for DNA synthesis. Hence, targeting the blockage of DNA synthesis at tumor site can be a smart mode of cancer therapy. Specific targeting of blockage of RRM2 is done effectively by SiRNA. The drawbacks of siRNA delivery in the body include the poor uptake by all kinds of cells, questionable stability under physiological condition, non-target effect and ability to trigger the immune response. These obstacles may be overcome by target delivery of siRNA at the tumor site. This review presents a holistic overview regarding the role of RRM2 in controlling cancer progression. The nanoparticles are more effective due to specific characteristics like cell membrane penetration capacity, less toxicity, etc. RRM2 have been found to be elevated in different types of cancer and identified as the prognostic and predictive marker of the disease. Reductase RRM1 and RRM2 regulate the protein and gene expression of E2F, which is critical for protein expression and progression of cell cycle and cancer. The knockdown of RRM2 leads to apoptosis via Bcl2 in cancer. Both Bcl2 and E2F are critical in the progression of cancer, hence a gene that can affect both in regulating DNA replication is essential for cancer therapy. AIM The aim of the review is to identify the related gene whose silencing may inhibit cancer progression. CONCLUSION In this review, we illuminate the critical link between RRM-E2F, RRM-Bcl2, RRM-HDAC for the therapy of cancer. Altogether, this review presents an overview of all types of SiRNA targeted for cancer therapy with special emphasis on RRM2 for controlling the tumor progression.
Collapse
Affiliation(s)
- Arjun Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, TN, India
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Pravir Kumar
- Functional Genomics Lab, Department of Biotechnology, Delhi Technological University, DTU, Delhi, India
| | - Rashmi K Ambasta
- Functional Genomics Lab, Department of Biotechnology, Delhi Technological University, DTU, Delhi, India
- CSIR Scientific Pool Officer, Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|