1
|
Kim Y, Clemens EG, Farner JM, Londono-Barbaran A, Grab DJ, Dumler JS. Spotted fever rickettsia-induced microvascular endothelial barrier dysfunction is delayed by the calcium channel blocker benidipine. Biochem Biophys Res Commun 2023; 663:96-103. [PMID: 37121130 PMCID: PMC10362780 DOI: 10.1016/j.bbrc.2023.04.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
The tick-borne bacterium Rickettsia parkeri is an obligate intracellular pathogen that belongs to spotted fever group rickettsia (SFGR). The SFG pathogens are characterized by their ability to infect and rapidly proliferate inside host vascular endothelial cells that eventually result in impairment of vascular endothelium barrier functions. Benidipine, a wide range dihydropyridine calcium channel blocker, is used to prevent and treat cardiovascular diseases. In this study, we tested whether benidipine has protective effects against rickettsia-induced microvascular endothelial cell barrier dysfunction in vitro. We utilized an in vitro vascular model consisting of transformed human brain microvascular endothelial cells (tHBMECs) and continuously monitored transendothelial electric resistance (TEER) across the cell monolayer. We found that during the late stages of infection when we observed TEER decrease and when there was a gradual increase of the cytoplasmic [Ca2+], benidipine prevented these rickettsia-induced effects. In contrast, nifedipine, another cardiovascular dihydropyridine channel blocker specific for L-type Ca2+ channels, did not prevent R. parkeri-induced drop of TEER. Additionally, neither drug was bactericidal. These data suggest that growth of R. parkeri inside endothelial cells is associated with impairment of endothelial cell monolayer integrity due to Ca2+ flooding through specific, benidipine-sensitive T- or N/Q-type Ca2+ channels but not through nifedipine-sensitive L-type Ca2+ channels. Further study will be required to discern the exact nature of the Ca2+ channels and Ca2+ transporting system(s) involved, any contributions of the pathogen toward this process, as well as the suitability of benidipine and new dihydropyridine derivatives as complimentary therapeutic drugs against Rickettsia-induced vascular failure.
Collapse
Affiliation(s)
- Yuri Kim
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Emily G Clemens
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Jennifer M Farner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Andres Londono-Barbaran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA; Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Dennis J Grab
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - J Stephen Dumler
- Uniformed Services of the Health Sciences, Department of Pathology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Calcium–Permeable Channels and Endothelial Dysfunction in Acute Lung Injury. Curr Issues Mol Biol 2022; 44:2217-2229. [PMID: 35678679 PMCID: PMC9164020 DOI: 10.3390/cimb44050150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
The increased permeability of the lung microvascular endothelium is one critical initiation of acute lung injury (ALI). The disruption of vascular-endothelium integrity results in leakiness of the endothelial barrier and accumulation of protein-rich fluid in the alveoli. During ALI, increased endothelial-cell (EC) permeability is always companied by high frequency and amplitude of cytosolic Ca2+ oscillations. Mechanistically, cytosolic calcium oscillations include calcium release from internal stores and calcium entry via channels located in the cell membrane. Recently, numerous publications have shown substantial evidence that calcium-permeable channels play an important role in maintaining the integrity of the endothelium barrier function of the vessel wall in ALI. These novel endothelial signaling pathways are future targets for the treatment of lung injury. This short review focuses on the up-to-date research and provide insight into the contribution of calcium influx via ion channels to the disruption of lung microvascular endothelial-barrier function during ALI.
Collapse
|
3
|
Xu L, Qiu Y, Li Y, Wei Y, Wan Y, Deng W. Tissue dynamics of von Willebrand factor characterized by a novel fluorescent protein-von Willebrand factor chimera. J Thromb Haemost 2022; 20:208-221. [PMID: 34592034 DOI: 10.1111/jth.15542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tissue dynamics of von Willebrand factor (VWF) that are vital to its biological function have not been fully characterized. OBJECTIVE To develop a new fluorescent protein--VWF chimera (FP-VWF) that has similar hematologic function to wild-type VWF and use it to monitor the tissue dynamics of VWF distribution. METHODS Genotyping, platelet counting, tail bleeding time assay, agarose gels, western blot, platelet aggregation, proteolytic analysis, and ELISA were applied in characterizing the function of FP-VWF; fluorescence spectrometer and confocal fluorescence microscope were used to monitor the plasma and tissue distribution of FP-VWF. RESULTS The transgenic mice that carry the FP-VWF retain hematologic activity of VWF with plasma levels of FP-VWF reduced by 50% and there are reduced high molecular weight FP-VWF multimers compared to the wild-type mice. The GPIb-binding and ADAMTS-13 (A Disintegrin and Metalloprotease with ThrombSpondin type 1 motif, member 13) proteolytic efficiency of FP-VWF are similar to wild-type VWF. The tissue distribution of FP-VWF was probed directly through its intrinsic fluorescence at normal or stimulated status, which indicated that the medicine-stimulated endogenous FP-VWF seems primarily released from the aorta and cleared in the spleen. Similar results were observed in non-fluorescent mice through a standard immunofluorescence approach. The fluorescence signals of FP-VWF were also similar to the standard dye-based approach in detecting the FeCl3 -induced blood clotting in vivo. CONCLUSIONS Together, these results suggest that this novel FP-VWF chimera is valuable in probing the tissue dynamics of VWF in quite a few biological and pharmaceutical applications.
Collapse
Affiliation(s)
- Linru Xu
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yanyang Qiu
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yanqing Li
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yaxuan Wei
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yan Wan
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Wei Deng
- Cyrus Tang Medical Institute and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Harraz OF, Jensen LJ. Vascular calcium signalling and ageing. J Physiol 2021; 599:5361-5377. [PMID: 34705288 PMCID: PMC9002240 DOI: 10.1113/jp280950] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Changes in cellular Ca2+ levels have major influences on vascular function and blood pressure regulation. Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) orchestrate vascular activity in distinct ways, often involving highly specific fluctuations in Ca2+ signalling. Ageing is a major risk factor for cardiovascular diseases, but the impact of ageing per se on vascular Ca2+ signalling has received insufficient attention. We reviewed the literature for age-related changes in Ca2+ signalling in relation to vascular structure and function. Vascular tone dysregulation in several vascular beds has been linked to abnormal expression or activity of SMC voltage-gated Ca2+ channels, Ca2+ -activated K+ channels or TRPC6 channels. Some of these effects were linked to altered caveolae density, microRNA expression or 20-HETE abundance. Intracellular store Ca2+ handling was suppressed in ageing mainly via reduced expression of intracellular Ca2+ release channels, and Ca2+ reuptake or efflux pumps. An increase in mitochondrial Ca2+ uptake, leading to oxidative stress, could also play a role in SMC hypercontractility and structural remodelling in ageing. In ECs, ageing entailed diverse effects on spontaneous and evoked Ca2+ transients, as well as structural changes at the EC-SMC interface. The concerted effects of altered Ca2+ signalling on myogenic tone, endothelium-dependent vasodilatation, and vascular structure are likely to contribute to blood pressure dysregulation and blood flow distribution deficits in critical organs. With the increase in the world's ageing population, future studies should be directed at solving specific ageing-induced Ca2+ signalling deficits to combat the imminent accelerated vascular ageing and increased risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA,Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA
| | - Lars Jørn Jensen
- Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
5
|
Zheng Z, Wang X, Wang Y, King JAC, Xie P, Wu S. CaMK4 is a downstream effector of the α 1G T-type calcium channel to determine the angiogenic potential of pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 2021; 321:C964-C977. [PMID: 34586897 DOI: 10.1152/ajpcell.00216.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 01/25/2023]
Abstract
Pulmonary microvascular endothelial cells (PMVECs) uniquely express an α1G-subtype of voltage-gated T-type Ca2+ channel. We have previously revealed that the α1G channel functions as a background Ca2+ entry pathway that is critical for the cell proliferation, migration, and angiogenic potential of PMVECs, a novel function attributed to the coupling between α1G-mediated Ca2+ entry and constitutive Akt phosphorylation and activation. Despite this significance, mechanism(s) that link the α1G-mediated Ca2+ entry to Akt phosphorylation remain incompletely understood. In this study, we demonstrate that Ca2+/calmodulin-dependent protein kinase (CaMK) 4 serves as a downstream effector of the α1G-mediated Ca2+ entry to promote the angiogenic potential of PMVECs. Notably, CaMK2 and CaMK4 are both expressed in PMVECs. Pharmacological blockade or genetic knockdown of the α1G channel led to a significant reduction in the phosphorylation level of CaMK4 but not the phosphorylation level of CaMK2. Pharmacological inhibition as well as genetic knockdown of CaMK4 significantly decreased cell proliferation, migration, and network formation capacity in PMVECs. However, CaMK4 inhibition or knockdown did not alter Akt phosphorylation status in PMVECs, indicating that α1G/Ca2+/CaMK4 is independent of the α1G/Ca2+/Akt pathway in sustaining the cells' angiogenic potential. Altogether, these findings suggest a novel α1G-CaMK4 signaling complex that regulates the Ca2+-dominated angiogenic potential in PMVECs.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xuelin Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuxia Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Judy A C King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana
| | - Peilin Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Wang T, Wang W, Li W, Duan H, Xu C, Tian X, Zhang D. Genome-wide DNA methylation analysis of pulmonary function in middle and old-aged Chinese monozygotic twins. Respir Res 2021; 22:300. [PMID: 34809630 PMCID: PMC8609861 DOI: 10.1186/s12931-021-01896-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Previous studies have determined the epigenetic association between DNA methylation and pulmonary function among various ethnics, whereas this association is largely unknown in Chinese adults. Thus, we aimed to explore epigenetic relationships between genome-wide DNA methylation levels and pulmonary function among middle-aged Chinese monozygotic twins. METHODS The monozygotic twin sample was drawn from the Qingdao Twin Registry. Pulmonary function was measured by three parameters including forced expiratory volume the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. Linear mixed effect model was used to regress the methylation level of CpG sites on pulmonary function. After that, we applied Genomic Regions Enrichment of Annotations Tool (GREAT) to predict the genomic regions enrichment, and used comb-p python library to detect differentially methylated regions (DMRs). Gene expression analysis was conducted to validate the results of differentially methylated analyses. RESULTS We identified 112 CpG sites with the level of P < 1 × 10-4 which were annotated to 40 genes. We identified 12 common enriched pathways of three pulmonary function parameters. We detected 39 DMRs located at 23 genes, of which PRDM1 was related to decreased pulmonary function, and MPL, LTB4R2, and EPHB3 were related to increased pulmonary function. The gene expression analyses validated DIP2C, ASB2, SLC6A5, and GAS6 related to decreased pulmonary function. CONCLUSION Our DNA methylation sequencing analysis on identical twins provides new references for the epigenetic regulation on pulmonary function. Several CpG sites, genes, biological pathways and DMRs are considered as possible crucial to pulmonary function.
Collapse
Affiliation(s)
- Tong Wang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China.
| |
Collapse
|
7
|
Endothelial Dysfunction Following Enhanced TMEM16A Activity in Human Pulmonary Arteries. Cells 2020; 9:cells9091984. [PMID: 32872351 PMCID: PMC7563136 DOI: 10.3390/cells9091984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial dysfunction is one of the hallmarks of different vascular diseases, including pulmonary arterial hypertension (PAH). Ion channelome changes have long been connected to vascular remodeling in PAH, yet only recently has the focus shifted towards Ca2+-activated Cl− channels (CaCC). The most prominent member of the CaCC TMEM16A has been shown to contribute to the pathogenesis of idiopathic PAH (IPAH) in pulmonary arterial smooth muscle cells, however its role in the homeostasis of healthy human pulmonary arterial endothelial cells (PAECs) and in the development of endothelial dysfunction remains underrepresented. Here we report enhanced TMEM16A activity in IPAH PAECs by whole-cell patch-clamp recordings. Using adenoviral-mediated TMEM16A increase in healthy primary human PAECs in vitro and in human pulmonary arteries ex vivo, we demonstrate the functional consequences of the augmented TMEM16A activity: alterations of Ca2+ dynamics and eNOS activity as well as decreased NO production, PAECs proliferation, wound healing, tube formation and acetylcholine-mediated relaxation of human pulmonary arteries. We propose that the ERK1/2 pathway is specifically affected by elevated TMEM16A activity, leading to these pathological changes. With this work we introduce increased TMEM16A activity in the cell membrane of human PAECs for the development of endothelial dysfunction in PAH.
Collapse
|
8
|
Wan L, Wu W, Jiang S, Wan S, Meng D, Wang Z, Zhang J, Wei L, Yu P. Mibefradil and Flunarizine, Two T-Type Calcium Channel Inhibitors, Protect Mice against Lipopolysaccharide-Induced Acute Lung Injury. Mediators Inflamm 2020; 2020:3691701. [PMID: 33223955 PMCID: PMC7671802 DOI: 10.1155/2020/3691701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have illuminated that blocking Ca2+ influx into effector cells is an attractive therapeutic strategy for lung injury. We hypothesize that T-type calcium channel may be a potential therapeutic target for acute lung injury (ALI). In this study, the pharmacological activity of mibefradil (a classical T-type calcium channel inhibitor) was assessed in a mouse model of lipopolysaccharide- (LPS-) induced ALI. In LPS challenged mice, mibefradil (20 and 40 mg/kg) dramatically decreased the total cell number, as well as the productions of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Mibefradil also suppressed total protein concentration in BALF, attenuated Evans blue extravasation, MPO activity, and NF-κB activation in lung tissue. Furthermore, flunarizine, a widely prescripted antimigraine agent with potent inhibition on T-type channel, was also found to protect mice against lung injury. These data demonstrated that T-type calcium channel inhibitors may be beneficial for treating acute lung injury. The important role of T-type calcium channel in the acute lung injury is encouraged to be further investigated.
Collapse
Affiliation(s)
- Limei Wan
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Weibin Wu
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing 526020, China
| | - Shunjun Jiang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Dongmei Meng
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhipeng Wang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Li Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Pengjiu Yu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
9
|
Zheng Z, Chen H, Xie P, Dickerson CA, King JAC, Alexeyev MF, Wu S. α 1G T-type calcium channel determines the angiogenic potential of pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 2019; 316:C353-C364. [PMID: 30649917 DOI: 10.1152/ajpcell.00336.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary microvascular endothelial cells (PMVECs) display a rapid angioproliferative phenotype, essential for maintaining homeostasis in steady-state and promoting vascular repair after injury. Although it has long been established that endothelial cytosolic Ca2+ ([Ca2+]i) transients are required for proliferation and angiogenesis, mechanisms underlying such regulation and the transmembrane channels mediating the relevant [Ca2+]i transients remain incompletely understood. In the present study, the functional role of the microvascular endothelial site-specific α1G T-type Ca2+ channel in angiogenesis was examined. PMVECs intrinsically possess an in vitro angiogenic "network formation" capacity. Depleting extracellular Ca2+ abolishes network formation, whereas blockade of vascular endothelial growth factor receptor or nitric oxide synthase has little or no effect, suggesting that the network formation is a [Ca2+]i-dependent process. Blockade of the T-type Ca2+ channel or silencing of α1G, the only voltage-gated Ca2+ channel subtype expressed in PMVECs, disrupts network formation. In contrast, blockade of canonical transient receptor potential (TRP) isoform 4 or TRP vanilloid 4, two other Ca2+ permeable channels expressed in PMVECs, has no effect on network formation. T-type Ca2+ channel blockade also reduces proliferation, cell-matrix adhesion, and migration, three major components of angiogenesis in PMVECs. An in vivo study demonstrated that the mice lacking α1G exhibited a profoundly impaired postinjury cell proliferation in the lungs following lipopolysaccharide challenge. Mechanistically, T-type Ca2+ channel blockade reduces Akt phosphorylation in a dose-dependent manner. Blockade of Akt or its upstream activator, phosphatidylinositol-3-kinase (PI3K), also impairs network formation. Altogether, these findings suggest a novel functional role for the α1G T-type Ca2+ channel to promote the cell's angiogenic potential via a PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Hairu Chen
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Peilin Xie
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Carol A Dickerson
- Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Judy A C King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center , Shreveport, Louisiana
| | - Mikhail F Alexeyev
- Center for Lung Biology and Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
10
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
11
|
T-Type voltage gated calcium channels: a target in breast cancer? Breast Cancer Res Treat 2018; 173:11-21. [PMID: 30242580 DOI: 10.1007/s10549-018-4970-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/15/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this review article is to discuss the potential of T-type voltage gated calcium channels (VGCCs) as drug targets in breast cancer. Breast cancer, attributable to the different molecular subtypes, has a crucial need for therapeutic strategies to counter the mortality rate. VGCCs play an important role in regulating cytosolic free calcium levels which regulate cellular processes like tumorigenesis and cancer progression. In the last decade, T-type VGCCs have been investigated in breast cancer proliferation. Calcium channel blockers, in general, have shown an anti-proliferative and cytotoxic effects. T-type VGCC antagonists have shown growth inhibition owing to the inhibition of CaV3.2 isoform. CaV3.1 isoform has been indicated as a tumour-suppressor gene candidate and is reported to support anti-proliferative and apoptotic activity in breast cancer. The distribution of T-type VGCC isoforms in different breast cancer molecular subtypes is diverse and needs to be further investigated. The role of T-type VGCCs in breast cancer migration, metastasis and more importantly in epithelial to mesenchymal transition (EMT) is yet to be elucidated. In addition, interlaced therapy, using a combination of chemotherapy drugs and T-type VGCC blockers, presents a promising therapeutic approach for breast cancer but more validation and clinical trials are needed. Also, for investigating the potential of T-type VGCC blocker therapy, there is a need for isoform-specific agonists/antagonists to define and discover roles of T-type VGCC specific isoforms. CONCLUSION Our article provides a review of the role of T-type VGCCs in breast cancer and also discusses future of the research in this area so that it can be ascertained whether there is any potential of T-type VGCCs as drug targets in breast cancer.
Collapse
|
12
|
Vanhoutte PM, Zhao Y, Xu A, Leung SWS. Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. Circ Res 2017; 119:375-96. [PMID: 27390338 DOI: 10.1161/circresaha.116.306531] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022]
Abstract
Endothelial cells control vascular tone by releasing nitric oxide (NO) produced by endothelial NO synthase. The activity of endothelial NO synthase is modulated by the calcium concentration and by post-translational modifications (eg, phosphorylation). When NO reaches vascular smooth muscle, soluble guanylyl cyclase is its primary target producing cGMP. NO production is stimulated by circulating substances (eg, catecholamines), platelet products (eg, serotonin), autacoids formed in (eg, bradykinin) or near (eg, adiponectin) the vascular wall and physical factors (eg, shear stress). NO dysfunction can be caused, alone or in combination, by abnormal coupling of endothelial cell membrane receptors, insufficient supply of substrate (l-arginine) or cofactors (tetrahydrobiopterin), endogenous inhibitors (asymmetrical dimethyl arginine), reduced expression/presence/dimerization of endothelial NO synthase, inhibition of its enzymatic activity, accelerated disposition of NO by reactive oxygen species and abnormal responses (eg, biased soluble guanylyl cyclase activity producing cyclic inosine monophosphate) of the vascular smooth muscle. Major culprits causing endothelial dysfunction, irrespective of the underlying pathological process (aging, obesity, diabetes mellitus, and hypertension), include stimulation of mineralocorticoid receptors, activation of endothelial Rho-kinase, augmented presence of asymmetrical dimethyl arginine, and exaggerated oxidative stress. Genetic and pharmacological interventions improve dysfunctional NO-mediated vasodilatations if protecting the supply of substrate and cofactors for endothelial NO synthase, preserving the presence and activity of the enzyme and reducing reactive oxygen species generation. Common achievers of such improvement include maintained levels of estrogens and increased production of adiponectin and induction of silent mating-type information regulation 2 homologue 1. Obviously, endothelium-dependent relaxations are not the only beneficial action of NO in the vascular wall. Thus, reduced NO-mediated responses precede and initiate the atherosclerotic process.
Collapse
Affiliation(s)
- Paul M Vanhoutte
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yingzi Zhao
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Susan W S Leung
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Holmes WW, Keyser BM, Paradiso DC, Ray R, Andres DK, Benton BJ, Rothwell CC, Hoard-Fruchey HM, Dillman JF, Sciuto AM, Anderson DR. Conceptual approaches for treatment of phosgene inhalation-induced lung injury. Toxicol Lett 2015; 244:8-20. [PMID: 26562770 DOI: 10.1016/j.toxlet.2015.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022]
Abstract
Toxic industrial chemicals are used throughout the world to produce everyday products such as household and commercial cleaners, disinfectants, pesticides, pharmaceuticals, plastics, paper, and fertilizers. These chemicals are produced, stored, and transported in large quantities, which poses a threat to the local civilian population in cases of accidental or intentional release. Several of these chemicals have no known medical countermeasures for their toxic effects. Phosgene is a highly toxic industrial chemical which was used as a chemical warfare agent in WWI. Exposure to phosgene causes latent, non-cardiogenic pulmonary edema which can result in respiratory failure and death. The mechanisms of phosgene-induced pulmonary injury are not fully identified, and currently there is no efficacious countermeasure. Here, we provide a proposed mechanism of phosgene-induced lung injury based on the literature and from studies conducted in our lab, as well as provide results from studies designed to evaluate survival efficacy of potential therapies following whole-body phosgene exposure in mice. Several therapies were able to significantly increase 24h survival following an LCt50-70 exposure to phosgene; however, no treatment was able to fully protect against phosgene-induced mortality. These studies provide evidence that mortality following phosgene toxicity can be mitigated by neuro- and calcium-regulators, antioxidants, phosphodiesterase and endothelin receptor antagonists, angiotensin converting enzymes, and transient receptor potential cation channel inhibitors. However, because the mechanism of phosgene toxicity is multifaceted, we conclude that a single therapeutic is unlikely to be sufficient to ameliorate the multitude of direct and secondary toxic effects caused by phosgene inhalation.
Collapse
Affiliation(s)
- Wesley W Holmes
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States.
| | - Brian M Keyser
- Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States
| | - Danielle C Paradiso
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States
| | - Radharaman Ray
- Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States
| | - Devon K Andres
- Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States
| | - Betty J Benton
- Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States
| | - Cristin C Rothwell
- Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States
| | - Heidi M Hoard-Fruchey
- Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States
| | - James F Dillman
- Research Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States
| | - Alfred M Sciuto
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States
| | - Dana R Anderson
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving Ground, MD 21010-5400, United States.
| |
Collapse
|
15
|
Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015; 22:537-52. [PMID: 25545236 PMCID: PMC4322788 DOI: 10.1089/ars.2014.6234] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. RECENT ADVANCES Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. CRITICAL ISSUES AND FUTURE DIRECTIONS In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellence Cluster Cardiopulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) , Giessen, Germany
| | | | | | | |
Collapse
|
16
|
Hansen PBL. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system: news from the world of knockout mice. Am J Physiol Regul Integr Comp Physiol 2015; 308:R227-37. [DOI: 10.1152/ajpregu.00276.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the years, it has been discussed whether T-type calcium channels Cav3 play a role in the cardiovascular and renal system. T-type channels have been reported to play an important role in renal hemodynamics, contractility of resistance vessels, and pacemaker activity in the heart. However, the lack of highly specific blockers cast doubt on the conclusions. As new T-type channel antagonists are being designed, the roles of T-type channels in cardiovascular and renal pathology need to be elucidated before T-type blockers can be clinically useful. Two types of T-type channels, Cav3.1 and Cav3.2, are expressed in blood vessels, the kidney, and the heart. Studies with gene-deficient mice have provided a way to investigate the Cav3.1 and Cav3.2 channels and their role in the cardiovascular system. This review discusses the results from these knockout mice. Evaluation of the literature leads to the conclusion that Cav3.1 and Cav3.2 channels have important, but different, functions in mice. T-type Cav3.1 channels affect heart rate, whereas Cav3.2 channels are involved in cardiac hypertrophy. In the vascular system, Cav3.2 activation leads to dilation of blood vessels, whereas Cav3.1 channels are mainly suggested to affect constriction. The Cav3.1 channel is also involved in neointima formation following vascular damage. In the kidney, Cav3.1 regulates plasma flow and Cav3.2 plays a role setting glomerular filtration rate. In conclusion, Cav3.1 and Cav3.2 are new therapeutic targets in several cardiovascular pathologies, but the use of T-type blockers should be specifically directed to the disease and to the channel subtype.
Collapse
Affiliation(s)
- Pernille B. L. Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
17
|
Gao B, Sun W, Wang X, Jia X, Ma B, Chang Y, Zhang W, Xue D. Whole genome expression profiling and screening for differentially expressed cytokine genes in human bone marrow endothelial cells treated with humoral inhibitors in liver cirrhosis. Int J Mol Med 2013; 32:1204-14. [PMID: 24043211 DOI: 10.3892/ijmm.2013.1495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/06/2013] [Indexed: 11/05/2022] Open
Abstract
Bone marrow endothelial cells (BMECs) are important components of the hematopoietic microenvironment in bone marrow, and they can secrete several types of cytokines to regulate the functions of hematopoietic stem/progenitor cells. To date, it is unknown whether BMECs undergo functional changes and lead to hematopoietic abnormalities in cases of liver cirrhosis (LC). In the present study, whole genome microarray analysis was carried out to detect differentially expressed genes in human BMECs treated for 48 h with medium supplemented with 20% pooled sera from 26 patients with LC or 10 healthy volunteers as the control group. A total of 1,106 upregulated genes and 766 downregulated genes were identified. In Gene Ontology analysis, the most significant categories of genes were revealed. A large number of the upregulated genes were involved in processes, such as cell-cell adhesion, apoptosis and cellular response to stimuli and the downregulated genes were involved in the negative regulation of secretion, angiogenesis, blood vessel development and cell growth. Pathway analysis revealed that the upregulated genes were either cell adhesion molecules or parts of the apoptotic signaling pathway and the downregulated genes were involved in the Wnt signaling pathway and MAPK signaling pathway. These were the pathways with the highest enrichment scores. The results of apoptosis assays revealed that the humoral inhibitors in the sera of patients with LC induced the apoptosis of BMECs, which confirmed the accuracy of bioinformatic analysis. Moreover, we screened and verified 21 differentially expressed cytokine genes [transforming growth factor (TGF)B1, tumor necrosis factor (TNF)B, TNF receptor superfamily, member 11b (TNFRSF11B), TNF (ligand) superfamily, member 13b (TNFSF13B), interleukin (IL)1A, IL6, IL11, IL17C, IL24, family with sequence similarity 3, member B (FAM3B), Fas ligand (FASLG), matrix metallopeptidase (MMP)3, MMP15, vitronectin (VTN), insulin-like growth factor 1 (IGF1), fibroblast growth factor 22 (FGF22), slit homolog 2 (Drosophila) (SLIT2), thrombospondin (THBS)2, THBS3, chemokine (C-C motif) ligand 28 (CCL28) and macrophage stimulating 1 (MST1)] from 97 cytokine genes in BMECs treated with serum from patients with LC. The results from our study demonstrate that the humoral inhibitors in the sera of patients with LC induce the dysfunction and abnormal cytokine secretion by BMECs, which may be a novel mechanism responsible for hematological abnormalities in patients with LC.
Collapse
Affiliation(s)
- Bo Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
19
|
|
20
|
Abstract
The endothelium is a highly dynamic structure lining the inside of blood vessels that exhibits physical and chemical properties that are critical determinants of overall vascular function. Physically, the endothelium constitutes a semipermeable barrier. Chemically, the endothelium synthesizes numerous factors such as reactive oxygen species (ROS) that can act as autocrine and paracrine signaling molecules. Oxidative stress results when ROS levels increase to levels that cause cellular injury, and, in the endothelium oxidative stress leads to barrier disruption. Endothelial barrier disruption also results from increased cytosolic calcium through store-operated calcium (SOC) entry channels. Although it is known that ROS can interact with and regulate some ion channels, relatively little is known about the interaction of these species with components of endothelial SOC entry channels, the canonical transient receptor potential (TRPC) proteins. Here we review our current understanding of ROS-mediated TRPC channel function and how it affects SOC entry and endothelial barrier disruption.
Collapse
Affiliation(s)
- Donna L Cioffi
- Department of Biochemistry and Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| |
Collapse
|
21
|
Firth AL, Remillard CV, Platoshyn O, Fantozzi I, Ko EA, Yuan JXJ. Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels. Pulm Circ 2011; 1:48-71. [PMID: 21927714 PMCID: PMC3173772 DOI: 10.4103/2045-8932.78103] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The activity of voltage-gated ion channels is critical for the maintenance of cellular membrane potential and generation of action potentials. In turn, membrane potential regulates cellular ion homeostasis, triggering the opening and closing of ion channels in the plasma membrane and, thus, enabling ion transport across the membrane. Such transmembrane ion fluxes are important for excitation–contraction coupling in pulmonary artery smooth muscle cells (PASMC). Families of voltage-dependent cation channels known to be present in PASMC include voltage-gated K+ (Kv) channels, voltage-dependent Ca2+-activated K+ (Kca) channels, L- and T- type voltage-dependent Ca2+ channels, voltage-gated Na+ channels and voltage-gated proton channels. When cells are dialyzed with Ca2+-free K+- solutions, depolarization elicits four components of 4-aminopyridine (4-AP)-sensitive Kvcurrents based on the kinetics of current activation and inactivation. In cell-attached membrane patches, depolarization elicits a wide range of single-channel K+ currents, with conductances ranging between 6 and 290 pS. Macroscopic 4-AP-sensitive Kv currents and iberiotoxin-sensitive Kca currents are also observed. Transcripts of (a) two Na+ channel α-subunit genes (SCN5A and SCN6A), (b) six Ca2+ channel α–subunit genes (α1A, α1B, α1X, α1D, α1Eand α1G) and many regulatory subunits (α2δ1, β1-4, and γ6), (c) 22 Kv channel α–subunit genes (Kv1.1 - Kv1.7, Kv1.10, Kv2.1, Kv3.1, Kv3.3, Kv3.4, Kv4.1, Kv4.2, Kv5.1, Kv 6.1-Kv6.3, Kv9.1, Kv9.3, Kv10.1 and Kv11.1) and three Kv channel β-subunit genes (Kvβ1-3) and (d) four Kca channel α–subunit genes (Sloα1 and SK2-SK4) and four Kca channel β-subunit genes (Kcaβ1-4) have been detected in PASMC. Tetrodotoxin-sensitive and rapidly inactivating Na+ currents have been recorded with properties similar to those in cardiac myocytes. In the presence of 20 mM external Ca2+, membrane depolarization from a holding potential of -100 mV elicits a rapidly inactivating T-type Ca2+ current, while depolarization from a holding potential of -70 mV elicits a slowly inactivating dihydropyridine-sensitive L-type Ca2+ current. This review will focus on describing the electrophysiological properties and molecular identities of these voltage-dependent cation channels in PASMC and their contribution to the regulation of pulmonary vascular function and its potential role in the pathogenesis of pulmonary vascular disease.
Collapse
Affiliation(s)
- Amy L Firth
- The Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
22
|
Zhou C, Chen H, King JA, Sellak H, Kuebler WM, Yin J, Townsley MI, Shin HS, Wu S. Alpha1G T-type calcium channel selectively regulates P-selectin surface expression in pulmonary capillary endothelium. Am J Physiol Lung Cell Mol Physiol 2010; 299:L86-97. [PMID: 20435690 DOI: 10.1152/ajplung.00331.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Regulated P-selectin surface expression provides a rapid measure for endothelial transition to a proinflammatory phenotype. In general, P-selectin surface expression results from Weibel-Palade body (WPb) exocytosis. Yet, it is unclear whether pulmonary capillary endothelium possesses WPbs or regulated P-selectin surface expression and, if so, how inflammatory stimuli initiate exocytosis. We used immunohistochemistry, immunofluorescence labeling, ultrastructural assessment, and an isolated perfused lung model to demonstrate that capillary endothelium lacks WPbs but possesses P-selectin. Thrombin stimulated P-selectin surface expression in both extra-alveolar vessel and alveolar capillary endothelium. Only in capillaries was the thrombin-stimulated P-selectin surface expression considerably mitigated by pharmacologic blockade of the T-type channel or genetic knockout of the T-type channel alpha(1G)-subunit. Depolarization of endothelial plasma membrane via high K(+) perfusion capable of eliciting cytosolic Ca(2+) transients also provoked P-selectin surface expression in alveolar capillaries that was abolished by T-type channel blockade or alpha(1G) knockout. Our findings reveal an intracellular WPb-independent P-selectin pool in pulmonary capillary endothelium, where the regulated P-selectin surface expression is triggered by Ca(2+) transients evoked through activation of the alpha(1G) T-type channel.
Collapse
Affiliation(s)
- Chun Zhou
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama 36688-0002, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Martini A, Bruno R, Mazzulla S, Nocita A, Martino G. Angiotensin II regulates endothelial cell migration through calcium influx via T-type calcium channel in human umbilical vein endothelial cells. Acta Physiol (Oxf) 2010; 198:449-55. [PMID: 20028346 DOI: 10.1111/j.1748-1716.2009.02070.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM The T-type calcium channel is expressed in vascular endothelial cells, but its role in endothelial cell function is yet to be elucidated. We analysed the endothelial functional role of T-type calcium channel-dependent calcium under angiotensin II (Ang II) stimulation. METHODS Human umbilical vein endothelial cells were co-incubated with hormone at 10(-7) m and either Efonidipine 10(-5) m or Verapamil 10(-5) m or Mibefradil 10(-5) m or Wortmannin 10(-6) m. The contribution of Ang II receptors was evaluated using PD123319 10(-7) m and ZD 7155 10(-7) m. The calcium ion concentration was observed using Fluo-3 acetossimetil ester. The cells were observed after 3, 6, 9 and 12 h. RESULTS The microfluorescence method points out that Ang II induces intracellular calcium modulation in time by distinct mechanisms. AT2 receptor blockade is necessary to observe significant increase in [Ca(2+)](i) levels. Pre-treatment with Mibefradil abolishes Ang II -induced cell migration. CONCLUSIONS Our data show that Ang II, via AT1 receptor, modulates calcium concentration involving T-type calcium channel and L-type calcium channel but only the calcium influx via T-type calcium channels regulates endothelial cell migration which is essential for angiogenesis.
Collapse
|
24
|
Store-operated calcium entry channels in pulmonary endothelium: the emerging story of TRPCS and Orai1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:137-54. [PMID: 20204728 DOI: 10.1007/978-1-60761-500-2_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of diverse origin utilize shifts in cytosolic calcium concentrations as intracellular signals to elicit physiological responses. In endothelium, inflammatory first messengers increase cytosolic calcium as a signal to disrupt cell-cell borders and produce inter-cellular gaps. Calcium influx across the plasma membrane is required to initiate barrier disruption, although the calcium entry mechanism responsible for this effect remains poorly understood. This chapter highlights recent efforts to define the molecular anatomy of the ion channel responsible for triggering endothelial cell gap formation. Resolving the identity and function of this calcium channel will pave the way for new anti-inflammatory therapeutic targets.
Collapse
|
25
|
Wu S, Jian MY, Xu YC, Zhou C, Al-Mehdi AB, Liedtke W, Shin HS, Townsley MI. Ca2+ entry via alpha1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium. Am J Physiol Lung Cell Mol Physiol 2009; 297:L650-7. [PMID: 19617313 DOI: 10.1152/ajplung.00015.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pulmonary vascular endothelial cells express a variety of ion channels that mediate Ca(2+) influx in response to diverse environmental stimuli. However, it is not clear whether Ca(2+) influx from discrete ion channels is functionally coupled to specific outcomes. Thus we conducted a systematic study in mouse lung to address whether the alpha(1G) T-type Ca(2+) channel and the transient receptor potential channel TRPV4 have discrete functional roles in pulmonary capillary endothelium. We used real-time fluorescence imaging for endothelial cytosolic Ca(2+), immunohistochemistry to probe for surface expression of P-selectin, and the filtration coefficient to specifically measure lung endothelial permeability. We demonstrate that membrane depolarization via exposure of pulmonary vascular endothelium to a high-K(+) perfusate induces Ca(2+) entry into alveolar septal endothelial cells and exclusively leads to the surface expression of P-selectin. In contrast, Ca(2+) entry in septal endothelium evoked by the selective TRPV4 activator 4alpha-phorbol-12,13-didecanoate (4alpha-PDD) specifically increases lung endothelial permeability without effect on P-selectin expression. Pharmacological blockade or knockout of alpha(1G) abolishes depolarization-induced Ca(2+) entry and surface expression of P-selectin but does not prevent 4alpha-PDD-activated Ca(2+) entry and the resultant increase in permeability. Conversely, blockade or knockout of TRPV4 specifically abolishes 4alpha-PDD-activated Ca(2+) entry and the increase in permeability, while not impacting depolarization-induced Ca(2+) entry and surface expression of P-selectin. We conclude that in alveolar septal capillaries Ca(2+) entry through alpha(1G) and TRPV4 channels differentially and specifically regulates the transition of endothelial procoagulant phenotype and barrier integrity, respectively.
Collapse
Affiliation(s)
- Songwei Wu
- Center for Lung Biology and Dept. of Pharmacology, Univ. of South Alabama College of Medicine, Mobile, AL 36688-0002, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Colsoul B, Nilius B, Vennekens R. On the putative role of transient receptor potential cation channels in asthma. Clin Exp Allergy 2009; 39:1456-66. [PMID: 19624522 DOI: 10.1111/j.1365-2222.2009.03315.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mammalian transient receptor potential (TRP) superfamily consists of 28 mammalian TRP cation channels, which can be subdivided into six main subfamilies: the TRPC ('Canonical'), TRPV ('Vanilloid'), TRPM ('Melastatin'), TRPP ('Polycystin'), TRPML ('Mucolipin') and the TRPA ('Ankyrin') groups. Increasing evidence has accumulated during the previous few years that links TRP channels to the cause of several diseases or to critically influence and/or determine their progress. This review focuses on the possible role of TRP channels in the aetiology of asthmatic lung disease.
Collapse
Affiliation(s)
- B Colsoul
- Laboratory Ion Channel Research, Department of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
27
|
Jensen LJ, Holstein-Rathlou NH. Is there a role for T-type Ca2+ channels in regulation of vasomotor tone in mesenteric arterioles? Can J Physiol Pharmacol 2009; 87:8-20. [PMID: 19142211 DOI: 10.1139/y08-101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The largest peripheral blood pressure drop occurs in terminal arterioles (<40 microm lumen diameter). L-type voltage-dependent Ca2+ channels (VDCCs) are considered the primary pathway for Ca2+ influx during physiologic activation of vascular smooth muscle cells (VSMC). Recent evidence suggests that T-type VDCCs are expressed in renal afferent and efferent arterioles, mesenteric arterioles, and skeletal muscle arterioles. T-type channels are small-conductance, low voltage-activated, fast-inactivating channels. Thus, their role in supplying Ca2+ for contraction of VSMC has been disputed. However, T-type channels display non-inactivating window currents, which may play a role in sustained Ca2+ entry. Here, we review the possible role of T-type channels in vasomotor tone regulation in rat mesenteric terminal arterioles. The CaV3.1 channel was immunolocalized in VSMC, whereas the CaV3.2 channel was predominantly expressed in endothelial cells. Voltage-dependent Ca2+ entry was inhibited by the new specific T-type blockers R(-)-efonidipine and NNC 55-0396. The effect of NNC 55-0396 persisted in depolarized arterioles, suggesting an unusually high activation threshold of mesenteric T-type channels. T-type channels were not necessary for conduction of vasoconstriction, but appear to be important for local electromechanical coupling in VSMC. The first direct demonstration of endothelial T-type channels warrants new investigations of their role in vascular biology.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- Division of Renal and Vascular Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
28
|
Abstract
The microcirculation is a complex and integrated system, transporting oxygen and nutrients to the cells. The key component of this system is the endothelium, contributing to the local balance between pro and anti-inflammatory mediators, hemostatic balance, as well as vascular permeability and cell proliferation. A constant shear stress maintains vascular endothelium homeostasis while perturbed shear stress leads to changes in secretion of vasodilator and vasoconstrictor agents. Increased oxidative stress is a major pathogenetic mechanism of endothelial dysfunction by decreasing NO bioavailability, promoting inflammation and participating in activation of intracellular signals cascade, so influencing ion channels activation, signal transduction pathways, cytoskeleton remodelling, intercellular communication and ultimately gene expression. Targeting the microvascular inflammation and oxidative stress is a fascinating approach for novel therapies in order to decrease morbidity and mortality of chronic and acute diseases.
Collapse
Affiliation(s)
- E Crimi
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
29
|
Figueroa XF, Chen CC, Campbell KP, Damon DN, Day KH, Ramos S, Duling BR. Are voltage-dependent ion channels involved in the endothelial cell control of vasomotor tone? Am J Physiol Heart Circ Physiol 2007; 293:H1371-83. [PMID: 17513486 DOI: 10.1152/ajpheart.01368.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the microcirculation, longitudinal conduction of vasomotor responses provides an essential means of coordinating flow distribution among vessels in a complex network. Spread of current along the vessel axis can display a regenerative component, which leads to propagation of vasomotor signals over many millimeters; the ionic basis for the regenerative response is unknown. We examined the responses to 10 s of focal electrical stimulation (30 Hz, 2 ms, 30 V) of mouse cremaster arterioles to test the hypothesis that voltage-dependent Na(+) (Na(v)) and Ca(2+) channels might be activated in long-distance signaling in microvessels. Electrical stimulation evoked a vasoconstriction at the site of stimulation and a spreading, nondecremental conducted dilation. Endothelial damage (air bubble) blocked conduction of the vasodilation, indicating an involvement of the endothelium. The Na(v) channel blocker bupivacaine also blocked conduction, and TTX attenuated it. The Na(v) channel activator veratridine induced an endothelium-dependent dilation. The Na(v) channel isoforms Na(v)1.2, Na(v)1.6, and Na(v)1.9 were detected in the endothelial cells of cremaster arterioles by immunocytochemistry. These findings are consistent with the involvement of Na(v) channels in the conducted response. BAPTA buffering of endothelial cell Ca(2+) delayed and reduced the conducted dilation, which was almost eliminated by Ni(2+), amiloride, or deletion of alpha(1H) T-type Ca(2+) (Ca(v)3.2) channels. Blockade of endothelial nitric oxide synthase or Ca(2+)-activated K(+) channels also inhibited the conducted vasodilation. Our findings indicate that an electrically induced signal can propagate along the vessel axis via the endothelium and can induce sequential activation of Na(v) and Ca(v)3.2 channels. The resultant Ca(2+) influx activates endothelial nitric oxide synthase and Ca(2+)-activated K(+) channels, triggering vasodilation.
Collapse
Affiliation(s)
- Xavier F Figueroa
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
30
|
Townsley MI. Special topics issue of microcirculation: ion channels and pulmonary vascular function. Microcirculation 2006; 13:611-3. [PMID: 17085422 DOI: 10.1080/10739680600930149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Unique features of the pulmonary circulation impact its function in health and disease, not the least of which is the existence of developmentally distinct, functionally heterogeneous extra-alveolar and septal capillary networks. The impact of ion channel expression and regulation in lung vascular smooth muscle or endothelium in these vascular compartments provides a focus for this special topics issue. Reviews and original contributions from experts in the field discuss two broad groups of ion channels, drawing on studies utilizing biophysical and molecular approaches in heterologous expression systems, in vitro approaches in pulmonary vascular smooth muscle and endothelial cells, and physiologic studies in animal models of chronic pulmonary hypertension. First, channels involved in membrane depolarization and related alterations in vascular tone, and shear sensing or exocytosis by endothelium are discussed: voltage-gated potassium channels, ATP-regulated potassium channels and L- and T- type voltage-gated calcium channels. The second series of reviews discusses the role of calcium influx pathways provided by transient receptor potential channels in regulation of pulmonary vascular tone or vascular remodeling, and endothelial barrier function. Understanding the role of ion channels in pulmonary vascular pathophysiology may be critical to development of new therapeutic strategies.
Collapse
Affiliation(s)
- Mary I Townsley
- Department of Physiology and the Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA.
| |
Collapse
|