1
|
Liu Y, Huang L, Wen Z, Fu Y, Liu Q, Xu S, Li Z, Liu C, Yu C, Feng Y. Effects of intercropping on safe agricultural production and phytoremediation of heavy metal-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162700. [PMID: 36906036 DOI: 10.1016/j.scitotenv.2023.162700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Intercropping with hyperaccumulators is believed to be an important and efficient way to achieve simultaneous safe agricultural production and phytoremediation of polluted soils. However, some studies have suggested that this technique might facilitate the uptake of heavy metals by crops. To investigate the effects of intercropping on the heavy metal contents of plants and soil, data from 135 global studies were collected and analyzed by meta-analysis. The results showed that intercropping could significantly reduce the contents of heavy metals in the main plants and soils. Plant species was the main factor that affected plant and soil metal contents in the intercropping system, and the heavy metal content could be significantly reduced when members of the Poaceae and Crassulaceae were used as main plants or when legumes were used as intercropped plants. Among all the intercropped plants, the best one for removing heavy metals from the soil was a Crassulaceae hyperaccumulator. These results not only highlight the main factors affecting intercropping systems but also provide reliable reference information for the practice of safe agricultural production coupled with phytoremediation of heavy metal-contaminated farmland.
Collapse
Affiliation(s)
- Yaru Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shunan Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhesi Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Livestock Industrial Development Center of Shengzhou, Shengzhou 312400, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Mocek-Płóciniak A, Mencel J, Zakrzewski W, Roszkowski S. Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. PLANTS (BASEL, SWITZERLAND) 2023; 12:1653. [PMID: 37111876 PMCID: PMC10141480 DOI: 10.3390/plants12081653] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The pollution of soil by trace elements is a global problem. Conventional methods of soil remediation are often inapplicable, so it is necessary to search intensively for innovative and environment-friendly techniques for cleaning up ecosystems, such as phytoremediation. Basic research methods, their strengths and weaknesses, and the effects of microorganisms on metallophytes and plant endophytes resistant to trace elements (TEs) were summarised and described in this manuscript. Prospectively, bio-combined phytoremediation with microorganisms appears to be an ideal, economically viable and environmentally sound solution. The novelty of the work is the description of the potential of "green roofs" to contribute to the capture and accumulation of many metal-bearing and suspended dust and other toxic compounds resulting from anthropopressure. Attention was drawn to the great potential of using phytoremediation on less contaminated soils located along traffic routes and urban parks and green spaces. It also focused on the supportive treatments for phytoremediation using genetic engineering, sorbents, phytohormones, microbiota, microalgae or nanoparticles and highlighted the important role of energy crops in phytoremediation. Perceptions of phytoremediation on different continents are also presented, and new international perspectives are presented. Further development of phytoremediation requires much more funding and increased interdisciplinary research in this direction.
Collapse
Affiliation(s)
- Agnieszka Mocek-Płóciniak
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Justyna Mencel
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Wiktor Zakrzewski
- Regional Chemical and Agricultural Station in Poznan, Sieradzka 29, 60-163 Poznan, Poland
| | - Szymon Roszkowski
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
| |
Collapse
|
3
|
Santiago LD, DeLeon-Rodriguez N, LaSanta-Pagán K, Hatt JK, Kurt Z, Massol-Deyá A, Konstantinidis KT. Microbial diversity in a military impacted lagoon (Vieques, Puerto Rico) and description of "Candidatus Biekeibacterium resiliens" gen. nov., sp. nov. comprising a new bacterial family. Syst Appl Microbiol 2021; 45:126288. [PMID: 34933230 DOI: 10.1016/j.syapm.2021.126288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
The Anones Lagoon, located in the Island Municipality of Vieques, Puerto Rico (PR), received extensive bombing by the US Navy during military exercises for decades until 2003 when military activities ceased. Here, we employed shotgun metagenomic sequencing to investigate how microbial communities responded to pollution by heavy metals and explosives at this lagoon. Sediment samples (0-5 cm) from Anones were collected in 2005 and 2014 and compared to samples from two reference lagoons, i.e., Guaniquilla, Cabo Rojo (a natural reserve) and Condado, San Juan (PR's capital city). Consistent with low anthropogenic inputs, Guaniquilla exhibited the highest degree of diversity with a lower frequency of genes related to xenobiotics metabolism between the three lagoons. Notably, a clear shift was observed in Anones, with Euryarchaeota becoming enriched (9% of total) and a concomitant increase in community diversity, by about one order of magnitude, after almost 10 years without bombing activities. In contrast, genes associated with explosives biodegradation and heavy metal transformation significantly decreased in abundance in Anones 2014 (by 91.5%). Five unique metagenome-assembled genomes (MAGs) were recovered from the Anones 2005 sample that encoded genetic determinants implicated in biodegradation of contaminants, and we propose to name one of them as "Candidatus Biekeibacterium resiliens" gen. nov., sp. nov. within the Gammaproteobacteria class. Collectively, these results provide new insights into the natural attenuation of explosive contaminants by the benthic microbial communities of the Anones lagoon and provide a reference point for assessing other similarly impacted sites and associated bioremediation efforts.
Collapse
Affiliation(s)
- Lizbeth-Dávila Santiago
- Department of Biology, University of Puerto Rico, Mayagüez, Puerto Rico; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Natasha DeLeon-Rodriguez
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | | | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Zohre Kurt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Arturo Massol-Deyá
- Department of Biology, University of Puerto Rico, Mayagüez, Puerto Rico; Casa Pueblo, Adjuntas, Puerto Rico.
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
4
|
Zhou J, Zhou T, Li Z, Wu L, Luo Y, Christie P. Differences in phytoextraction by the cadmium and zinc hyperaccumulator Sedum plumbizincicola in greenhouse, polytunnel and field conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 20:1400-1407. [PMID: 30652504 DOI: 10.1080/15226514.2018.1488808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Differences in growth conditions in the glasshouse and in the field may affect the consistency of phytoextraction results. Two crops of the hyperaccumulator Sedum plumbizincicola were grown in six contrasting soils in pot experiments under three different sets of growth conditions (glasshouse, polytunnel and field) to compare the phytoextraction of cadmium (Cd) and zinc (Zn). The total shoot biomass of two crops in the glasshouse was significantly smaller than in the polytunnel or field. However, in general there were no significant differences in total shoot metal uptake of two crops per pot among three sets of growth conditions. And greater decreases in soil metal than plant uptake in the polytunnel and field in an acid soil indicate high leaching losses of soil metals in the polytunnel and field, and this was confirmed by analysis of metal concentrations in soil profiles. This brings into question on the validity of estimating the practical applicability of phytoextraction based only on plant metal uptake in glasshouse conditions. It is advisable to examine leaching losses in acid soils in the field when estimating the duration of phytoextraction.
Collapse
Affiliation(s)
- Jiawen Zhou
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing , China
- b University of the Chinese Academy of Sciences , Beijing , China
| | - Tong Zhou
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing , China
| | - Zhu Li
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing , China
| | - Longhua Wu
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing , China
| | - Yongming Luo
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing , China
| | - Peter Christie
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science , Chinese Academy of Sciences , Nanjing , China
| |
Collapse
|
5
|
Gerhardt KE, Gerwing PD, Greenberg BM. Opinion: Taking phytoremediation from proven technology to accepted practice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:170-185. [PMID: 28167031 DOI: 10.1016/j.plantsci.2016.11.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 05/22/2023]
Abstract
Phytoremediation is the use of plants to extract, immobilize, contain and/or degrade contaminants from soil, water or air. It can be an effective strategy for on site and/or in situ removal of various contaminants from soils, including petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), solvents (e.g., trichloroethylene [TCE]), munitions waste (e.g., 2,4,6-trinitrotoluene [TNT]), metal(loid)s, salt (NaCl) and radioisotopes. Commercial phytoremediation technologies appear to be underutilized globally. The primary objective of this opinion piece is to discuss how to take phytoremediation from a proven technology to an accepted practice. An overview of phytoremediation of soil is provided, with the focus on field applications, to provide a frame of reference for the subsequent discussion on better utilization of phytoremediation. We consider reasons why phytoremediation is underutilized, despite clear evidence that, under many conditions, it can be applied quite successfully in the field. We offer suggestions on how to gain greater acceptance for phytoremediation by industry and government. A new paradigm of phytomanagement, with a specific focus on using phytoremediation as a "gentle remediation option" (GRO) within a broader, long-term management strategy, is also discussed.
Collapse
Affiliation(s)
- Karen E Gerhardt
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Perry D Gerwing
- Earthmaster Environmental Strategies Inc., Calgary, AB, Canada
| | - Bruce M Greenberg
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
6
|
Tang X, Hashmi MZ, Long D, Chen L, Khan MI, Shen C. Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:3118-31. [PMID: 24637907 PMCID: PMC3987024 DOI: 10.3390/ijerph110303118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/18/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
Abstract
Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg−1) and Cu (69.2 mg·kg−1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.
Collapse
Affiliation(s)
- Xianjin Tang
- College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Muhammad Z Hashmi
- College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Dongyan Long
- College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Litao Chen
- College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Muhammad I Khan
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Chaofeng Shen
- College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|