1
|
Sheptulina AF, Liusina EO, Zlobovskaya OA, Kiselev AR, Drapkina OM. Possible Role of Platelets in the Development and Progression of Non-Alcoholic Fatty Liver Disease. FRONT BIOSCI-LANDMRK 2025; 30:26748. [PMID: 40152376 DOI: 10.31083/fbl26748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 03/29/2025]
Abstract
To date, an increasing body of evidence supports the potential role of activated platelets in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). This is likely due to their ability to secrete biologically active substances that regulate liver regeneration processes, ensure hemostasis, and participate in the immune response. Additionally, several studies have demonstrated the efficacy of antiplatelet agents in reducing inflammation, the severity of liver fibrosis, and the progression of fibrosis in non-alcoholic steatohepatitis (NASH). Since NAFLD is not an independent indication for antiplatelet therapy, the primary evidence regarding their efficacy in NAFLD has been derived from studies using animal models of NAFLD or in patients with concomitant cardiovascular diseases. This narrative review will discuss the main functions of platelets, their unique interactions with liver cells, and the outcomes of these interactions, as well as the results of studies evaluating the efficacy and safety of antiplatelet therapy in patients with NAFLD.
Collapse
Affiliation(s)
- Anna F Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Ekaterina O Liusina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Olga A Zlobovskaya
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 123182 Moscow, Russia
| | - Anton R Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
2
|
Czabajszki M, Garami A, Molnár T, Csécsei P, Viskolcz B, Oláh C, Váradi C. Altered Pattern of Serum N-Glycome in Subarachnoid Hemorrhage and Cerebral Vasospasm. J Clin Med 2025; 14:465. [PMID: 39860471 PMCID: PMC11765641 DOI: 10.3390/jcm14020465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Subarachnoid hemorrhage is a serious condition caused by ruptured intracranial aneurysms, resulting in severe disability mainly in young adults. Cerebral vasospasm is one of the most common complication of subarachnoid hemorrhage; thus, active prevention is key to improve the prognosis. The glycosylation of proteins is a critical quality attribute which is reportedly altered in patients diagnosed with acute ischemic stroke. In this study, we examined the N-glycosylation profile of serum glycoproteins in patients with subarachnoid hemorrhage without vasospasm compared to patients with vasospasm. Methods: The serum N-glycans were released by PNGase F (Peptide: N-glycosidase F) digestion and subsequently labeled by procainamide via reductive amination. The samples were analyzed by hydrophilic-interaction liquid chromatography after solid-phase extraction-based sample purification. Results: Besides the glycosylation pattern, we also investigated the biomarkers following subarachnoid hemorrhage. Multiple statistical analyses were performed in order to find significant differences and identify potential prediction factors of cerebral vasospasm. Significant differences were identified such as higher sialylation on bi-, tri-, and tetra-antennary structures in patients with subarachnoid hemorrhage and cerebral vasospasm. Conclusions: Our results suggest that glycosylation analysis can improve the identification of patients with cerebral vasospasm in combination with laboratory parameters.
Collapse
Affiliation(s)
- Máté Czabajszki
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary; (M.C.); (B.V.)
- Department of Neurosurgery, Borsod-Abaúj-Zemplén County Center Hospital and University Teaching Hospital, 3526 Miskolc, Hungary;
| | - Attila Garami
- Institute of Energy, Ceramic and Polymer Technology, University of Miskolc, 3515 Miskolc, Hungary;
| | - Tihamér Molnár
- Department of Anesthesiology and Intensive Care, University of Pécs Medical School, 7624 Pécs, Hungary; (T.M.); (P.C.)
| | - Péter Csécsei
- Department of Anesthesiology and Intensive Care, University of Pécs Medical School, 7624 Pécs, Hungary; (T.M.); (P.C.)
| | - Béla Viskolcz
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary; (M.C.); (B.V.)
| | - Csaba Oláh
- Department of Neurosurgery, Borsod-Abaúj-Zemplén County Center Hospital and University Teaching Hospital, 3526 Miskolc, Hungary;
- Mathias Institute, University of Tokaj, 3950 Sárospatak, Hungary
| | - Csaba Váradi
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary; (M.C.); (B.V.)
| |
Collapse
|
3
|
Brinkley L, Brock MA, Stinson G, Bilgili A, Jacobs JP, Bleiweis M, Peek GJ. The biological role and future therapeutic uses of nitric oxide in extracorporeal membrane oxygenation, a narrative review. Perfusion 2025; 40:83-91. [PMID: 38226651 DOI: 10.1177/02676591241228169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
BACKGROUND Nitric oxide (NO) is a gas naturally produced by the human body that plays an important physiological role. Specifically, it binds guanylyl cyclase to induce smooth muscle relaxation. NO's other protective functions have been well documented, particularly its protective endothelial functions, effects on decreasing pulmonary vascular resistance, antiplatelet, and anticoagulation properties. The use of nitric oxide donors as vasodilators has been known since 1876. Inhaled nitric oxide has been used as a pulmonary vasodilator and to improve ventilation perfusion matching since the 1990s. It is currently approved by the United States Food and Drug Administration for neonates with hypoxic respiratory failure, however, it is used off-label for acute respiratory distress syndrome, acute bronchiolitis, and COVID-19. PURPOSE In this article we review the currently understood biological action and therapeutic uses of NO through nitric oxide donors such as inhaled nitric oxide. We will then explore recent studies describing use of NO in cardiopulmonary bypass and extracorporeal membrane oxygenation and speculate on NO's future uses.
Collapse
|
4
|
Lin J, Chen S, Zhang C, Liao J, Chen Y, Deng S, Mao Z, Zhang T, Tian N, Song Y, Zeng T. Recent advances in microfluidic technology of arterial thrombosis investigations. Platelets 2024; 35:2316743. [PMID: 38390892 DOI: 10.1080/09537104.2024.2316743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Microfluidic technology has emerged as a powerful tool in studying arterial thrombosis, allowing researchers to construct artificial blood vessels and replicate the hemodynamics of blood flow. This technology has led to significant advancements in understanding thrombosis and platelet adhesion and aggregation. Microfluidic models have various types and functions, and by studying the fabrication methods and working principles of microfluidic chips, applicable methods can be selected according to specific needs. The rapid development of microfluidic integrated system and modular microfluidic system makes arterial thrombosis research more diversified and automated, but its standardization still needs to be solved urgently. One key advantage of microfluidic technology is the ability to precisely control fluid flow in microchannels and to analyze platelet behavior under different shear forces and flow rates. This allows researchers to study the physiological and pathological processes of blood flow, shedding light on the underlying mechanisms of arterial thrombosis. In conclusion, microfluidic technology has revolutionized the study of arterial thrombosis by enabling the construction of artificial blood vessels and accurately reproducing hemodynamics. In the future, microfluidics will place greater emphasis on versatility and automation, holding great promise for advancing antithrombotic therapeutic and prophylactic measures.
Collapse
Affiliation(s)
- Jingying Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Chengdu Shangjin Nanfu Hospital/Shangjin Branch of West China Hospital, Sichuan University, Chengdu, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuemei Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shanying Deng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigang Mao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tonghao Zhang
- Department of Statistics, University of Virginia, Charlottesville, USA
| | - Na Tian
- Anesthesiology Department, Qingdao Eighth People's Hospital, Qingdao, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Dienel A, Hong SH, Zeineddine HA, Thomas S, M SC, Jose DA, Torres K, Guzman J, Dunn A, T PK, Rao GN, Blackburn SL, McBride DW. 12/15-Lipooxygenase Inhibition Reduces Microvessel Constriction and Microthrombi After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2024:10.1007/s12975-024-01295-0. [PMID: 39294532 DOI: 10.1007/s12975-024-01295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus, 12/15-LOX is an important target to prevent delayed cerebral ischemia. SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day 5 to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. In SAH mice, 12/15-LOX was upregulated in brain vascular cells, and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| | - Sung Ha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Hussein A Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Sithara Thomas
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Shafeeque C M
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Dania A Jose
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - P Kumar T
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| |
Collapse
|
6
|
Behrangzade A, Ye SH, Maestas DR, Wagner WR, Vande Geest JP. Improving the hemocompatibility of a porohyperelastic layered vascular graft using luminal reversal microflows. J Mech Behav Biomed Mater 2024; 157:106638. [PMID: 38996626 PMCID: PMC11513160 DOI: 10.1016/j.jmbbm.2024.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Vascular graft thrombosis is a long-standing clinical problem. A myriad of efforts have been devoted to reducing thrombus formation following bypass surgery. Researchers have primarily taken a chemical approach to engineer and modify surfaces, seeking to make them more suitable for blood contacting applications. Using mechanical forces and surface topology to prevent thrombus formation has recently gained more attention. In this study, we have designed a bilayered porous vascular graft capable of repelling platelets and destabilizing absorbed protein layers from the luminal surface. During systole, fluid penetrates through the graft wall and is subsequently ejected from the wall into the luminal space (Luminal Reversal Flow - LRF), pushing platelets away from the surface during diastole. In-vitro hemocompatibility tests were conducted to compare platelet deposition in high LRF grafts with low LRF grafts. Graft material properties were determined and utilized in a porohyperelastic (PHE) finite element model to computationally predict the LRF generation in each graft type. Hemocompatibility testing showed significantly lower platelet deposition values in high versus low LRF generating grafts (median±IQR = 5,708 ± 987 and 23,039 ± 3,310 platelets per mm2, respectively, p=0.032). SEM imaging of the luminal surface of both graft types confirmed the quantitative blood test results. The computational simulations of high and low LRF generating grafts resulted in LRF values of -10.06 μm/s and -2.87 μm/s, respectively. These analyses show that a 250% increase in LRF is associated with a 75.2% decrease in platelet deposition. PHE vascular grafts with high LRF have the potential to improve anti-thrombogenicity and reduce thrombus-related post-procedure complications. Additional research is required to overcome the limitations of current graft fabrication technologies that further enhance LRF generation.
Collapse
Affiliation(s)
- Ali Behrangzade
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sang-Ho Ye
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David R Maestas
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jonathan P Vande Geest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
7
|
Valtchanov H, Cecere R, Atkinson LTJ, Mongrain R. Simulation of the effect of hemolysis on thrombosis in blood-contacting medical devices. Med Eng Phys 2024; 131:104218. [PMID: 39284659 DOI: 10.1016/j.medengphy.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/22/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Heart failure, broadly characterized by the gradual decline of the ability of the heart to maintain adequate blood flow throughout the body's vascular network of veins and arteries, is one of the leading causes of death worldwide. Mechanical Circulatory Support is one of the few available alternative interventions for late-stage heart failure with reduced ejection fraction. A ventricular assist device is surgically implanted and connected to the left and or right heart ventricles to provide additional bloodflow, off-loading the work required by the heart to maintain circulation. Modern mechanical circulatory support devices generate non-physiological flow conditions that can lead to the damage and rupture of blood cells (hemolysis), and the formation of blood clots (thrombosis), which pose severe health risks to the patient. It is essential to improve prediction tools for blood damage to reduce the risk of hemolysis and thrombosis. A simulation-based approach examines the interaction between hemolysis and thrombosis. Incompressible finite-volume computational fluid dynamics simulations are executed on an open-hub axial flow ventricular assist device. A continuum model of thrombosis and the intrinsic coagulation process is extended to include the effect of hemolysis. The model accounts for the effect of activation of platelets by shear stress, paracrine signaling, adhesion, and hemoglobin and ADP released during hemolysis. The effect of hemolysis with thrombosis is modelled by accounting for the hyper-adhesivity of von-Willebrand Factor on extracellular hemoglobin, and the increased rate of platelet activation induced by ADP release. Thrombosis is assessed at varying inflow rates and rotor speeds, and cases are executed where thrombosis is affected by ADP release and Hb-induced hyper-adhesivity. It is found that there is a non-negligible effect from hemolysis on thrombosis across a range of rotor speeds, and that hyperadhesivity plays a dominant role in thrombus formation in the presence of hemolysis.
Collapse
Affiliation(s)
- H Valtchanov
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - R Cecere
- Division of Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - L T J Atkinson
- Cardiac Surgery, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - R Mongrain
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Dienel A, Hong SH, Zeineddine HA, Thomas S, Shafeeque CM, Jose DA, Torres K, Guzman J, Dunn A, P Kumar T, Rao GN, Blackburn SL, McBride DW. 12/15-Lipooxygenase Inhibition Reduces Microvessel Constriction and Microthrombi after Subarachnoid Hemorrhage in Mice. RESEARCH SQUARE 2024:rs.3.rs-4468292. [PMID: 38947083 PMCID: PMC11213206 DOI: 10.21203/rs.3.rs-4468292/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background and Purpose Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus 12/15-LOX is an important target to prevent delayed cerebral ischemia. Methods SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day five to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and for development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. Results In SAH mice, 12/15-LOX was upregulated in brain vascular cells and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Conclusions Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Sung Ha Hong
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - Sithara Thomas
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - C M Shafeeque
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Dania A Jose
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Kiara Torres
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Jose Guzman
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - T P Kumar
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - Spiros L Blackburn
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Devin W McBride
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| |
Collapse
|
9
|
Tuna R, Yi W, Crespo Cruz E, Romero JP, Ren Y, Guan J, Li Y, Deng Y, Bluestein D, Liu ZL, Sheriff J. Platelet Biorheology and Mechanobiology in Thrombosis and Hemostasis: Perspectives from Multiscale Computation. Int J Mol Sci 2024; 25:4800. [PMID: 38732019 PMCID: PMC11083691 DOI: 10.3390/ijms25094800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Thrombosis is the pathological clot formation under abnormal hemodynamic conditions, which can result in vascular obstruction, causing ischemic strokes and myocardial infarction. Thrombus growth under moderate to low shear (<1000 s-1) relies on platelet activation and coagulation. Thrombosis at elevated high shear rates (>10,000 s-1) is predominantly driven by unactivated platelet binding and aggregating mediated by von Willebrand factor (VWF), while platelet activation and coagulation are secondary in supporting and reinforcing the thrombus. Given the molecular and cellular level information it can access, multiscale computational modeling informed by biology can provide new pathophysiological mechanisms that are otherwise not accessible experimentally, holding promise for novel first-principle-based therapeutics. In this review, we summarize the key aspects of platelet biorheology and mechanobiology, focusing on the molecular and cellular scale events and how they build up to thrombosis through platelet adhesion and aggregation in the presence or absence of platelet activation. In particular, we highlight recent advancements in multiscale modeling of platelet biorheology and mechanobiology and how they can lead to the better prediction and quantification of thrombus formation, exemplifying the exciting paradigm of digital medicine.
Collapse
Affiliation(s)
- Rukiye Tuna
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
| | - Wenjuan Yi
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
| | - Esmeralda Crespo Cruz
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
| | - JP Romero
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA
| | - Jingjiao Guan
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA
| | - Yan Li
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Zixiang Leonardo Liu
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; (R.T.); (E.C.C.); (Z.L.L.)
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
10
|
Kuhn BJ, Swanson A, Cherupalla AS, Booth L, Dickerson WM, Fitzpatrick GM, Alexander WA, Moskowitz KA. Mechanisms of action of an investigational new freeze-dried platelet-derived hemostatic product. J Thromb Haemost 2024; 22:686-699. [PMID: 38072376 DOI: 10.1016/j.jtha.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND A safe and efficacious hemostatic product with a long shelf-life is needed to reduce mortality from hemorrhage due to trauma and improve surgical outcomes for persons with platelet deficiency or dysfunction. Thrombosomes, a trehalose-stabilized, leukoreduced, pooled blood group-O freeze-dried platelet-derived hemostatic (FPH) with a 3-year shelf-life, may satisfy this need. OBJECTIVES To characterize the mechanism of action of FPH. METHODS FPH's ability to adhere to collagen, aggregate with and without platelets, and form clots was evaluated in vitro. Nonobese diabetic-severe combined immunodeficiency mouse models were used to assess circulation persistence and hemostatic efficacy. RESULTS FPH displays the morphology and surface proteins of activated platelets. FPH adheres to collagen, aggregates, and promotes clots, producing an insoluble fibrin mesh. FPH is rapidly cleared from circulation, has hemostatic efficacy comparable to apheresis platelets in a murine tail-cut, and acts in a dose-dependent manner. CONCLUSION FPH is a first-in-class investigational treatment and shows strong potential as a hemostatic agent that is capable of binding exposed collagen, coaggregating with endogenous platelets, and promoting the coagulation cascade. These properties may be exploited to treat active platelet-related or diffuse vascular bleeding. FPH has the potential to fulfill a large unmet patient need as an acute hemostatic treatment in severe bleeding, such as surgery and trauma.
Collapse
Affiliation(s)
- Benjamin J Kuhn
- Department of Discovery Research, Cellphire Therapeutics, Inc, Rockville, Maryland, USA.
| | - Ana Swanson
- Department of Discovery Research, Cellphire Therapeutics, Inc, Rockville, Maryland, USA
| | - Arjun S Cherupalla
- Department of Discovery Research, Cellphire Therapeutics, Inc, Rockville, Maryland, USA
| | - Lisa Booth
- Department of Discovery Research, Cellphire Therapeutics, Inc, Rockville, Maryland, USA
| | - W Matthew Dickerson
- Department of Discovery Research, Cellphire Therapeutics, Inc, Rockville, Maryland, USA
| | | | - W Allan Alexander
- Medical Science and Clinical Development, Cellphire Therapeutics, Inc, Rockville, Maryland, USA
| | - Keith A Moskowitz
- Department of Discovery Research, Cellphire Therapeutics, Inc, Rockville, Maryland, USA
| |
Collapse
|
11
|
Sikora J, Pstrągowski K, Karczmarska-Wódzka A, Wszelaki P, Buszko K, Włodarczyk Z. Impact of Levosimendan and Its Metabolites on Platelet Activation Mechanisms in Patients during Antiplatelet Therapy-Pilot Study. Int J Mol Sci 2024; 25:1824. [PMID: 38339102 PMCID: PMC10855241 DOI: 10.3390/ijms25031824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Levosimendan is used for the short-term treatment of severe heart failure or other cardiac conditions. The area of existing clinical applications for levosimendan has increased significantly. This study aimed to assess whether levosimendan and its metabolites impact the mechanisms related to platelet activation. In this study, we included patients with coronary artery disease receiving antiplatelet therapy. We analyzed the pharmacodynamic profile using three independent methods to assess platelet activity. The results of the conducted studies indicate a mechanism of levosimendan that affects the function of platelets, causing higher inhibition of platelet receptors and, thus, their aggregation. It is essential to clarify whether levosimendan may affect platelets due to the need to maintain a balance between bleeding and thrombosis in patients treated with levosimendan. This is especially important in the case of perioperative bleeding. This study was conducted in vitro; the research should be continued and carried out in patients to check the complete pharmacokinetic and pharmacodynamic profile.
Collapse
Affiliation(s)
- Joanna Sikora
- Research and Education Unit for Experimental Biotechnology, Department of Transplantology and General Surgery, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (A.K.-W.); (P.W.)
| | - Krzysztof Pstrągowski
- Department of Cardiology and Internal Medicine, Antoni Jurasz University Hospital No. 1 in Bydgoszcz, 85-094 Bydgoszcz, Poland;
| | - Aleksandra Karczmarska-Wódzka
- Research and Education Unit for Experimental Biotechnology, Department of Transplantology and General Surgery, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (A.K.-W.); (P.W.)
| | - Patrycja Wszelaki
- Research and Education Unit for Experimental Biotechnology, Department of Transplantology and General Surgery, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland; (A.K.-W.); (P.W.)
| | - Katarzyna Buszko
- Department of Theoretical Foundations of Biomedical Science and Medical Informatics, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland;
| | - Zbigniew Włodarczyk
- Department of Transplantology and General Surgery, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
12
|
Du J, Fogelson AL. A computational investigation of occlusive arterial thrombosis. Biomech Model Mechanobiol 2024; 23:157-178. [PMID: 37702979 PMCID: PMC11697383 DOI: 10.1007/s10237-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023]
Abstract
The generation of occlusive thrombi in stenotic arteries involves the rapid deposition of millions of circulating platelets under high shear flow. The process is mediated by the formation of molecular bonds of several distinct types between platelets; the bonds capture the moving platelets and stabilize the growing thrombi under flow. We investigated the mechanisms behind occlusive thrombosis in arteries with a two-phase continuum model. The model explicitly tracks the formation and rupture of the two types of interplatelet bonds, the rates of which are coupled with the local flow conditions. The motion of platelets in the thrombi results from competition between the viscoelastic forces generated by the interplatelet bonds and the fluid drag. Our simulation results indicate that stable occlusive thrombi form only under specific combinations for the ranges of model parameters such as rates of bond formation and rupture, platelet activation time, and number of bonds required for platelet attachment.
Collapse
Affiliation(s)
- Jian Du
- Department of Mathematical Sciences, Florida Institute of Technology, 150 W. University BLVD, Melbourne, FL, 32901, USA.
| | - Aaron L Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, 155 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
13
|
Steadman E, Steadman D, Rubenstein DA, Yin W. Platelet and endothelial cell responses under concurrent shear stress and tensile strain. Microvasc Res 2024; 151:104613. [PMID: 37793562 DOI: 10.1016/j.mvr.2023.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Thrombosis can lead to significant mortality and morbidity. Both platelets and vascular endothelial cells play significant roles in thrombosis. Platelets' response to blood flow-induced shear stress can vary greatly depending on shear stress magnitude, pattern and shear exposure time. Endothelial cells are also sensitive to the biomechanical environment. Endothelial cell activation and dysfunction can occur under low oscillatory shear stress and low tensile strain. Platelet and endothelial cell interaction can also be affected by mechanical conditions. The goal of this study was to investigate how blood flow-induced shear stress, vascular wall tensile strain, platelet-endothelial cell stress history, and platelet-endothelial cell interaction affect platelet thrombogenicity. Platelets and human coronary artery endothelial cells were pretreated with physiological and pathological shear stress and/or tensile strain separately. The pretreated cells were then put together and exposed to pulsatile shear stress and cyclic tensile strain simultaneously in a shearing-stretching device. Following treatment, platelet thrombin generation rate, platelet and endothelial cell activation, and platelet adhesion to endothelial cells was measured. The results demonstrated that shear stress pretreatment of endothelial cells and platelets caused a significant increase in platelet thrombin generation rate, cell surface phosphatidylserine expression, and adhesion to endothelial cells. Shear stress pretreatment of platelets and endothelial cells attenuated endothelial cell ICAM-1 expression under stenosis conditions, as well as vWF expression under recirculation conditions. These results indicate that platelets are sensitized by prior shearing, while in comparison, the interaction with shear stress-pretreated platelets may reduce endothelial cell sensitivity to pathological shear stress and tensile strain.
Collapse
Affiliation(s)
- Elisabeth Steadman
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA
| | - Danielle Steadman
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA
| | - David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA.
| |
Collapse
|
14
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
15
|
Hearn JI, Gardiner EE. Research and Clinical Approaches to Assess Platelet Function in Flowing Blood. Arterioscler Thromb Vasc Biol 2023; 43:1775-1783. [PMID: 37615110 DOI: 10.1161/atvbaha.123.317048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Platelet adhesion and activation is fundamental to the formation of a hemostatic response to limit loss of blood and instigate wound repair to seal a site of vascular injury. The process of platelet aggregate formation is supported by the coagulation system driving injury-proximal formation of thrombin, which converts fibrinogen to insoluble fibrin. This highly coordinated series of molecular and membranous events must be routinely achieved in flowing blood, at vascular fluid shear rates that place significant strain on molecular and cellular interactions. Platelets have long been recognized to be able to slow down and adhere to sites of vascular injury and then activate and recruit more platelets that forge and strengthen adhesive ties with the vascular wall under these conditions. It has been a major challenge for the Platelet Research Community to construct experimental conditions that allow precise definition of the molecular steps occurring under flow. This brief review will discuss work to date from our group, as well as others that has furthered our understanding of platelet function in flowing blood.
Collapse
Affiliation(s)
- James I Hearn
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
16
|
Du J, Fogelson A. A Computational Investigation of Occlusive Arterial Thrombosis. RESEARCH SQUARE 2023:rs.3.rs-3011328. [PMID: 37333269 PMCID: PMC10275038 DOI: 10.21203/rs.3.rs-3011328/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The generation of occlusive thrombi in stenotic arteries involves the rapid deposition of millions of circulating platelets under high shear flow. The process is mediated by the formation of molecular bonds of several distinct types between platelets; the bonds capture the moving platelets and stabilize the growing thrombi under flow. We investigated the mechanisms behind occlusive thrombosis in arteries with a two-phase continuum model. The model explicitly tracks the formation and rupture of the two types of interplatelet bonds, the rates of which are coupled with the local flow conditions. The motion of platelets in the thrombi results from competition between the viscoelastic forces generated by the interplatelet bonds and the fluid drag. Our simulation results indicate that stable occlusive thrombi form only under specific combinations for the ranges of model parameters such as rates of bond formation and rupture, platelet activation time, and number of bonds required for platelet attachment.
Collapse
Affiliation(s)
- Jian Du
- Department of Mathematical Sciences, Florida Institute of Technology, 150 W. University BLVD, Melbourne, 32901, Florida, USA
| | - Aaron Fogelson
- Departments of Mathematics and Biomedical Engineering, University of Utah, 155 South 1400 East, Salt Lake City, 84112, Utah, USA
| |
Collapse
|
17
|
Wang P, Sheriff J, Zhang P, Deng Y, Bluestein D. A Multiscale Model for Shear-Mediated Platelet Adhesion Dynamics: Correlating In Silico with In Vitro Results. Ann Biomed Eng 2023; 51:1094-1105. [PMID: 37020171 DOI: 10.1007/s10439-023-03193-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
Platelet adhesion to blood vessel walls is a key initial event in thrombus formation in both vascular disease processes and prosthetic cardiovascular devices. We extended a deformable multiscale model (MSM) of flowing platelets, incorporating Dissipative Particle Dynamics (DPD) and Coarse-Grained Molecular Dynamics (CGMD) describing molecular-scale intraplatelet constituents and their interaction with surrounding flow, to predict platelet adhesion dynamics under physiological flow shear stresses. Binding of platelet glycoprotein receptor Ibα (GPIbα) to von Willebrand factor (vWF) on the blood vessel wall was modeled by a molecular-level hybrid force field and validated with in vitro microchannel experiments of flowing platelets at 30 dyne/cm2. High frame rate videos of flipping platelets were analyzed with a Semi-Unsupervised Learning System (SULS) machine learning-guided imaging approach to segment platelet geometries and quantify adhesion dynamics parameters. In silico flipping dynamics followed in vitro measurements at 15 and 45 dyne/cm2 with high fidelity, predicting GPIbα-vWF bonding and debonding processes, distribution of bonds strength, and providing a biomechanical insight into initiation of the complex platelet adhesion process. The adhesion model and simulation framework can be further integrated with our established MSMs of platelet activation and aggregation to simulate initial mural thrombus formation on blood vessel walls.
Collapse
Affiliation(s)
- Peineng Wang
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Peng Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
18
|
Behrangzade A, Keeney HR, Martinet KM, Wagner WR, Vande Geest JP. Mechanical alterations of electrospun poly(ϵ-caprolactone) in response to convective thermobonding. J Biomed Mater Res B Appl Biomater 2023; 111:622-632. [PMID: 36221771 PMCID: PMC10600560 DOI: 10.1002/jbm.b.35181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
Vascular graft failure has persisted as a major clinical problem. Mechanical, structural, and transport properties of vascular grafts are critical factors that substantially affect their function and thus the outcome of implantation. The manufacturing method, post-processing technique, and material of choice have a significant impact on these properties. The goal of this work is to use thermal treatment to modulate the transport properties of PCL-based vascular engineered constructs. To this end, we electrospun PCL tubular constructs and thermally bonded the electrospun fibers in a convective oven at various temperatures (54, 57, and 60°C) and durations of treatment (15, 30, and 45 s). The effects of fiber thermal bonding (thermobonding) on the transport, mechanical, and structural properties of PCL tubular constructs were characterized. Increasing the temperature and treatment duration enhanced the degree of thermobonding by removing the interconnected void and fusing the fibers. Thermobonding at 57°C and 60°C for longer than 30 s increased the median tangential modulus (E = 126.1 MPa, [IQR = 20.7]), mean suture retention (F = 193.8 g, [SD = 18.5]), and degradation rate while it decreased the median permeability (kA = 0 m/s), and median thickness (t = 60 μm, [IQR = 2.5]). In particular, the thermobonding at 57°C allowed a finer modulation of permeability via treatment duration. We believe that the thermobonding method can be utilized to modulate the properties of vascular engineered constructs which can be useful in designing functional vascular grafts.
Collapse
Affiliation(s)
- Ali Behrangzade
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hannah R. Keeney
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katarina M. Martinet
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan P. Vande Geest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Liu D, Zhang P, Zhang K, Bi C, Li L, Xu Y, Zhang T, Zhang J. Role of GPR56 in Platelet Activation and Arterial Thrombosis. Thromb Haemost 2023; 123:295-306. [PMID: 36402131 DOI: 10.1055/a-1983-0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adhesion G protein-coupled receptor GPR56 mediates cell-cell and cell-extracellular matrix interactions. To examine the function of GPR56 in platelet activation and arterial thrombosis, we generated GPR56-knockout mice and evaluated GPR56 expression in human and mouse platelets. The results revealed that the levels of the GPR56 N-terminal fragment were significantly higher on the first day after myocardial infarction than on the seventh day in the plasma of patients with ST-segment-elevation myocardial infarction. Next, we investigated the effects of GPR56 on platelet function in vitro and in vivo. We observed that collagen-induced aggregation and adenosine triphosphate release were reduced in Gpr56 -/- platelets. Furthermore, P-selectin expression on the Gpr56 -/- platelet surface was also reduced, and the spreading area on immobilized collagen was decreased in Gpr56 -/- platelets. Furthermore, collagen-induced platelet activation in human platelets was inhibited by an anti-GPR56 antibody. Gpr56 -/- mice showed an extended time to the first occlusion in models with cremaster arteriole laser injury and FeCl3-induced carotid artery injury. GPR56 activated the G protein 13 signaling pathway following collagen stimulation, which promoted platelet adhesion and thrombus formation at the site of vascular injury. Thus, our study confirmed that GPR56 regulated the formation of arterial thrombosis. Inhibition of the initial response of GPR56 to collagen could significantly inhibit platelet activation and thrombus formation. Our results provide new insights for research into antiplatelet drugs.
Collapse
Affiliation(s)
- Dongsheng Liu
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kandi Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changlong Bi
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Abstract
The complement and hemostatic systems are complex systems, and both involve enzymatic cascades, regulators, and cell components-platelets, endothelial cells, and immune cells. The two systems are ancestrally related and are defense mechanisms that limit infection by pathogens and halt bleeding at the site of vascular injury. Recent research has uncovered multiple functional interactions between complement and hemostasis. On one side, there are proteins considered as complement factors that activate hemostasis, and on the other side, there are coagulation proteins that modulate complement. In addition, complement and coagulation and their regulatory proteins strongly interact each other to modulate endothelial, platelet and leukocyte function and phenotype, creating a potentially devastating amplifying system that must be closely regulated to avoid unwanted damage and\or disseminated thrombosis. In view of its ability to amplify all complement activity through the C3b-dependent amplification loop, the alternative pathway of complement may play a crucial role in this context. In this review, we will focus on available and emerging evidence on the role of the alternative pathway of complement in regulating hemostasis and vice-versa, and on how dysregulation of either system can lead to severe thromboinflammatory events.
Collapse
Affiliation(s)
- Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Miriam Galbusera
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
21
|
Ghose D, Swain S, Patra CN, Jena BR, Rao MEB. Advancement and Applications of Platelet-inspired Nanoparticles: A Paradigm for Cancer Targeting. Curr Pharm Biotechnol 2023; 24:213-237. [PMID: 35352648 DOI: 10.2174/1389201023666220329111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Platelet-inspired nanoparticles have ignited the possibility of new opportunities for producing similar biological particulates, such as structural cellular and vesicular components, as well as various viral forms, to improve biocompatible features that could improve the nature of biocompatible elements and enhance therapeutic efficacy. The simplicity and more effortless adaptability of such biomimetic techniques uplift the delivery of the carriers laden with cellular structures, which has created varied opportunities and scope of merits like; prolongation in circulation and alleviating immunogenicity improvement of the site-specific active targeting. Platelet-inspired nanoparticles or medicines are the most recent nanotechnology-based drug targeting systems used mainly to treat blood-related disorders, tumors, and cancer. The present review encompasses the current approach of platelet-inspired nanoparticles or medicines that have boosted the scientific community from versatile fields to advance biomedical sciences. Surprisingly, this knowledge has streamlined to development of newer diagnostic methods, imaging techniques, and novel nanocarriers, which might further help in the treatment protocol of the various diseased conditions. The review primarily focuses on the novel advancements and recent patents in nanoscience and nanomedicine that could be streamlined in the future for the management of progressive cancers and tumor targeting. Rigorous technological advancements like biomimetic stem cells, pH-sensitive drug delivery of nanoparticles, DNA origami devices, virosomes, nano cells like exosomes mimicking nanovesicles, DNA nanorobots, microbots, etc., can be implemented effectively for target-specific drug delivery.
Collapse
Affiliation(s)
- Debashish Ghose
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760 010, Biju Patnaik University of Technology, Rourkela, Odisha-769015, India
| | - Suryakanta Swain
- Department of Pharmacy, School of Health Sciences, The Assam Kaziranga University, Koraikhowa, NH-37, Jorhat, 785006, Assam, India
| | - Chinam Niranjan Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur, 760 010, Biju Patnaik University of Technology, Rourkela, Odisha-769015, India
| | - Bikash Ranjan Jena
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Muddana Eswara Bhanoji Rao
- Calcutta Institute of Pharmaceutical Technology and AHS, Banitabla, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
22
|
Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio relation with outcomes in acute lower limb ischemia. ANGIOLOGIA 2023. [DOI: 10.20960/angiologia.00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
23
|
Zainal Abidin NA, Timofeeva M, Szydzik C, Akbaridoust F, Lav C, Marusic I, Mitchell A, Hamilton JR, Ooi AS, Nesbitt WS. A microfluidic method to investigate platelet mechanotransduction under extensional strain. Res Pract Thromb Haemost 2023; 7:100037. [PMID: 36846647 PMCID: PMC9944983 DOI: 10.1016/j.rpth.2023.100037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background Blood platelets have evolved a complex mechanotransduction machinery to rapidly respond to hemodynamic conditions. A variety of microfluidic flow-based approaches have been developed to explore platelet mechanotransduction; however, these experimental models primarily focus on the effects of increased wall shear stress on platelet adhesion events and do not consider the critical effects of extensional strain on platelet activation in free flow. Objectives We report the development and application of a hyperbolic microfluidic assay that allows for investigation of platelet mechanotransduction under quasi-homogenous extensional strain rates in the absence of surface adhesions. Methods Using a combined computational fluid dynamic and experimental microfluidic approach, we explore 5 extensional strain regimes (geometries) and their effect on platelet calcium signal transduction. Results We demonstrate that in the absence of canonical adhesion, receptor engagement platelets are highly sensitive to both initial increase and subsequent decrease in extensional strain rates within the range of 747 to 3319/s. Furthermore, we demonstrate that platelets rapidly respond to the rate of change in extensional strain and define a threshold of ≥7.33 × 106/s/m, with an optimal range of 9.21 × 107 to 1.32 × 108/s/m. In addition, we demonstrate a key role of both the actin-based cytoskeleton and annular microtubules in the modulation of extensional strain-mediated platelet mechanotransduction. Conclusion This method opens a window onto a novel platelet signal transduction mechanism and may have potential diagnostic utility in the identification of patients who are prone to thromboembolic complications associated with high-grade arterial stenosis or are on mechanical circulatory support systems, for which the extensional strain rate is a predominant hemodynamic driver.
Collapse
Affiliation(s)
- Nurul A. Zainal Abidin
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mariia Timofeeva
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Crispin Szydzik
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Farzan Akbaridoust
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chitrarth Lav
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
- Scuderia AlphaTauri F1, Bicester, UK
| | - Ivan Marusic
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Justin R. Hamilton
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew S.H. Ooi
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Warwick S. Nesbitt
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Zhussupbekov M, Méndez Rojano R, Wu WT, Antaki JF. von Willebrand factor unfolding mediates platelet deposition in a model of high-shear thrombosis. Biophys J 2022; 121:4033-4047. [PMID: 36196057 PMCID: PMC9675031 DOI: 10.1016/j.bpj.2022.09.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Thrombosis under high-shear conditions is mediated by the mechanosensitive blood glycoprotein von Willebrand factor (vWF). vWF unfolds in response to strong flow gradients and facilitates rapid recruitment of platelets in flowing blood. While the thrombogenic effect of vWF is well recognized, its conformational response in complex flows has largely been omitted from numerical models of thrombosis. We recently presented a continuum model for the unfolding of vWF, where we represented vWF transport and its flow-induced conformational change using convection-diffusion-reaction equations. Here, we incorporate the vWF component into our multi-constituent model of thrombosis, where the local concentration of stretched vWF amplifies the deposition rate of free-flowing platelets and reduces the shear cleaning of deposited platelets. We validate the model using three benchmarks: in vitro model of atherothrombosis, a stagnation point flow, and the PFA-100, a clinical blood test commonly used for screening for von Willebrand disease (vWD). The simulations reproduced the key aspects of vWF-mediated thrombosis observed in these experiments, such as the thrombus location, thrombus growth dynamics, and the effect of blocking platelet-vWF interactions. The PFA-100 simulations closely matched the reported occlusion times for normal blood and several hemostatic deficiencies, namely, thrombocytopenia, vWD type 1, and vWD type 3. Overall, this multi-constituent model of thrombosis enables macro-scale 3D simulations of thrombus formation in complex geometries over a wide range of shear rates and accounts for qualitative and quantitative hemostatic deficiencies in patient blood.
Collapse
Affiliation(s)
- Mansur Zhussupbekov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - Wei-Tao Wu
- Department of Aerospace Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
25
|
Yang X, Leng M, Yang L, Peng Y, Wang J, Wang Q, Wu K, Zou J, Wan W, Li L, Ye Y, Meng Z. Effect of Evodiamine on Collagen-Induced Platelet Activation and Thrombosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4893859. [PMID: 35937403 PMCID: PMC9348926 DOI: 10.1155/2022/4893859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Evodia rutaecarpa has multiple pharmacological effects and is widely used in the prevention and treatment of migraine, diabetes, cardiovascular disease, cancer, and other chronic diseases; however, the pharmacological effects of its active compound evodiamine (Evo) have not been thoroughly investigated. The purpose of this study was to investigate the effects of Evo on antiplatelet activation and thrombosis. We discovered that Evo effectively inhibited collagen-induced platelet activation but had no effect on platelet aggregation caused by activators such as thrombin, ADP, and U46619. Second, we found that Evo effectively inhibited the release of platelet granules induced by collagen. Finally, evodiamine inhibits the transduction of the SFKs/Syk/Akt/PLCγ2 activation pathway in platelets. According to in vivo studies, Evo significantly prolonged the mesenteric thromboembolism induced by ferric chloride and had no discernible effect on the coagulation function of mice. In conclusion, the antiplatelet and thrombotic effects of Evo discovered in this study provide an experimental basis for the investigation of the pharmacological mechanisms of Evo and the development of antiplatelet drugs.
Collapse
Affiliation(s)
- Xiaona Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Leng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihong Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhu Peng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wu
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junhua Zou
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen Wan
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Longjun Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yujia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
26
|
Gan W, Guan Q, Hu X, Zeng X, Shao D, Xu L, Xiao W, Mao H, Chen W. The association between platelet-lymphocyte ratio and the risk of all-cause mortality in chronic kidney disease: a systematic review and meta-analysis. Int Urol Nephrol 2022; 54:2959-2967. [PMID: 35581444 DOI: 10.1007/s11255-022-03234-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) patients have high levels of inflammatory mediators. These inflammatory mediators contribute to the increased risk of cardiovascular events and all-cause mortality. Platelet-lymphocyte ratio (PLR) has recently been recognized as a novel inflammatory marker and has been shown to be associated with the prognosis in CKD patients. However, the quality of these studies varies and their results are controversial. The purpose of this meta-analysis was to investigate the relationship between PLR and all-cause mortality in CKD patients. METHODS A systematic literature search of PubMed, EMBASE, CENTRAL and ISI Web of Science was conducted. The databases were searched from their inception dates up to the latest issue (31 October 2021). Two reviewers independently searched the databases and screened studies. Data were extracted using a standardized collection form. Meta-analysis was performed to compare PLR values between CKD and non-CKD patients, and to investigate the association between PLR and all-cause mortality in CKD patients. This meta-analysis is reported in adherence to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS A total of 11 studies involving 4244 participants were selected. The pooled data indicated that PLR values were significantly higher in CKD patients than non-CKD controls (weighted mean difference = 21.6, 95% CI 17.39-25.81, p < 0.01), and PLR is associated with an increased risk of all-cause mortality in CKD patients (hazard ratio = 2.49, 95% CI 1.78-3.49, p < 0.01). CONCLUSIONS Patients with CKD have higher PLR values compared to non-CKD patients. Meanwhile, PLR values were highly associated with all-cause mortality in CKD patients. PLR is a valid predictor as a clinically accessible indicator for patients with CKD.
Collapse
Affiliation(s)
- Wenyuan Gan
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Qingyu Guan
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.,Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Xiaosong Hu
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Xingruo Zeng
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Danni Shao
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Li Xu
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Wei Xiao
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Huihui Mao
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Wenli Chen
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| |
Collapse
|
27
|
Shao B, Hoover C, Shi H, Kondo Y, Lee RH, Chen J, Shan X, Song J, McDaniel JM, Zhou M, McGee S, Vanhoorelbeke K, Bergmeier W, López JA, George JN, Xia L. Deletion of platelet CLEC-2 decreases GPIbα-mediated integrin αIIbβ3 activation and decreases thrombosis in TTP. Blood 2022; 139:2523-2533. [PMID: 35157766 PMCID: PMC9029097 DOI: 10.1182/blood.2021012896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Microvascular thrombosis in patients with thrombotic thrombocytopenic purpura (TTP) is initiated by GPIbα-mediated platelet binding to von Willebrand factor (VWF). Binding of VWF to GPIbα causes activation of the platelet surface integrin αIIbβ3. However, the mechanism of GPIbα-initiated activation of αIIbβ3 and its clinical importance for microvascular thrombosis remain elusive. Deletion of platelet C-type lectin-like receptor 2 (CLEC-2) did not prevent VWF binding to platelets but specifically inhibited platelet aggregation induced by VWF binding in mice. Deletion of platelet CLEC-2 also inhibited αIIbβ3 activation induced by the binding of VWF to GPIbα. Using a mouse model of TTP, which was created by infusion of anti-mouse ADAMTS13 monoclonal antibodies followed by infusion of VWF, we found that deletion of platelet CLEC-2 decreased pulmonary arterial thrombosis and the severity of thrombocytopenia. Importantly, prophylactic oral administration of aspirin, an inhibitor of platelet activation, and therapeutic treatment of the TTP mice with eptifibatide, an integrin αIIbβ3 antagonist, reduced pulmonary arterial thrombosis in the TTP mouse model. Our observations demonstrate that GPIbα-mediated activation of integrin αIIbβ3 plays an important role in the formation of thrombosis in TTP. These observations suggest that prevention of platelet activation with aspirin may reduce the risk for thrombosis in patients with TTP.
Collapse
Affiliation(s)
- Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Christopher Hoover
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Robert H Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jianhua Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - J Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; and
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - James N George
- Hematology-Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
28
|
Zainal Abidin NA, Poon EKW, Szydzik C, Timofeeva M, Akbaridoust F, Brazilek RJ, Tovar Lopez FJ, Ma X, Lav C, Marusic I, Thompson PE, Mitchell A, Ooi ASH, Hamilton JR, Nesbitt WS. An extensional strain sensing mechanosome drives adhesion-independent platelet activation at supraphysiological hemodynamic gradients. BMC Biol 2022; 20:73. [PMID: 35331224 PMCID: PMC8944166 DOI: 10.1186/s12915-022-01274-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Background Supraphysiological hemodynamics are a recognized driver of platelet activation and thrombosis at high-grade stenosis and in blood contacting circulatory support devices. However, whether platelets mechano-sense hemodynamic parameters directly in free flow (in the absence of adhesion receptor engagement), the specific hemodynamic parameters at play, the precise timing of activation, and the signaling mechanism(s) involved remain poorly elucidated. Results Using a generalized Newtonian computational model in combination with microfluidic models of flow acceleration and quasi-homogenous extensional strain, we demonstrate that platelets directly mechano-sense acute changes in free-flow extensional strain independent of shear strain, platelet amplification loops, von Willebrand factor, and canonical adhesion receptor engagement. We define an extensional strain sensing “mechanosome” in platelets involving cooperative Ca2+ signaling driven by the mechanosensitive channel Piezo1 (as the primary strain sensor) and the fast ATP gated channel P2X1 (as the secondary signal amplifier). We demonstrate that type II PI3 kinase C2α activity (acting as a “clutch”) couples extensional strain to the mechanosome. Conclusions Our findings suggest that platelets are adapted to rapidly respond to supraphysiological extensional strain dynamics, rather than the peak magnitude of imposed wall shear stress. In the context of overall platelet activation and thrombosis, we posit that “extensional strain sensing” acts as a priming mechanism in response to threshold levels of extensional strain allowing platelets to form downstream adhesive interactions more rapidly under the limiting effects of supraphysiological hemodynamics. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01274-7.
Collapse
Affiliation(s)
- Nurul A Zainal Abidin
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | - Eric K W Poon
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Crispin Szydzik
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,School of Engineering, RMIT University, La Trobe Street, Melbourne, VIC, 3004, Australia
| | - Mariia Timofeeva
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Farzan Akbaridoust
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Rose J Brazilek
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Xiao Ma
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Chitrarth Lav
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,CFD Methodology Group, Scuderia AlphaTauri F1, Bicester, OX26 4LD, UK
| | - Ivan Marusic
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University, La Trobe Street, Melbourne, VIC, 3004, Australia
| | - Andrew S H Ooi
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Justin R Hamilton
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | - Warwick S Nesbitt
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
29
|
Luc NF, Rohner N, Girish A, Sekhon UDS, Neal MD, Gupta AS. Bioinspired artificial platelets: past, present and future. Platelets 2022; 33:35-47. [PMID: 34455908 PMCID: PMC8795470 DOI: 10.1080/09537104.2021.1967916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Platelets are anucleate blood cells produced from megakaryocytes predominantly in the bone marrow and released into blood circulation at a healthy count of 150,000-400,00 per μL and circulation lifespan of 7-9 days. Platelets are the first responders at the site of vascular injury and bleeding, and participate in clot formation via injury site-specific primary mechanisms of adhesion, activation and aggregation to form a platelet plug, as well as secondary mechanisms of augmenting coagulation via thrombin amplification and fibrin generation. Platelets also secrete various granule contents that enhance these mechanisms for clot growth and stability. The resultant clot seals the injury site to stanch bleeding, a process termed as hemostasis. Due to this critical role, a reduction in platelet count or dysregulation in platelet function is associated with bleeding risks and hemorrhagic complications. These scenarios are often treated by prophylactic or emergency transfusion of platelets. However, platelet transfusions face significant challenges due to limited donor availability, difficult portability and storage, high bacterial contamination risks, and very short shelf life (~5-7 days). These are currently being addressed by a robust volume of research involving reduced temperature storage and pathogen reduction processes on donor platelets to improve shelf-life and reduce contamination, as well as bioreactor-based approaches to generate donor-independent platelets from stem cells in vitro. In parallel, a complementary research field has emerged that involves the design of artificial platelets utilizing biosynthetic particle constructs that functionally emulate various hemostatic mechanisms of platelets. Here, we provide a comprehensive review of the history and the current state-of-the-art artificial platelet approaches, along with discussing the translational opportunities and challenges.
Collapse
Affiliation(s)
- Norman F. Luc
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | - Nathan Rohner
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | - Aditya Girish
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| | | | - Matthew D. Neal
- University of Pittsburgh, Pittsburgh Trauma Research Center, Department of Surgery, Pittsburgh, PA 15123, USA
| | - Anirban Sen Gupta
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
A Continuum Model for the Unfolding of von Willebrand Factor. Ann Biomed Eng 2021; 49:2646-2658. [PMID: 34401970 PMCID: PMC9847011 DOI: 10.1007/s10439-021-02845-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 01/21/2023]
Abstract
von Willebrand Factor is a mechano-sensitive protein circulating in blood that mediates platelet adhesion to subendothelial collagen and platelet aggregation at high shear rates. Its hemostatic function and thrombogenic effect, as well as susceptibility to enzymatic cleavage, are regulated by a conformational change from a collapsed globular state to a stretched state. Therefore, it is essential to account for the conformation of the vWF multimers when modeling vWF-mediated thrombosis or vWF degradation. We introduce a continuum model of vWF unfolding that is developed within the framework of our multi-constituent model of platelet-mediated thrombosis. The model considers two interconvertible vWF species corresponding to the collapsed and stretched conformational states. vWF unfolding takes place via two regimes: tumbling in simple shear and strong unfolding in flows with dominant extensional component. These two regimes were demonstrated in a Couette flow between parallel plates and an extensional flow in a cross-slot geometry. The vWF unfolding model was then verified in several microfluidic systems designed for inducing high-shear vWF-mediated thrombosis and screening for von Willebrand Disease. The model predicted high concentration of stretched vWF in key regions where occlusive thrombosis was observed experimentally. Strong unfolding caused by the extensional flow was limited to the center axis or middle plane of the channels, whereas vWF unfolding near the channel walls relied upon the shear tumbling mechanism. The continuum model of vWF unfolding presented in this work can be employed in numerical simulations of vWF-mediated thrombosis or vWF degradation in complex geometries. However, extending the model to 3-D arbitrary flows and turbulent flows will pose considerable challenges.
Collapse
|
31
|
Sheriff J, Wang P, Zhang P, Zhang Z, Deng Y, Bluestein D. In Vitro Measurements of Shear-Mediated Platelet Adhesion Kinematics as Analyzed through Machine Learning. Ann Biomed Eng 2021; 49:3452-3464. [PMID: 33973127 DOI: 10.1007/s10439-021-02790-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/03/2021] [Indexed: 12/30/2022]
Abstract
Platelet adhesion to blood vessel walls in shear flow is essential to initiating the blood coagulation cascade and prompting clot formation in vascular disease processes and prosthetic cardiovascular devices. Validation of predictive adhesion kinematics models at the single platelet level is difficult due to gaps in high resolution, dynamic morphological data or a mismatch between simulation and experimental parameters. Gel-filtered platelets were perfused at 30 dyne/cm2 in von Willebrand Factor (vWF)-coated microchannels, with flipping platelets imaged at high spatial and temporal resolution. A semi-unsupervised learning system (SULS), consisting of a series of convolutional neural networks, was used to segment platelet geometry, which was compared with expert-analyzed images. Resulting time-dependent rotational angles were smoothed with wavelet-denoising and shifting techniques to characterize the rotational period and quantify flipping kinematics. We observed that flipping platelets do not follow the previously-modeled modified Jefferey orbit, but are characterized by a longer lift-off and shorter reattachment period. At the juncture of the two periods, rotational velocity approached 257.48 ± 13.31 rad/s. Our SULS approach accurately segmented large numbers of moving platelet images to identify distinct adhesive kinematic characteristics which may further validate the physical accuracy of individual platelet motion in multiscale models of shear-mediated thrombosis.
Collapse
Affiliation(s)
- Jawaad Sheriff
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Peineng Wang
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Peng Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Ziji Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
32
|
Marchese P, Lombardi M, Mantione ME, Baccellieri D, Ferrara D, Chiesa R, Alfieri O, Foglieni C. Confocal Blood Flow Videomicroscopy of Thrombus Formation over Human Arteries and Local Targeting of P2X7. Int J Mol Sci 2021; 22:ijms22084066. [PMID: 33920051 PMCID: PMC8071050 DOI: 10.3390/ijms22084066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Atherothrombosis exposes vascular components to blood. Currently, new antithrombotic therapies are emerging. Herein we investigated thrombogenesis of human arteries with/without atherosclerosis, and the interaction of coagulation and vascular components, we and explored the anti-thrombogenic efficacy of blockade of the P2X purinoceptor 7 (P2X7). A confocal blood flow videomicroscopy system was performed on cryosections of internal mammary artery (IMA) or carotid plaque (CPL) determining/localizing platelets and fibrin. Blood from healthy donors elicited thrombi over arterial layers. Confocal microscopy associated thrombus with tissue presence of collagen type I, laminin, fibrin(ogen) and tissue factor (TF). The addition of antibodies blocking TF (aTF) or factor XI (aFXI) to blood significantly reduced fibrin deposition, variable platelet aggregation and aTF + aFXI almost abolished thrombus formation, showing synergy between coagulation pathways. A scarce effect of aTF over sub-endothelial regions, more abundant in tissue TF and bundles of laminin and collagen type I than deep intima, may suggest tissue thrombogenicity as molecular structure-related. Consistently with TF-related vascular function and expression of P2X7, the sections from CPL but not IMA tissue cultures pre-treated with the P2X7 antagonist A740003 demonstrated poor thrombogenesis in flow experiments. These data hint to local targeting studies on P2X7 modulation for atherothrombosis prevention/therapy.
Collapse
Affiliation(s)
- Patrizia Marchese
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA;
| | - Maria Lombardi
- Myocardial Diseases and Atherosclerosis Unit, Cardiovascular Research Center, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132 Milano, Italy; (M.L.); (M.E.M.)
| | - Maria Elena Mantione
- Myocardial Diseases and Atherosclerosis Unit, Cardiovascular Research Center, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132 Milano, Italy; (M.L.); (M.E.M.)
| | - Domenico Baccellieri
- Cardiothoracic and Vascular Department, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132 Milano, Italy; (D.B.); (D.F.); (R.C.); (O.A.)
| | - David Ferrara
- Cardiothoracic and Vascular Department, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132 Milano, Italy; (D.B.); (D.F.); (R.C.); (O.A.)
| | - Roberto Chiesa
- Cardiothoracic and Vascular Department, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132 Milano, Italy; (D.B.); (D.F.); (R.C.); (O.A.)
| | - Ottavio Alfieri
- Cardiothoracic and Vascular Department, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132 Milano, Italy; (D.B.); (D.F.); (R.C.); (O.A.)
| | - Chiara Foglieni
- Myocardial Diseases and Atherosclerosis Unit, Cardiovascular Research Center, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132 Milano, Italy; (M.L.); (M.E.M.)
- Correspondence: ; Tel.: +39-02-26434570
| |
Collapse
|
33
|
Zhussupbekov M, Wu WT, Jamiolkowski MA, Massoudi M, Antaki JF. Influence of shear rate and surface chemistry on thrombus formation in micro-crevice. J Biomech 2021; 121:110397. [PMID: 33845357 DOI: 10.1016/j.jbiomech.2021.110397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/02/2023]
Abstract
Thromboembolic complications remain a central issue in management of patients on mechanical circulatory support. Despite the best practices employed in design and manufacturing of modern ventricular assist devices, complexity and modular nature of these systems often introduces internal steps and crevices in the flow path which can serve as nidus for thrombus formation. Thrombotic potential is influenced by multiple factors including the characteristics of the flow and surface chemistry of the biomaterial. This study explored these elements in the setting of blood flow over a micro-crevice using a multi-constituent numerical model of thrombosis. The simulations reproduced the platelet deposition patterns observed experimentally and elucidated the role of flow, shear rate, and surface chemistry in shaping the deposition. The results offer insights for design and operation of blood-contacting devices.
Collapse
Affiliation(s)
- Mansur Zhussupbekov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Wei-Tao Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Megan A Jamiolkowski
- U.S. Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratories (OSEL), Silver Spring, Maryland, USA
| | - Mehrdad Massoudi
- U.S. Department of Energy, National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
34
|
Vara D, Mailer RK, Tarafdar A, Wolska N, Heestermans M, Konrath S, Spaeth M, Renné T, Schröder K, Pula G. NADPH Oxidases Are Required for Full Platelet Activation In Vitro and Thrombosis In Vivo but Dispensable for Plasma Coagulation and Hemostasis. Arterioscler Thromb Vasc Biol 2021; 41:683-697. [PMID: 33267663 PMCID: PMC7837688 DOI: 10.1161/atvbaha.120.315565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1-/-/NOX2-/-/NOX4-/-), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP-a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride-driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. CONCLUSIONS This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, United Kingdom (D.V.)
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Anuradha Tarafdar
- Cancer Research UK Manchester Institute, University of Manchester (A.T.)
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Marco Heestermans
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Manuela Spaeth
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| |
Collapse
|
35
|
Zhang J, Can A, Lai PMR, Mukundan S, Castro VM, Dligach D, Finan S, Gainer VS, Shadick NA, Savova G, Murphy SN, Cai T, Weiss ST, Du R. Morphological variables associated with ruptured basilar tip aneurysms. Sci Rep 2021; 11:2526. [PMID: 33510194 PMCID: PMC7844275 DOI: 10.1038/s41598-021-81364-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/06/2021] [Indexed: 01/13/2023] Open
Abstract
Morphological factors of intracranial aneurysms and the surrounding vasculature could affect aneurysm rupture risk in a location specific manner. Our goal was to identify image-based morphological parameters that correlated with ruptured basilar tip aneurysms. Three-dimensional morphological parameters obtained from CT-angiography (CTA) or digital subtraction angiography (DSA) from 200 patients with basilar tip aneurysms diagnosed at the Brigham and Women's Hospital and Massachusetts General Hospital between 1990 and 2016 were evaluated. We examined aneurysm wall irregularity, the presence of daughter domes, hypoplastic, aplastic or fetal PCoAs, vertebral dominance, maximum height, perpendicular height, width, neck diameter, aspect and size ratio, height/width ratio, and diameters and angles of surrounding parent and daughter vessels. Univariable and multivariable statistical analyses were performed to determine statistical significance. In multivariable analysis, presence of a daughter dome, aspect ratio, and larger flow angle were significantly associated with rupture status. We also introduced two new variables, diameter size ratio and parent-daughter angle ratio, which were both significantly inversely associated with ruptured basilar tip aneurysms. Notably, multivariable analyses also showed that larger diameter size ratio was associated with higher Hunt-Hess score while smaller flow angle was associated with higher Fisher grade. These easily measurable parameters, including a new parameter that is unlikely to be affected by the formation of the aneurysm, could aid in screening strategies in high-risk patients with basilar tip aneurysms. One should note, however, that the changes in parameters related to aneurysm morphology may be secondary to aneurysm rupture rather than causal.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Anil Can
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Pui Man Rosalind Lai
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | | | - Victor M Castro
- Research Information Systems and Computing, Massachusetts General Brigham, Boston, MA, USA
| | - Dmitriy Dligach
- Boston Children's Hospital Informatics Program, Boston, MA, USA
- Department of Computer Science, Loyola University, Chicago, IL, USA
| | - Sean Finan
- Boston Children's Hospital Informatics Program, Boston, MA, USA
| | - Vivian S Gainer
- Research Information Systems and Computing, Massachusetts General Brigham, Boston, MA, USA
| | - Nancy A Shadick
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| | - Guergana Savova
- Boston Children's Hospital Informatics Program, Boston, MA, USA
| | - Shawn N Murphy
- Research Information Systems and Computing, Massachusetts General Brigham, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Tianxi Cai
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Scott T Weiss
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
36
|
Kragh T, Pekrul I, Ott HW, Spannagl M, Möhnle P. A novel approach to laboratory assessment and reporting of platelet von Willebrand factor. Platelets 2021; 33:242-248. [PMID: 33427003 DOI: 10.1080/09537104.2020.1869715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The interaction of platelets with von Willebrand factor is essential for primary hemostasis. Concentration and activity of plasma von Willebrand factor are routine parameters in the assessment of hemostasis disorders. In addition to plasma von Willebrand factor, platelet von Willebrand factor, synthesized in megakaryocytes and stored in α-granules of circulating platelets, is known to contribute to primary hemostasis and the microenvironment of thrombus formation. The laboratory assessment of platelet von Willebrand factor however is cumbersome and not widely established as a routine parameter. We here propose a method for laboratory assessment and reporting of platelet von Willebrand factor potentially useful for laboratory routines in specialized laboratories. Our model allows to describe platelet von Willebrand factor as 1. the concentration of platelet von Willebrand factor in whole blood, 2. the amount of platelet von Willebrand factor in a sample with a defined concentration of 1000 platelets/nl, and 3. the concentration of platelet von Willebrand factor in one platelet. According to our results in healthy individuals, the proportion of platelet von Willebrand factor activity is estimated to be about 10% of total von Willebrand factor in human plasma under physiological circumstances. The concentration of platelet von Willebrand factor is estimated to be 0.4 IU/ml in a sample with a defined concentration of 1000 platelets/nl and to be about 42 IU/ml in one platelet (both expressed as VWF:Ag).
Collapse
Affiliation(s)
- Thorsten Kragh
- Department of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU Klinikum, München, Germany
| | - Isabell Pekrul
- Department of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU Klinikum, München, Germany.,Department of Anaesthesiology, LMU Klinikum, München, Germany
| | | | - Michael Spannagl
- Department of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU Klinikum, München, Germany
| | - Patrick Möhnle
- Department of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU Klinikum, München, Germany
| |
Collapse
|
37
|
Garcia Rojo E, García Gómez B, Santos-Pérez de la Blanca R, Manfredi C, Alonso Isa M, Medina Polo J, Rodríguez Antolín A, Romero Otero J. Role of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in Peyronie's disease: a new diagnostic approach to predict the stage of the disease? Asian J Androl 2021; 23:325-329. [PMID: 33353905 PMCID: PMC8152420 DOI: 10.4103/aja.aja_74_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have been associated with multiple entities and several types of cancers. They can be assumed as markers of inflammatory imbalance. The objective of this study is to evaluate the NLR and PLR in Peyronie's disease (PD) and to establish a comparison of its values in the acute and chronic stages. We recruited patients with PD from March 2018 to March 2019. The patients enrolled underwent medical and sexual history as well as a physical examination. The values of blood count of each patient were collected both in the acute and chronic stages. Wilcoxon test was used to compare the acute and chronic stage ratios. Kruskal–Wallis test was carried out to evaluate the impact of treatments on the ratios. To identify cutoff values, we used sensibility and specificity tables and receiver operating characteristic (ROC) curves. A total of 120 patients were enrolled. Their mean age was 55.85 (range: 18–77) years and the mean penile curvature was 48.43° (range: 10°–100°). In the acute stage, the mean NLR was 2.35 and the mean PLR was 111.22. These ratios, in the chronic stage, were 1.57 and 100.00, respectively. Statistically significant differences between acute and stable stages for both indices were found (NLR: P < 0.0001; PLR: P = 0.0202). The optimal cutoff for classification in acute or stable stage was 2 for NLR and 102 for PLR. According to our results, with an ordinary blood count, we could have important indications regarding the disease stage of the patient, and consequently on the most appropriate type of therapy to choose.
Collapse
Affiliation(s)
- Esther Garcia Rojo
- Department of Urology, Research Institute Hospital 12 de Octubre (Imas12), Madrid 29041, Spain
| | - Borja García Gómez
- Department of Urology, Research Institute Hospital 12 de Octubre (Imas12), Madrid 29041, Spain.,Department of Urology, University Hospital HM Montepríncipe, Madrid 28668, Spain
| | | | - Celeste Manfredi
- Department of Urology, Research Institute Hospital 12 de Octubre (Imas12), Madrid 29041, Spain
| | - Manuel Alonso Isa
- Department of Urology, Research Institute Hospital 12 de Octubre (Imas12), Madrid 29041, Spain.,Department of Urology, University Hospital HM Montepríncipe, Madrid 28668, Spain
| | - José Medina Polo
- Department of Urology, Research Institute Hospital 12 de Octubre (Imas12), Madrid 29041, Spain.,Department of Urology, University Hospital HM Montepríncipe, Madrid 28668, Spain
| | | | - Javier Romero Otero
- Department of Urology, Research Institute Hospital 12 de Octubre (Imas12), Madrid 29041, Spain.,Department of Urology, University Hospital HM Montepríncipe, Madrid 28668, Spain
| |
Collapse
|
38
|
de Vrij EL, Bouma HR, Goris M, Weerman U, de Groot AP, Kuipers J, Giepmans BNG, Henning RH. Reversible thrombocytopenia during hibernation originates from storage and release of platelets in liver sinusoids. J Comp Physiol B 2021; 191:603-615. [PMID: 33661336 PMCID: PMC8043940 DOI: 10.1007/s00360-021-01351-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 01/21/2023]
Abstract
Immobility is a risk factor for thrombosis due to low blood flow, which may result in activation of the coagulation system, recruitment of platelets and clot formation. Nevertheless, hibernating animals-who endure lengthy periods of immobility-do not show signs of thrombosis throughout or after hibernation. One of the adaptations of hemostasis in hibernators consists of a rapidly reversible reduction of the number of circulating platelets during torpor, i.e., the hibernation phase with reduction of metabolic rate, low blood flow and immobility. It is unknown whether these platelet dynamics in hibernating hamsters originate from storage and release, as suggested for ground squirrel, or from breakdown and de novo synthesis. A reduction in detaching forces due to low blood flow can induce reversible adhesion of platelets to the vessel wall, which is called margination. Here, we hypothesized that storage-and-release by margination to the vessel wall induces reversible thrombocytopenia in torpor. Therefore, we transfused labeled platelets in hibernating Syrian hamster (Mesocricetus auratus) and platelets were analyzed using flow cytometry and electron microscopy. The half-life of labeled platelets was extended from 20 to 30 h in hibernating animals compared to non-hibernating control hamsters. More than 90% of labeled platelets were cleared from the circulation during torpor, followed by emergence during arousal which supports storage-and-release to govern thrombocytopenia in torpor. Furthermore, the low number of immature platelets, plasma level of interleukin-1α and normal numbers of megakaryocytes in bone marrow make platelet synthesis or megakaryocyte rupture via interleukin-1α unlikely to account for the recovery of platelet counts upon arousal. Finally, using large-scale electron microscopy we revealed platelets to accumulate in liver sinusoids, but not in spleen or lung, during torpor. These results thus demonstrate that platelet dynamics in hibernation are caused by storage and release of platelets, most likely by margination to the vessel wall in liver sinusoids. Translating the molecular mechanisms that govern platelet retention in the liver, may be of major relevance for hemostatic management in (accidental) hypothermia and for the development of novel anti-thrombotic strategies.
Collapse
Affiliation(s)
- Edwin L de Vrij
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
- Department of Plastic Surgery, University Medical Center Groningen, Groningen, the Netherlands.
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maaike Goris
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Ulrike Weerman
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Anne P de Groot
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
39
|
Link KG, Sorrells MG, Danes NA, Neeves KB, Leiderman K, Fogelson AL. A MATHEMATICAL MODEL OF PLATELET AGGREGATION IN AN EXTRAVASCULAR INJURY UNDER FLOW. MULTISCALE MODELING & SIMULATION : A SIAM INTERDISCIPLINARY JOURNAL 2020; 18:1489-1524. [PMID: 33867873 PMCID: PMC8051825 DOI: 10.1137/20m1317785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present the first mathematical model of flow-mediated primary hemostasis in an extravascular injury which can track the process from initial deposition to occlusion. The model consists of a system of ordinary differential equations (ODEs) that describe platelet aggregation (adhesion and cohesion), soluble-agonist-dependent platelet activation, and the flow of blood through the injury. The formation of platelet aggregates increases resistance to flow through the injury, which is modeled using the Stokes-Brinkman equations. Data from analogous experimental (microfluidic flow) and partial differential equation models informed parameter values used in the ODE model description of platelet adhesion, cohesion, and activation. This model predicts injury occlusion under a range of flow and platelet activation conditions. Simulations testing the effects of shear and activation rates resulted in delayed occlusion and aggregate heterogeneity. These results validate our hypothesis that flow-mediated dilution of activating chemical adenosine diphosphate hinders aggregate development. This novel modeling framework can be extended to include more mechanisms of platelet activation as well as the addition of the biochemical reactions of coagulation, resulting in a computationally efficient high throughput screening tool of primary and secondary hemostasis.
Collapse
Affiliation(s)
- Kathryn G Link
- Department of Mathematics, University of California, Davis, Davis, CA 95616 USA
| | - Matthew G Sorrells
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401 USA
| | - Nicholas A Danes
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401 USA
| | - Keith B Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80401 USA
| | - Karin Leiderman
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401 USA
| | - Aaron L Fogelson
- Department of Mathematics, University of California, Davis, Davis, CA 95616 USA
- Department of Biomedical Engineering University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
40
|
Lei X, MacKeigan DT, Ni H. Control of data variations in intravital microscopy thrombosis models. J Thromb Haemost 2020; 18:2823-2825. [PMID: 33463084 DOI: 10.1111/jth.15062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Daniel Thomas MacKeigan
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P, van der Heiden K, Hose R, Koo BK, Krams R, Marsden A, Migliavacca F, Onuma Y, Ooi A, Poon E, Samady H, Stone P, Takahashi K, Tang D, Thondapu V, Tenekecioglu E, Timmins L, Torii R, Wentzel J, Serruys P. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 2020; 40:3421-3433. [PMID: 31566246 PMCID: PMC6823616 DOI: 10.1093/eurheartj/ehz551] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Frank Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yuki Katagiri
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Barlis
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, Northern Hospital, 185 Cooper Street, Epping, Australia.,St Vincent's Heart Centre, Building C, 41 Victoria Parade, Fitzroy, Australia
| | - Christos Bourantas
- Institute of Cardiovascular Sciences, University College of London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Carlos Collet
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Umit Coskun
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Elazer Edelman
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kim van der Heiden
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rod Hose
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK.,Department of Circulation and Imaging, NTNU, Trondheim, Norway
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,Institute of Aging, Seoul National University, Seoul, Korea
| | - Rob Krams
- School of Engineering and Materials Science Queen Mary University of London, London, UK
| | - Alison Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yoshinobu Onuma
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuniaki Takahashi
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Vikas Thondapu
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Thoraxcentre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Lucas Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, UK
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patrick Serruys
- Erasmus University Medical Center, Rotterdam, the Netherlands.,Imperial College London, London, UK.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| |
Collapse
|
42
|
Platelet α-granules are required for occlusive high-shear-rate thrombosis. Blood Adv 2020; 4:3258-3267. [PMID: 32697818 DOI: 10.1182/bloodadvances.2020002117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
von Willebrand factor (VWF) is essential for the induction of arterial thrombosis. In this study, we investigated the critical role of platelet VWF in occlusive thrombosis formation at high shear in mice that do not express platelet VWF (Nbeal2-/-). Using in silico modeling, in vitro high-shear microfluidics, and an in vivo Folts model of arterial thrombosis we reproduced the platelet dynamics that occur under pathological flow in a stenosed vessel. Computational fluid dynamics (CFDs) simulated local hemodynamics in a stenosis based on arterial geometries. The model predicted shear rates, time course of platelet adhesion, and time to occlusion. These predictions were validated in vitro and in vivo. Occlusive thrombosis developed in wild-type control mice that had normal levels of plasma VWF and platelet VWF in vitro and in vivo. Occlusive thrombosis did not form in the Nbeal2-/- mice that had normal plasma VWF and an absence of platelet VWF. Occlusive thrombosis was corrected in Nbeal2-/- microfluidic assays by the addition of exogenous normal platelets with VWF. Combining model and experimental data, we demonstrated the necessary requirement of platelet VWF in α-granules in forming an occlusive thrombus under high shear. These results could inspire new pharmacological targets specific to pathological conditions and prevent arterial thrombosis.
Collapse
|
43
|
Chen Y, Ju LA. Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine. Stroke Vasc Neurol 2020; 5:185-197. [PMID: 32606086 PMCID: PMC7337368 DOI: 10.1136/svn-2019-000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Arterial thrombosis is in part contributed by excessive platelet aggregation, which can lead to blood clotting and subsequent heart attack and stroke. Platelets are sensitive to the haemodynamic environment. Rapid haemodynamcis and disturbed blood flow, which occur in vessels with growing thrombi and atherosclerotic plaques or is caused by medical device implantation and intervention, promotes platelet aggregation and thrombus formation. In such situations, conventional antiplatelet drugs often have suboptimal efficacy and a serious side effect of excessive bleeding. Investigating the mechanisms of platelet biomechanical activation provides insights distinct from the classic views of agonist-stimulated platelet thrombus formation. In this work, we review the recent discoveries underlying haemodynamic force-reinforced platelet binding and mechanosensing primarily mediated by three platelet receptors: glycoprotein Ib (GPIb), glycoprotein IIb/IIIa (GPIIb/IIIa) and glycoprotein VI (GPVI), and their implications for development of antithrombotic 'mechano-medicine' .
Collapse
Affiliation(s)
- Yunfeng Chen
- Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Lining Arnold Ju
- School of Biomedical Engineering, Heart Research Institute and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
44
|
Horev MB, Zabary Y, Zarka R, Sorrentino S, Medalia O, Zaritsky A, Geiger B. Differential dynamics of early stages of platelet adhesion and spreading on collagen IV- and fibrinogen-coated surfaces. F1000Res 2020; 9. [PMID: 32566134 PMCID: PMC7281675 DOI: 10.12688/f1000research.23598.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Upon wound formation, platelets adhere to the neighboring extracellular matrix and spread on it, a process which is critical for physiological wound healing. Multiple external factors, such as the molecular composition of the environment and its mechanical properties, play a key role in this process and direct its speed and outcome. Methods: We combined live cell imaging, quantitative interference reflection microscopy and cryo-electron tomography to characterize, at a single platelet level, the differential spatiotemporal dynamics of the adhesion process to fibrinogen- and collagen IV-functionalized surfaces. Results: Initially, platelets sense both substrates by transient rapid extensions of filopodia. On collagen IV, a short-term phase of filopodial extension is followed by lamellipodia-based spreading. This transition is preceded by the extension of a single or couple of microtubules into the platelet's periphery and their apparent insertion into the core of the filopodia. On fibrinogen surfaces, the filopodia-to-lamellipodia transition was partial and microtubule extension was not observed leading to limited spreading, which could be restored by manganese or thrombin. Conclusions: Based on these results, we propose that interaction with collagen IV stimulate platelets to extend microtubules to peripheral filopodia, which in turn, enhances filopodial-to-lamellipodial transition and overall lamellipodia-based spreading. Fibrinogen, on the other hand, fails to induce these early microtubule extensions, leading to full lamellipodia spreading in only a fraction of the seeded platelets. We further suggest that activation of integrin αIIbβ3 is essential for filopodial-to-lamellipodial transition, based on the capacity of integrin activators to enhance lamellipodia spreading on fibrinogen.
Collapse
Affiliation(s)
- Melanie B Horev
- Department of Immunology, Weizmann Institute of Science, Rehovot, Rehovot, 76100, Israel
| | - Yishaia Zabary
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Revital Zarka
- Department of Immunology, Weizmann Institute of Science, Rehovot, Rehovot, 76100, Israel
| | - Simona Sorrentino
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Rehovot, 76100, Israel
| |
Collapse
|
45
|
Wissing TB, van Haaften EE, Koch SE, Ippel BD, Kurniawan NA, Bouten CVC, Smits AIPM. Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering. Biomater Sci 2020; 8:132-147. [PMID: 31709425 DOI: 10.1039/c9bm01005j] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomaterials are increasingly used for in situ vascular tissue engineering, wherein resorbable fibrous scaffolds are implanted as temporary carriers to locally initiate vascular regeneration. Upon implantation, macrophages infiltrate and start degrading the scaffold, while simultaneously driving a healing cascade via the secretion of paracrine factors that direct the behavior of tissue-producing cells. This balance between neotissue formation and scaffold degradation must be maintained at all times to ensure graft functionality. However, the grafts are continuously exposed to hemodynamic loads, which can influence macrophage response in a hitherto unknown manner and thereby tilt this delicate balance. Here we aimed to unravel the effects of physiological levels of shear stress and cyclic stretch on biomaterial-activated macrophages, in terms of polarization, scaffold degradation and paracrine signaling to tissue-producing cells (i.e. (myo)fibroblasts). Human THP-1-derived macrophages were seeded in electrospun polycaprolactone bis-urea scaffolds and exposed to shear stress (∼1 Pa), cyclic stretch (∼1.04), or a combination thereof for 8 days. The results showed that macrophage polarization distinctly depended on the specific loading regime applied. In particular, hemodynamic loading decreased macrophage degradative activity, especially in conditions of cyclic stretch. Macrophage activation was enhanced upon exposure to shear stress, as evidenced from the upregulation of both pro- and anti-inflammatory cytokines. Exposure to the supernatant of these dynamically cultured macrophages was found to amplify the expression of tissue formation- and remodeling-related genes in (myo)fibroblasts statically cultured in comparable electrospun scaffolds. These results emphasize the importance of macrophage mechano-responsiveness in biomaterial-driven vascular regeneration.
Collapse
Affiliation(s)
- Tamar B Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
46
|
Mangin PH, Gardiner EE, Nesbitt WS, Kerrigan SW, Korin N, Lam WA, Panteleev MA. In vitro flow based systems to study platelet function and thrombus formation: Recommendations for standardization: Communication from the SSC on Biorheology of the ISTH. J Thromb Haemost 2020; 18:748-752. [PMID: 32112535 DOI: 10.1111/jth.14717] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Experimental videomicroscopic in vitro assays of thrombus formation based on blood perfusion are instrumental in a wide range of basic studies in thrombosis, screening for hereditary or acquired plateletrelated pathologies, and assessing the effectiveness of novel anti-platelet therapies. Here, we discuss application of the broadly used "in vitro thrombosis model": a frequently used assay to study the formation of 3D aggregates under flow, which involves perfusing anticoagulated whole blood over fibrillar collagen in a flow geometry of rectangular cross-section, such as glass microcapillaries or parallel-plate flow chambers. Major advantaged of this assay are simplicity and ability to reproduce the four main stages of platelet thrombus formation, i.e. platelet tethering, adhesion, activation and aggregation under a wide range of hemodynamic conditions. On the other hand, these devices represent, at best, simple reductive models of thrombosis. We also describe how blood flow assays can be used to study various aspects of platelet function on adhesive proteins and discuss the relevance of such flow models. Finally, we propose recommendations for standardization related to the use of this assay that cover collagen source, coating methods, micropatterning, sample composition, anticoagulation, choice of flow device, hemodynamic conditions, quantification challenges, variability, pre-analytical conditions and other issues.
Collapse
Affiliation(s)
- Pierre H Mangin
- INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Université de Strasbourg, Strasbourg, France
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Warwick S Nesbitt
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Steven W Kerrigan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Netanel Korin
- Faculty of Biomedical Engineering, Techion-Israel Institute of Technology, Haifa, Israel
| | - Wilbur A Lam
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, USA
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
47
|
Soddu L, Trinh DN, Dunne E, Kenny D, Bernardini G, Kokalari I, Marucco A, Monopoli MP, Fenoglio I. Identification of physicochemical properties that modulate nanoparticle aggregation in blood. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:550-567. [PMID: 32280579 PMCID: PMC7136551 DOI: 10.3762/bjnano.11.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/28/2020] [Indexed: 05/05/2023]
Abstract
Inorganic materials are receiving significant interest in medicine given their usefulness for therapeutic applications such as targeted drug delivery, active pharmaceutical carriers and medical imaging. However, poor knowledge of the side effects related to their use is an obstacle to clinical translation. For the development of molecular drugs, the concept of safe-by-design has become an efficient pharmaceutical strategy with the aim of reducing costs, which can also accelerate the translation into the market. In the case of materials, the application these approaches is hampered by poor knowledge of how the physical and chemical properties of the material trigger the biological response. Hemocompatibility is a crucial aspect to take into consideration for those materials that are intended for medical applications. The formation of nanoparticle agglomerates can cause severe side effects that may induce occlusion of blood vessels and thrombotic events. Additionally, nanoparticles can interfere with the coagulation cascade causing both pro- and anti-coagulant properties. There is contrasting evidence on how the physicochemical properties of the material modulate these effects. In this work, we developed two sets of tailored carbon and silica nanoparticles with three different diameters in the 100-500 nm range with the purpose of investigating the role of surface curvature and chemistry on platelet aggregation, activation and adhesion. Substantial differences were found in the composition of the protein corona depending on the chemical nature of the nanoparticles, while the surface curvature was found to play a minor role. On the other hand, large carbon nanoparticles (but not small carbon nanoparticles or silica nanoparticles) have a clear tendency to form aggregates both in plasma and blood. This effect was observed both in the presence or absence of platelets and was independent of platelet activation. Overall, the results presented herein suggest the existence of independent modes of action that are differently affected by the physicochemical properties of the materials, potentially leading to vessel occlusion and/or formation of thrombi in vivo.
Collapse
Affiliation(s)
- Ludovica Soddu
- Department of Chemistry, University of Torino, 10125 Torino, Italy
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Duong N Trinh
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Eimear Dunne
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Dermot Kenny
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Giorgia Bernardini
- Department of Chemistry, University of Torino, 10125 Torino, Italy
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Ida Kokalari
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| | - Arianna Marucco
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| |
Collapse
|
48
|
Hesh CA, Qiu Y, Lam WA. Vascularized Microfluidics and the Blood-Endothelium Interface. MICROMACHINES 2019; 11:E18. [PMID: 31878018 PMCID: PMC7019435 DOI: 10.3390/mi11010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
The microvasculature is the primary conduit through which the human body transmits oxygen, nutrients, and other biological information to its peripheral tissues. It does this through bidirectional communication between the blood, consisting of plasma and non-adherent cells, and the microvascular endothelium. Current understanding of this blood-endothelium interface has been predominantly derived from a combination of reductionist two-dimensional in vitro models and biologically complex in vivo animal models, both of which recapitulate the human microvasculature to varying but limited degrees. In an effort to address these limitations, vascularized microfluidics have become a platform of increasing importance as a consequence of their ability to isolate biologically complex phenomena while also recapitulating biochemical and biophysical behaviors known to be important to the function of the blood-endothelium interface. In this review, we discuss the basic principles of vascularized microfluidic fabrication, the contribution this platform has made to our understanding of the blood-endothelium interface in both homeostasis and disease, the limitations and challenges of these vascularized microfluidics for studying this interface, and how these inform future directions.
Collapse
Affiliation(s)
- Christopher A. Hesh
- Department of Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| |
Collapse
|
49
|
Nofianti KA, Ekowati J. o-Hydroxycinnamic derivatives as prospective anti-platelet candidates: in silico pharmacokinetic screening and evaluation of their binding sites on COX-1 and P2Y12 receptors. J Basic Clin Physiol Pharmacol 2019; 30:/j/jbcpp.ahead-of-print/jbcpp-2019-0327/jbcpp-2019-0327.xml. [PMID: 31855569 DOI: 10.1515/jbcpp-2019-0327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/08/2019] [Indexed: 01/17/2023]
Abstract
Background The high prevalence of thrombotic abnormalities has become a major concern in the health sector. This is triggered by uncontrolled platelet aggregation, which causes complications and death. The problem becomes more complicated because of the undesirable side effects of the drugs currently in use, some of which have reportedly become resistant. This study aims to evaluate the potency of o-hydroxycinnamic acid derivatives (OCA1a-22a) and their pharmacokinetic properties and toxicity for them to be developed as new antiplatelet candidates. Methods In silico analysis of pharmacokinetics was carried out using pKCSM. Molecular docking of the compounds OCA 1a-22a was performed using the Molegro Virtual Docker. In silico evaluation of the potency of biological activity was done by measuring the bonding energy of each tested compound to the target receptor i.e. COX-1 and P2Y12, as the Moldock score (MDS). Results pKCSM analyses showed that more than 90% of OCA 1a-22a are absorbed through the intestine and distributed in plasma. Most tested compounds are not hepatotoxic, and none is mutagenic. An evaluation of the COX-1 receptor showed that OCA 2a-22a have lower binding energy compared to aspirin, which is the COX-1 inhibitor used today. So, it can be predicted that OCA 2-22a have stronger activity. Interactions with P2Y12 show lower MDS than aspirin, but slightly higher than ibuprofen, which is the standard ligand. Conclusions ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile prediction shows that OCA 1a-22a have the potential to be developed as oral preparations. OCA 1a-22a have strong potential to interact with COX-1 and P2Y12 receptors, so they are prospective anti-platelet candidates.
Collapse
Affiliation(s)
- Kholis Amalia Nofianti
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Juni Ekowati
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia, Phone: +62 81332041503
| |
Collapse
|
50
|
Rana A, Westein E, Niego B, Hagemeyer CE. Shear-Dependent Platelet Aggregation: Mechanisms and Therapeutic Opportunities. Front Cardiovasc Med 2019; 6:141. [PMID: 31620451 PMCID: PMC6763557 DOI: 10.3389/fcvm.2019.00141] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular diseases (CVD) are the number one cause of morbidity and death worldwide. As estimated by the WHO, the global death rate from CVD is 31% wherein, a staggering 85% results from stroke and myocardial infarction. Platelets, one of the key components of thrombi, have been well-investigated over decades for their pivotal role in thrombus development in healthy as well as diseased blood vessels. In hemostasis, when a vascular injury occurs, circulating platelets are arrested at the site of damage, where they are activated and aggregate to form hemostatic thrombi, thus preventing further bleeding. However, in thrombosis, pathological activation of platelets occurs, leading to uncontrolled growth of a thrombus, which in turn can occlude the blood vessel or embolize, causing downstream ischemic events. The molecular processes causing pathological thrombus development are in large similar to the processes controlling physiological thrombus formation. The biggest challenge of anti-thrombotics and anti-platelet therapeutics has been to decouple the pathological platelet response from the physiological one. Currently, marketed anti-platelet drugs are associated with major bleeding complications for this exact reason; they are not effective in targeting pathological thrombi without interfering with normal hemostasis. Recent studies have emphasized the importance of shear forces generated from blood flow, that primarily drive platelet activation and aggregation in thrombosis. Local shear stresses in obstructed blood vessels can be higher by up to two orders of magnitude as compared to healthy vessels. Leveraging abnormal shear forces in the thrombus microenvironment may allow to differentiate between thrombosis and hemostasis and develop shear-selective anti-platelet therapies. In this review, we discuss the influence of shear forces on thrombosis and the underlying mechanisms of shear-induced platelet activation. Later, we summarize the therapeutic approaches to target shear-sensitive platelet activation and pathological thrombus growth, with a particular focus on the shear-sensitive protein von Willebrand Factor (VWF). Inhibition of shear-specific platelet aggregation and targeted drug delivery may prove to be much safer and efficacious approaches over current state-of-the-art antithrombotic drugs in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Akshita Rana
- Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Erik Westein
- Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Be'eri Niego
- Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Christoph E Hagemeyer
- Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|