1
|
Jiang L, Xiong W, Yang Y, Qian J. Insight into Cardioprotective Effects and Mechanisms of Dexmedetomidine. Cardiovasc Drugs Ther 2024; 38:1139-1159. [PMID: 38869744 DOI: 10.1007/s10557-024-07579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Cardiovascular disease remains the leading cause of death worldwide. Dexmedetomidine is a highly selective α2 adrenergic receptor agonist with sedative, analgesic, anxiolytic, and sympatholytic properties, and several studies have shown its possible protective effects in cardiac injury. The aim of this review is to further elucidate the underlying cardioprotective mechanisms of dexmedetomidine, thus suggesting its potential in the clinical management of cardiac injury. RESULTS AND CONCLUSION Our review summarizes the findings related to the involvement of dexmedetomidine in cardiac injury and discusses the results in the light of different mechanisms. We found that numerous mechanisms may contribute to the cardioprotective effects of dexmedetomidine, including the regulation of programmed cell death, autophagy and fibrosis, alleviation of inflammatory response, endothelial dysfunction and microcirculatory derangements, improvement of mitochondrial dysregulation, hemodynamics, and arrhythmias. Dexmedetomidine may play a promising and beneficial role in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Leyu Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Cheng X, Wang S, Li Z, He D, Wu J, Ding W. IL-1β-pretreated bone mesenchymal stem cell-derived exosomes alleviate septic endoplasmic reticulum stress via regulating SIRT1/ERK pathway. Heliyon 2023; 9:e20124. [PMID: 37771539 PMCID: PMC10522952 DOI: 10.1016/j.heliyon.2023.e20124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Background Endoplasmic reticulum (ER) plays a crucial role in the development of organ injury caused by sepsis. Therefore, it is highly important to devise strategies that specially target ER stress for the treatment of sepsis. Previous research has shown that priming chemokines can enhance the therapeutic effects of mesenchymal stem cells (MSCs). In this study, we aimed to investigate the function and mechanism of exosomes derived from MSCs that were pretreated with IL-1β (IB-exos) in the context of septic ER stress. Methods Mouse bone MSCs were preconditioned with or without IL-1β and the supernatant was used for exosome extraction. In vitro sepsis cell mode was induced by treating HUVECs with LPS, while in vivo sepsis model was established through cecal ligation and puncture (CLP) operation in mice. Cell viability, apoptosis, motility, and tube formation were assessed using the EDU proliferation assay, flow cytometry analysis, migration assay, and tube formation assay, respectively. The molecular mechanism was investigated using ELISA, qRT-PCR, Western blot, and immunofluorescence staining. Results Pretreatment with IL-1β enhanced the positive impact of MSC-exos on the viability, apoptosis, motility, and tube formation ability of HUVECs. The administration of LPS or CLP increased ER stress response, but this effect was blocked by the treatment of IB-exos. Additionally, IB-exos reversed the inhibitory effects of LPS or CLP on the expression levels of SIRT1 and ERK phosphorylation. Knockdown of SIRT1 counteracted the effects of IB-exos on HUVEC cellular function and ER stress. In a mouse model, the injection of IB-exos mitigated sepsis-induced lung injury by inhibiting ER stress response through the activation of SIRT1. Conclusion IB-exos have been found to alleviate sepsis-induced lung injury via inhibiting ER stress through the SIRT1/ERK pathway. These findings indicated that IB-exos could potentially be used as a strategy to mitigate lung injury caused by sepsis.
Collapse
Affiliation(s)
- Xinsheng Cheng
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Shikai Wang
- Department of Hepatobiliary and Pancreatic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhipeng Li
- Department of Hepatobiliary and Pancreatic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Di He
- Department of Hepatobiliary and Pancreatic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianguo Wu
- Department of Hepatobiliary and Pancreatic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Weiwei Ding
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Jin C, Yuan S, Piao L, Ren M, Liu Q. Propofol synergizes with circAPBB2 to protect against hypoxia/reoxygenation-induced oxidative stress, inflammation, and apoptosis of human cardiomyocytes. Immun Inflamm Dis 2023; 11:e952. [PMID: 37647434 PMCID: PMC10408373 DOI: 10.1002/iid3.952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Myocardial injury is the main manifestation of cardiovascular diseases, and previous studies have shown that propofol (PPF) regulates myocardial injury. However, the mechanism of PPF in regulating myocardial injury remains to be further explored. This work aims to analyze the effects of PPF on human cardiomyocyte injury and the underlying mechanism. METHODS The regulatory and functional role of PPF and circAPBB2 in human cardiomyocyte injury were analyzed using an in vitro hypoxia/reoxygenation (H/R) cell model, which was established by treating human cardiomyocytes (AC16 cells) with H/R. The study evaluated AC16 cell injury by analyzing cytotoxicity, oxidative stress, inflammation and apoptosis of H/R-induced AC16 cells. Quantitative real-time polymerase chain reaction was performed to detect circAPBB2, miR-18a-5p and dual specificity phosphatase 14 (DUSP14) expression. Protein expression was analyzed by Western blot analysis assay. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were performed to identify the associations among circAPBB2, miR-18a-5p and DUSP14. Cytotoxicity was investigated by cell counting kit-8 assay and lactate dehydrogenase activity detection kit. Oxidative stress was evaluated by cellular reactive oxygen species assay kit and superoxide dismutase activity assay kit. The production of tumor necrosis factor-α and interleukin-1β was evaluated by enzyme-linked immunosorbent assays. RESULTS The expression of circAPBB2 and DUSP14 was significantly decreased, while miR-18a-5p was increased in H/R-induced AC16 cells when compared with controls. H/R treatment-induced cytotoxicity, oxidative stress, inflammation and cell apoptosis were attenuated after circAPBB2 overexpression or PPF treatment, whereas these effects were restored by increasing miR-18a-5p expression. PPF treatment improved the inhibitory effect of ectopic circAPBB2 expression on H/R-induced cell injury. MiR-18a-5p silencing ameliorated H/R-induced AC16 damage by interacting with DUSP14. Mechanically, circAPBB2 acted as a miR-18a-5p sponge, and miR-18a-5p targeted DUSP14 in AC16 cells. CONCLUSION PPF synergized with circAPBB2 to protect AC16 cells against H/R-induced oxidative stress, inflammation and apoptosis through the miR-18a-5p/DUSP14 pathway.
Collapse
Affiliation(s)
- Chenghao Jin
- Department of AnesthesiologyBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Shunnv Yuan
- Laboratory MedicineThe Affiliated Hospital of Yanbian UniversityJilinChina
| | - Longyi Piao
- Department of OncologyJilin Central Hospital of Jilin UniversityJilinChina
| | - Mingcheng Ren
- Department of OncologyDandong Central Hospital DandongLiaoningChina
| | - Qiang Liu
- Department of AnesthesiologyBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Azizi M, Salehi-Mazandarani S, Nikpour P, Andalib A, Rezaei M. The role of unfolded protein response-associated miRNAs in immunogenic cell death amplification: A literature review and bioinformatics analysis. Life Sci 2023; 314:121341. [PMID: 36586572 DOI: 10.1016/j.lfs.2022.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Immunogenic cell death (ICD) is a type of cellular death that is elicited in response to the specific types of anti-cancer therapies and enhances the anti-tumor immune responses by the combination of antigenicity and adjuvanticity of dying tumor cells. There is a well-established interlink between endoplasmic reticulum stress (ERS) and ICD elicited by anti-cancer therapies. Most recent evidences support that unfolded protein response (UPR)-associated miRNAs can be key players in the ERS-induced ICD. Hence, in the present study, we conducted a literature review on the role of these miRNAs and associated molecular pathways that may regulate ICD. We first collected UPR-associated miRNAs that promote ERS-induced apoptosis and then focused on microRNAs (miRNAs) that promote ERS-induced apoptosis via PERK/eIF2α/ATF4/CHOP pathway activation, as the main core for ICD and release of damage-associated molecular patterns. To better identify PERK/eIF2α/ATF4/CHOP pathway-inducing miRNAs that can be used as potential therapeutic targets for improving ICD in cancer treatment, we did a comprehensive bioinformatics analysis and network construction. Our results showed that "pathways in cancer", "MAPK signaling pathway", "PI3K-Akt signaling pathway", and "Cellular senescence", which correlate with UPR components and ERS induction, were among the significant signaling pathways related to the target genes of these miRNAs. Furthermore, a protein-protein interaction (PPI) network was constructed, which revealed the involvement of the PPI-extracted hub genes in the regulation of proliferation and apoptosis. In conclusion, we propose that these types of miRNAs can be considered as the potential cancer therapy options for better induction of ICD in combination with other ICD inducers.
Collapse
Affiliation(s)
- Mahdieh Azizi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadra Salehi-Mazandarani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Andalib
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Xu L, Yuan H, Wang Z, Zhao S, Yang Y. Ssc-miR-141 Attenuates Hypoxia-Induced Alveolar Type II Epithelial Cell Injury in Tibetan Pigs by Targeting PDCD4. Genes (Basel) 2022; 13:genes13122398. [PMID: 36553664 PMCID: PMC9778443 DOI: 10.3390/genes13122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The Tibetan pig is an endemic economic animal in the plateau region of China, and has a unique adaptation mechanism to the plateau hypoxic environment. Research into microRNAs (miRNAs) involved in the mechanism underlying hypoxia adaptation of Tibetan pig is very limited. Therefore, we isolated alveolar type II epithelial (ATII) cells from the lungs of the Tibetan pig, cultured them in normoxia/hypoxia (21% O2; 2% O2) for 48 h, and performed high-throughput sequencing analysis. We identified a hypoxic stress-related ssc-miR-141 and predicted its target genes. The target genes of ssc-miR-141 were mainly enriched in mitogen-activated protein kinase (MAPK), autophagy-animal, and Ras signaling pathways. Further, we confirmed that PDCD4 may serve as the target gene of ssc-miR-141. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed to confirm the expression levels of ssc-miR-141 and PDCD4, and a dual-luciferase gene reporter system was used to verify the targeted linkage of ssc-miR-141 to PDCD4. The results showed that the expression level of ssc-miR-141 in the hypoxia group was higher than that in the normoxia group, while the expression level of PDCD4 tended to show the opposite trend and significantly decreased under hypoxia. These findings suggest that ssc-miR-141 is associated with hypoxia adaptation and provide a new insight into the role of miRNAs from ATII cells of Tibetan pig in hypoxia adaptation.
Collapse
Affiliation(s)
- Linna Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Provincial Animal Husbandry Technology Popularization Station, Lanzhou 730030, China
| | - Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Zongli Wang
- National Animal Husbandry Services, Beijing 100026, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
- Correspondence:
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| |
Collapse
|
6
|
Mecchia A, Palumbo C, De Luca A, Sbardella D, Boccaccini A, Rossi L, Parravano M, Varano M, Caccuri AM. High glucose induces an early and transient cytoprotective autophagy in retinal Müller cells. Endocrine 2022; 77:221-230. [PMID: 35612691 PMCID: PMC9325829 DOI: 10.1007/s12020-022-03079-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE We investigated the autophagic response of rat Müller rMC-1 cells during a short-term high glucose challenge. METHODS rMC-1 cells were maintained in 5 mM glucose (LG) or exposed to 25 mM glucose (HG). Western blot analysis was used to evaluate the expression levels of markers of autophagy (LC3-II, p62) and glial activation (AQP4), as well as the activation of TRAF2/JNK, ERK and AKT pathways. Autophagic flux assessment was performed using the autophagy inhibitor chloroquine. ROS levels were measured by flow cytometry using dichlorofluorescein diacetate. ERK involvement in autophagy induction was addressed using the ERK inhibitor FR180204. The effect of autophagy inhibition on cell viability was evaluated by SRB assay. RESULTS Activation of autophagy was observed in the first 2-6 h of HG exposure. This early autophagic response was transient, not accompanied by an increase in AQP4 or in the phospho-activation of JNK, a key mediator of cellular response to oxidative stress, and required ERK activity. Cells exposed to HG had a lower viability upon autophagy inhibition by chloroquine, as compared to those maintained in LG. CONCLUSION A short-term HG challenge triggers in rMC-1 cells a process improving the ability to cope with stressful conditions, which involves ERK and an early and transient autophagy activation.
Collapse
Affiliation(s)
- A Mecchia
- IRCCS-G.B. Bietti Foundation, Rome, Italy
| | - C Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - A De Luca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - L Rossi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - M Varano
- IRCCS-G.B. Bietti Foundation, Rome, Italy
| | - A M Caccuri
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy.
- The NAST Centre for Nanoscience and Nanotechnology and Innovative Instrumentation, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
7
|
Ling Z, Liu Y, Wang Z, Zhang Z, Chen B, Yang J, Zeng B, Gao Y, Jiang C, Huang Y, Zou X, Wang X, Wei F. Single-Cell RNA-Seq Analysis Reveals Macrophage Involved in the Progression of Human Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:833420. [PMID: 35295968 PMCID: PMC8918513 DOI: 10.3389/fcell.2021.833420] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc degeneration (IDD) has been considered as the primary pathological mechanism that underlies low back pain. Understanding the molecular mechanisms underlying human IDD is imperative for making strategies to treat IDD-related diseases. Herein, we report the molecular programs, lineage progression patterns, and paths of cellular communications during the progression of IDD using single-cell RNA sequencing (scRNA-seq) on nucleus pulposus (NP) cells from patients with different grades of IDD undergoing discectomy. New subtypes of cells and cell-type-specific gene signatures of the metabolic homeostatic NP cells (Met NPC), adhesive NP cells (Adh NPC), inflammatory response NP cells (IR NPC), endoplasmic reticulum stress NP cells (ERS NPC), fibrocartilaginous NP cells (Fc NPC), and CD70 and CD82+ progenitor NP cells (Pro NPC) were identified. In the late stage of IDD, the IR NPC and Fc NPC account for a large proportion of NPC. Importantly, immune cells including macrophages, T cells, myeloid progenitors, and neutrophils were also identified, and further analysis showed that significant intercellular interaction between macrophages and Pro NPC occurred via MIF (macrophage migration inhibitory factor) and NF-kB signaling pathways during the progression of IDD. In addition, dynamic polarization of macrophage M1 and M2 cell subtypes was found in the progression of IDD, and gene set functional enrichment analysis suggested a significant role of the macrophage polarization in regulating cell metabolism, especially the Pro NPC. Finally, we found that the NP cells in the late degenerative stage were mainly composed of the cell types related to inflammatory and endoplasmic reticulum (ER) response, and fibrocartilaginous activity. Our results provided new insights into the identification of NP cell populations at single-cell resolution and at the relatively whole-transcriptome scale, accompanied by cellular communications between immune cells and NP cells, and discriminative markers in relation to specific cell subsets. These new findings present clues for effective and functional manipulation of human IDD-related bioremediation and healthcare.
Collapse
Affiliation(s)
- Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Liu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhe Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bolin Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaming Yang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Baozhu Zeng
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yu Gao
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yulin Huang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiuhui Wang
- Department of Orthopaedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Fuxin Wei, ; Xiuhui Wang,
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Fuxin Wei, ; Xiuhui Wang,
| |
Collapse
|
8
|
High-throughput sequencing revealed the expression profile and potential key molecules of the circular RNAs involved in the process of hypoxic adaptation in Tibetan chickens. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Phosphoproteomic response of cardiac endothelial cells to ischemia and ultrasound. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140683. [PMID: 34119693 DOI: 10.1016/j.bbapap.2021.140683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Myocardial infarction and subsequent therapeutic interventions activate numerous intracellular cascades in every constituent cell type of the heart. Endothelial cells produce several protective compounds in response to therapeutic ultrasound, under both normoxic and ischemic conditions. How endothelial cells sense ultrasound and convert it to a beneficial biological response is not known. We adopted a global, unbiased phosphoproteomics approach aimed at understanding how endothelial cells respond to ultrasound. Here, we use primary cardiac endothelial cells to explore the cellular signaling events underlying the response to ischemia-like cellular injury and ultrasound exposure in vitro. Enriched phosphopeptides were analyzed with a high mass accuracy liquid chromatrography (LC) - tandem mass spectrometry (MS/MS) proteomic platform, yielding multiple alterations in both total protein levels and phosphorylation events in response to ischemic injury and ultrasound. Application of pathway algorithms reveals numerous protein networks recruited in response to ultrasound including those regulating RNA splicing, cell-cell interactions and cytoskeletal organization. Our dataset also permits the informatic prediction of potential kinases responsible for the modifications detected. Taken together, our findings begin to reveal the endothelial proteomic response to ultrasound and suggest potential targets for future studies of the protective effects of ultrasound in the ischemic heart.
Collapse
|