1
|
Ghaffar I, Hussain A, Hasan A, Deepanraj B. Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An overview. CHEMOSPHERE 2023; 320:137921. [PMID: 36682632 DOI: 10.1016/j.chemosphere.2023.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The recent surge in industrialization has intensified the accumulation of various types of organic and inorganic pollutants due to the illegal dumping of partially and/or untreated wastewater effluents in the environment. The pollutants emitted by several industries pose serious risk to the environment, animals and human beings. Management and diminution of these hazardous organic pollutants have become an incipient research interest. Traditional physiochemical methods are energy intensive and produce secondary pollutants. So, bioremediation via microalgae has appeared to be an eco-friendly and sustainable technique to curb the adverse effects of organic and inorganic contaminants because microalgae can degrade complex organic compounds and convert them into simpler and non-toxic substances without the release of secondary pollutants. Even some of the organic pollutants can be exploited by microalgae as a source of carbon in mixotrophic cultivation. Literature survey has revealed that use of the latest modification techniques for microalgae such as immobilization (on alginate, carrageena and agar), pigment-extraction, and pretreatment (with acids) have enhaced their bioremedial potential. Moreover, microalgal components i.e., biopolymers and extracellular polymeric substances (EPS) can potentially be exploited in the biosorption of pollutants. Though bioremediation of wastewaters by microalgae is quite well-studied realm but some aspects like structural and functional responses of microalgae toward pollutant derivatives/by-products (formed during biodegradation), use of genetic engineering to improve the tolerance of microalgae against higher concentrations of polluatans, and harvesting cost reduction, and monitoring of parameters at large-scale still need more focus. This review discusses the accumulation of different types of pollutants into the environment through various sources and the mechanisms used by microalgae to degrade commonly occurring organic and inorganic pollutants.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ali Hasan
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
| |
Collapse
|
2
|
Jiang L, Luo C, Zhang D, Song M, Mei W, Sun Y, Zhang G. Shifts in a Phenanthrene-Degrading Microbial Community are Driven by Carbohydrate Metabolism Selection in a Ryegrass Rhizosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:962-973. [PMID: 33371686 DOI: 10.1021/acs.est.0c04951] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants usually promote pollutant bioremediation by several mechanisms including modifying the diversity of functional microbial species. However, conflicting results are reported that root exudates have no effects or negative effects on organic pollutant degradation. In this study, we investigated the roles of ryegrass in phenanthrene degradation in soils using DNA stable isotope probing (SIP) and metagenomics to reveal a potential explanation for conflicting results among phytoremediation studies. Phenanthrene biodegradation efficiency was improved by 8% after 14 days of cultivation. Twelve and ten operational taxonomic units (OTUs) were identified as active phenanthrene degraders in non-rhizosphere and rhizosphere soils, respectively. The active phenanthrene degraders exhibited higher average phylogenetic distances in rhizosphere soils (0.33) than non-rhizosphere soils (0.26). The Ka/Ks values (the ratio of nonsynonymous to synonymous substitutions) were about 10.37% higher in the rhizosphere treatment among >90% of all key carbohydrate metabolism-related genes, implying that ryegrass may be an important driver of microbial community variation in the rhizosphere by relieving the carbohydrate metabolism pressure and improving the survival ability of r-strategy microbes. Most Ka/Ks values of root-exudate-related metabolism genes exhibited little change, except for fumarate hydratase that increased 13-fold in the rhizosphere compared to that in the non-rhizosphere treatment. The Ka/Ks values of less than 50% phenanthrene-degradation-related genes were affected, 30% of which increased and 70% behaved oppositely. Genes with altered Ka/Ks values had a low percentage and followed an inconsistent changing tendency, indicating that phenanthrene and its metabolites are not major factors influencing the active degraders. These results suggested the importance of carbohydrate metabolism, especially fumaric acid, in rhizosphere community shift, and hinted at a new hypothesis that the rhizosphere effect on phenanthrene degradation efficiency depends on the existence of active degraders that have competitive advantages in carbohydrate and fumaric acid metabolism.
Collapse
Affiliation(s)
- Longfei Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weiping Mei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
Wei B, Liu C, Bao J, Wang Y, Hu J, Qi M, Jin J, Wei Y. Uptake and distributions of polycyclic aromatic hydrocarbons in cultivated plants around an E-waste disposal site in Southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2696-2706. [PMID: 32892280 DOI: 10.1007/s11356-020-10642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in air, soil, and cultivated plants at e-waste disposal sites in Taizhou, Zhejiang Province, were determined to allow PAH uptake by and distributions in plants to be investigated. The PAH distributions in air, rhizosphere soil, and surface soil were markedly different. This indicated that root morphology variations and root exudates may affect PAH compositions in soil around plants. The PAH concentrations in the plant samples were 29.7-2170 ng/g. The lowest PAH concentration was found in a peeled taproot sample. The PAH concentration gradients from the plant shoots to roots suggested that PAHs entered the plants through various pathways. The three- and four-ring PAHs were found to be absorbed more readily than the higher-molecular-weight (five- and six-ring) PAHs. This indicated that high-molecular-weight PAHs in soil can be prevented from entering plants, particularly taproots, via root exudates and the root peel. For most plants, the highest PAH concentrations were found in leaves, indicating that atmospheric deposition may strongly affect PAH concentrations in aerial plant parts. High-molecular-weight PAHs are more readily absorbed from ambient air by leaves than other parts. Lower PAH concentrations were found in fruits than other plant parts. This and the differences in PAH distributions between fruits and other aerial parts indicated that PAHs may be selectively absorbed by fruits.
Collapse
Affiliation(s)
- Baokai Wei
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Chen Liu
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Junsong Bao
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jicheng Hu
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Min Qi
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China.
- Engineering Research Center of Food Environment and Public Health, Beijing, 100081, China.
| | - Yongjie Wei
- Chinese Research Academy of Environmental Science, Beijing, 100012, China
| |
Collapse
|
4
|
Xie Z, Gao L, Liang Z, Chen J, Li S, Zhu A, Wu Y, Yang Z, Li R, Wang Z. Characteristics, Sources, and Risks of Polycyclic Aromatic Hydrocarbons in Topsoil and Surface Water from the Liuxi River Basin, South China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:401-415. [PMID: 32008048 DOI: 10.1007/s00244-020-00711-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The concentrations, composition, sources, and risks of polycyclic aromatic hydrocarbons (PAHs) in topsoil and surface water of the Liuxi River basin, south China were analyzed in this study. The total concentrations of 16 PAHs ranged from 296.26 to 888.14 ng/g in topsoil and from 156.73 to 422.03 ng/L in surface water, indicating mild pollution. The PAHs in topsoil exhibited an even spatial distribution, suggesting that they originated primarily from dry and wet deposition of transported pollutants. The concentration of PAHs in surface water did not differ significantly geographically, but the concentrations of total, three-, and four-ring PAHs were significantly lower in the Liuxi River than in its tributaries. Three- and two-ring PAHs predominated in topsoil and surface water, respectively. A correlation analysis suggested that the total organic carbon content and pH exerted a negligible effect on the spatial distribution of PAHs in topsoil, and they may have common sources. Fossil fuel combustion (particularly vehicle emissions) and coking production were the dominant sources of PAHs in topsoil, whereas those in surface water were derived from a variety of sources. The total toxic equivalent concentrations of 16 PAHs in topsoil ranged from 3.73 to 105.66 ng/g (mean, 30.93 ng/g), suggesting that exposure to the basin's topsoil does not pose a risk to the environment or public health according to the Canadian soil quality guidelines. A risk assessment revealed that the total PAH concentrations in surface water posed a low ecological risk.
Collapse
Affiliation(s)
- Zhenglan Xie
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lei Gao
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zuobing Liang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianyao Chen
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China.
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shaoheng Li
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Aiping Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Wu
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhigang Yang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rui Li
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuowei Wang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Kim SS, Xu X, Zhang Y, Zheng X, Liu R, Dietrich KN, Reponen T, Xie C, Sucharew H, Huo X, Chen A. Birth outcomes associated with maternal exposure to metals from informal electronic waste recycling in Guiyu, China. ENVIRONMENT INTERNATIONAL 2020; 137:105580. [PMID: 32078870 PMCID: PMC7257595 DOI: 10.1016/j.envint.2020.105580] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Informal electronic waste (e-waste) recycling is a rapidly growing industry. Informal e-waste recycling creates a mixture of chemicals that can be harmful to humans, especially vulnerable populations like pregnant women and young children. OBJECTIVES We aimed to analyze the associations between birth outcomes and living in a community with a history of informal e-waste recycling. METHODS The e-waste Recycling Exposure and Community Health (e-REACH) Study enrolled pregnant women in Guiyu, an informal e-waste recycling site (n = 314), and an unexposed control site (Haojiang) (n = 320) at delivery. We analyzed maternal whole blood samples for lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn). We captured data in newborns on birth weight, birth length, head circumference, body mass index (BMI), and Ponderal Index (PI). We compared the birth outcomes between sites after adjustment for covariates, and examined the associations with individual and the mixture of metals. RESULTS The neonates from Guiyu had smaller head circumference (adj β -1.96 cm, 95% CI -2.39, -1.52), BMI (adj β -0.77 kg/m2, 95% CI -1.03, -0.51), and PI (adj β -2.01 kg/m3, 95% CI -2.54, -1.47). Birth weights were lower in Guiyu compared to Haojiang, but the difference was not significant (β -51, 95% CI -132, 29). Cumulative exposure to metals was related to lower head circumference, BMI, and PI, but not related to birth weight. DISCUSSION We observed slight and statistically significant differences in the head size, BMI, and PI of neonates, but not birth weight, from Guiyu when compared to neonates from Haojiang. Cumulative metal exposure may partially account for the findings.
Collapse
Affiliation(s)
- Stephani S Kim
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Disease and Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Disease and Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Disease and Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Rongju Liu
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Disease and Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Kim N Dietrich
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tiina Reponen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Changchun Xie
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Heidi Sucharew
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China.
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
6
|
He M, Yang S, Zhao J, Collins C, Xu J, Liu X. Reduction in the exposure risk of farmer from e-waste recycling site following environmental policy adjustment: A regional scale view of PAHs in paddy fields. ENVIRONMENT INTERNATIONAL 2019; 133:105136. [PMID: 31491593 DOI: 10.1016/j.envint.2019.105136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Farmland contamination by polycyclic aromatic hydrocarbons (PAHs) has drawn increasing attention across China with enhanced regulations and environmental policies proposed by government to protect soil environment safety. As the informal electronic waste (e-waste) dismantling activities were forbidden under recent environmental regulation, this study compared levels, compositions, spatial distributions, human health risks of PAHs in paddy soil within the vicinity of an e-waste recycling area in southeastern China, with 129 and 150 soil samples collected in 2011 and 2016, respectively. The soil contamination was dominated with high molecular weight PAHs. The mean concentration of EPA 16 PAHs decreased from 590.4 ± 337.2 μg kg-1 in 2011 to 407.3 ± 232.2 μg kg-1 in 2016. Distribution maps of soil PAHs concentration displayed the temporal change in spatial. Principal component analysis together with diagnostic ratios revealed the combustion of biomass and coal in industrial and unregulated e-waste dismantling were the main sources of PAHs in the study area. Both deterministic and probabilistic assessments demonstrated reduced exposure risk for farmers from 2011 to 2016. Sensitivity analysis revealed that exposure frequency (EF) is the most influential parameter for the total variance in the risk assessment model. This study implied that the more stringent environmental policy and regulation can lead reductions in soil contamination with PAHs.
Collapse
Affiliation(s)
- Mingjiang He
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Shiyan Yang
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jian Zhao
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Chris Collins
- Department of Geography and Environmental Science, University of Reading, Whiteknights Campus, Reading RG6 6DW, UK
| | - Jianming Xu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Davis JM, Garb Y. A strong spatial association between e-waste burn sites and childhood lymphoma in the West Bank, Palestine. Int J Cancer 2018; 144:470-475. [PMID: 30259977 DOI: 10.1002/ijc.31902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 11/10/2022]
Abstract
A paper in the International Journal of Cancer analyzed Palestinian cancer registry data in the West Bank from 1998 to 2007, showing a cluster of elevated cancer incidence in rural villages in south-west Hebron, with a 4.10 risk ratio for childhood lymphoma (p = 0.0023). The paper called for investigation of the environmental or genetic etiologies of this cluster in an otherwise unremarkable rural area.1 Our research in these same villages shows them to be the center of an extensive informal electronic and electrical waste (e-waste) dismantling industry in Palestine, operating for almost two decades. This entails extensive open-burning of e-waste components to extract valuable metals or dispose of nonvaluable waste, releasing high concentrations of hazardous contaminants, which may be an important factor in the elevated cancer incidence. We offer a first step in assessing this link. We applied a novel multitemporal object-based method to map the prevalence and intensity of e-waste burn sites in the entire Hebron Governorate (1,060 km2 ) between 1999 and 2007. A weighted standard deviation ellipse of cumulative burn activity covers a smaller area (247 km2 ) very closely matching the childhood lymphoma cluster: it contains 85% of the core cluster area (RR of 4.1), and falls almost entirely (95%) within the broader area of elevated risk (RR of 2.8). Extensive international evidence linking informal e-waste processing to elevated cancer incidence and this strong spatial association of e-waste burning activity with a distinct unexplained cancer cluster in the Palestinian context signals the urgent need for investigation and intervention.
Collapse
Affiliation(s)
- John-Michael Davis
- Department of Geography and GIS Science, University of Illinois Urbana-Champaign, Urbana, IL
| | - Yaakov Garb
- Department of Sociology and Anthropology & Department of Geography and Environmental Development, Ben Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
8
|
Sun J, Pan L, Tsang DCW, Zhan Y, Zhu L, Li X. Organic contamination and remediation in the agricultural soils of China: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:724-740. [PMID: 29017123 DOI: 10.1016/j.scitotenv.2017.09.271] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Soil pollution is a global problem in both developed and developing countries. Countries with rapidly developing economies such as China are faced with significant soil pollution problems due to accelerated industrialization and urbanization over the last decades. This paper provides an overview of published scientific data on soil pollution across China with particular focus on organic contamination in agricultural soils. Based on the related peer-reviewed papers published since 2000 (n=203), we evaluated the priority organic contaminants across China, revealed their spatial and temporal distributions at the national scale, identified their possible sources and fates in soil, assessed their potential environmental risks, and presented the challenges in current remediation technologies regarding the combined organic pollution of agricultural soils. The primary pollutants in Northeast China were polycyclic aromatic hydrocarbons (PAHs) due to intensive fossil fuel combustion. The concentrations of organochlorine pesticides (OCPs) and phthalic acid esters (PAEs) were higher in North and Central China owing to concentrated agricultural activities. The levels of polychlorinated biphenyls (PCBs) were higher in East and South China primarily because of past industrial operations and improper electronic waste processing. The co-existence of organic contaminants was severe in the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei Region, which are the most populated and industrialized regions in China. Integrated biological-chemical remediation technologies, such as surfactant-enhanced bioremediation, have potential uses in the remediation of soil contaminated by multiple contaminants. This critical review highlighted several future research directions including combined pollution, interfacial interactions, food safety, bioavailability, ecological effects, and integrated remediation methods for combined organic pollution in soil.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
9
|
Zhang P, Chen Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:1011-1020. [PMID: 28693106 DOI: 10.1016/j.scitotenv.2017.06.247] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 05/27/2023]
Abstract
This paper reviews the concentration, distribution, source, and potential risk of polycyclic aromatic hydrocarbons (PAHs) in surface soils of China through analysis of data from >6000 surface soil samples in nearly 100 references. The mean value of total 16 PAHs was 730ng·g-1 in surface soil in China, a relatively lower or moderate level than other countries. Based on the Maliszewska-Kordybach classification criteria, the proportions of heavily contaminated, contaminated, weakly contaminated, and non-contaminated soil samples were 21.4%, 11.9%, 49.5%, and 17.2%, respectively. There was a clear geographical distribution, with concentrations of the total 16 PAHs descending in the following order: Northeast China (1467ng·g-1)>North China (911ng·g-1)>East China (737ng·g-1)>South China (349ng·g-1)>West China (209ng·g-1). Moreover, it was found that the PAH concentrations in surface soil in China descended along the urban-suburban-rural gradient. The concentration and distribution of PAHs were mainly related to the degree of economic development, population density, climatic conditions, and soil organic matter, and the divergence of regional economic patterns and climatic conditions was the main reason for the observed PAH distribution in the soils. Traffic emissions, coal and biomass combustion mainly contributed to the PAH contamination of surface soil in China during the process of urbanization and industrialization, and the average Benzo(a)pyrene equivalent concentration of ∑PAH7c (seven carcinogenic PAHs) was 99ng·g-1, which indicated the soil samples had a small potential carcinogenic risk. Despite soil pollution being generally low, PAH concentrations in some areas were relatively high, therefore it is necessary to produce strategies, such as establishing effective guidelines and developing environmental-friendly technology to reduce PAH emissions, and prevent further contamination.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
10
|
Chai C, Cheng Q, Wu J, Zeng L, Chen Q, Zhu X, Ma D, Ge W. Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in the soils of vegetable greenhouses in Shandong, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:181-188. [PMID: 28411513 DOI: 10.1016/j.ecoenv.2017.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were analyzed in soil (n=196) and vegetable (n=30) collected from greenhouses, and also in the soil (n=27) collected from agriculture fields close to the greenhouses in Shandong Province, China. The total PAH concentration (∑16PAH) ranged from 152.2µg/kg to 1317.7µg/kg, within the moderate range in agricultural soils of China. Three-ring PAHs were the dominant species, with Phe (16.3%), Ace (13.1%), and Fl (10.5%) as the major compounds. The concentrations of low molecular weight (LMW ≤3 rings) PAHs were high in the east and north of Shandong, while the concentrations of high molecular weight (HMW ≥4 rings) PAHs were high in the south and west of the study area. The PAH level in soils in industrial areas (IN) was higher than those in transport areas (TR) and rural areas (RR). No significant difference in concentration of ∑16PAH and composition was observed in soils of vegetable greenhouses and field soils. PAH concentration exhibited a weakly positive correlation with alkaline nitrogen, available phosphorus in soil, but a weakly negative correlation with soil pH. However, no obvious correlation was observed between PAH concentration and organic matter of soil, or ages of vegetable greenhouses. ∑16PAH in vegetables ranged from 89.9µg/kg to 489.4µg/kg, and LMW PAHs in vegetables positively correlated with those in soils. The sources of PAHs were identified and quantitatively assessed through positive matrix factorization. The main source of PAHs in RR was coal combustion, while the source was traffic in TR and IN. Moreover, petroleum source, coke source, biomass combustion, or mixed sources also contributed to PAH pollution. According to Canadian soil quality guidelines, exposure to greenhouse soils in Shandong posed no risk to human health.
Collapse
Affiliation(s)
- Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China.
| | - Qiqi Cheng
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Wu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lusheng Zeng
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qinghua Chen
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangwei Zhu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Dong Ma
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
11
|
Halfadji A, Touabet A, Portet-Koltalo F, Le Derf F, Merlet-Machour N. Concentrations and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) in Agricultural, Urban/Residential, and Industrial Soils, East of Oran (Northwest Algeria). Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1326947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ahmed Halfadji
- Laboratory of Organic Analysis Functional (LAOF), Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
- Laboratory of Organic and Bioorganic Chemistry, Reactivity and Analysis COBRA UMR CNRS 6014, IUT Evreux, University of Rouen-Normandy, Evreux, France
- Department of Sciences and Technologies, Faculty of Applied Science, University Ibn-Khaldoun of Tiaret, Tiaret, Algeria
| | - Abdelkrim Touabet
- Laboratory of Organic Analysis Functional (LAOF), Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Florence Portet-Koltalo
- Laboratory of Organic and Bioorganic Chemistry, Reactivity and Analysis COBRA UMR CNRS 6014, IUT Evreux, University of Rouen-Normandy, Evreux, France
| | - Frank Le Derf
- Laboratory of Organic and Bioorganic Chemistry, Reactivity and Analysis COBRA UMR CNRS 6014, IUT Evreux, University of Rouen-Normandy, Evreux, France
| | - Nadine Merlet-Machour
- Laboratory of Organic and Bioorganic Chemistry, Reactivity and Analysis COBRA UMR CNRS 6014, IUT Evreux, University of Rouen-Normandy, Evreux, France
| |
Collapse
|
12
|
Awasthi AK, Zeng X, Li J. Environmental pollution of electronic waste recycling in India: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:259-70. [PMID: 26774773 DOI: 10.1016/j.envpol.2015.11.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 05/19/2023]
Abstract
The rapid growth of the production of electrical and electronic products has meant an equally rapid growth in the amount of electronic waste (e-waste), much of which is illegally imported to India, for disposal presenting a serious environmental challenge. The environmental impact during e-waste recycling was investigated and metal as well as other pollutants [e.g. polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs)] were found in excessive levels in soil, water and other habitats. The most e-waste is dealt with as general or crudely often by open burning, acid baths, with recovery of only a few materials of value. As resulted of these process; dioxins, furans, and heavy metals are released and harmful to the surrounding environment, engaged workers, and also residents inhabiting near the sites. The informal e-waste sectors are growing rapidly in the developing countries over than in the developed countries because of cheapest labor cost and week legislations systems. It has been confirmed that contaminates are moving through the food chain via root plant translocation system, to the human body thereby threatening human health. We have suggested some possible solution toward in which plants and microbes combine to remediate highly contaminated sites.
Collapse
Affiliation(s)
- Abhishek Kumar Awasthi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianlai Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinhui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Gołębiowski M, Stepnowski P, Hemmingway T, Leszczyńska D. Organic compound composition in soil and sediments collected in Jackson, Mississippi. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:553-560. [PMID: 26943144 DOI: 10.1080/10934529.2016.1141621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of our study was to identify organic pollutants found in soil and sediment samples collected within the Jackson, MS metropolitan area. The chemical characterization of the organic compound fractions in soil and sediment samples was carried out by separating the organic fraction using column chromatography (CC) and quantitatively analyzing the polycyclic aromatic hydrocarbons (PAHs), n-alkanes and other organic compounds using gas chromatography-electron impact mass spectrometry (GC-MS). Fifty-six compounds were identified and quantified in the soil samples and 33 compounds were identified and quantified in the sediment samples. The PAHs, n-alkanes and other organic compound profiles in the soil and sediment samples were compared. The percentage contents of the organic compounds in the soil samples were very diverse (from traces to 12.44 ± 1.47%). The compounds present in the highest concentrations were n-alkanes: n-C31 (12.44 ± 1.47%), n-C29 (11.64 ± 1.21%), and n-C33 (8.95 ± 1.08%). The components occurring in smaller quantities (from 1% to 5%) were 2 PAHs (fluoranthene 1.28 ± 0.25%, pyrene 1.16 ± 0.20%), 10 n-alkanes from n-C21 (1.25 ± 0.29%) to n-C32 (2.67 ± 0.52%) and 11 other compounds (e.g., 2-pentanol, 4-methyl (3.33 ± 0.44%), benzyl butyl phthalate (4.25 ± 0.59%), benzenedicarboxylic acid (1.14 ± 0.08%), ethane, 1,1-diethoxy (3.15 ± 0.41) and hexadecanoic acid (2.52 ± 0.34). The soil samples also contained 30 compounds present in concentrations <1% (e.g., anthracene (0.13 ± 0.04%), n-C20 (0.84 ± 0.21%) and acetic acid (0.12 ± 0.04%). The compounds present in the highest concentrations in the sediment samples were PAHs: pyrene (7.73 ± 1.15%) and fluoranthene (6.23 ± 1.07%) and n-alkanes: n-C31 (6.74 ± 1.21%), n-C29 (6.65 ± 0.98%) and n-C27 (6.13 ± 1.09%). The remaining organic compounds were present in smaller quantities (< 5%).
Collapse
Affiliation(s)
- Marek Gołębiowski
- a Interdisciplinary Center for Nanotoxicity, Department of Civil and Environmental Engineering, Jackson State University , Jackson , Mississippi , USA
- b Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk , Gdańsk , Poland
| | - Piotr Stepnowski
- c Laboratory of Chemical Environmental Risks, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk , Gdańsk , Poland
| | - Tometrick Hemmingway
- a Interdisciplinary Center for Nanotoxicity, Department of Civil and Environmental Engineering, Jackson State University , Jackson , Mississippi , USA
| | - Danuta Leszczyńska
- a Interdisciplinary Center for Nanotoxicity, Department of Civil and Environmental Engineering, Jackson State University , Jackson , Mississippi , USA
| |
Collapse
|
14
|
Patel KS, Ramteke S, Naik Y, Sahu BL, Sharma S, Lintelmann J, Georg M. Contamination of Environment with Polycyclic Aromatic Hydrocarbons in India. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jep.2015.611111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Hibbert K, Ogunseitan OA. Risks of toxic ash from artisanal mining of discarded cellphones. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:1-7. [PMID: 24937657 DOI: 10.1016/j.jhazmat.2014.05.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/15/2014] [Accepted: 05/29/2014] [Indexed: 06/03/2023]
Abstract
The potential environmental and human health impacts of artisanal mining of electronic waste through open incineration were investigated. A market-representative set of cellphones was dismantled into four component categories-batteries, circuit boards, plastics and screens. The components were shredded, sieved and incinerated at 743-818 °C. The concentrations of 17 metals were determined using U.S. EPA methods 6010C (inductively coupled plasma-atomic emission spectrometry; 6020A (inductively coupled plasma-mass spectrometry, or 7471B and 7470A (cold-vapor atomic absorption). EPA Method 8270 (gas chromatography/mass spectrometry) was used to identify polyaromatic hydrocarbon compounds and polybrominated diphenyl ethers. EPA Method 8082A was used to measure polychlorinated biphenyls and EPA Method 8290 was used for dioxin/furans in the residue ash. The life cycle assessment model USEtox(®) was used to estimate impacts of the ash residue chemicals on human health and the ecosystem. Among metals, copper in printed circuit boards had the highest ecotoxicity impact (1610-1930PAFm(3)/kg); Beryllium in plastics had the highest impact on producing non-cancer diseases (0.14-0.44 cases/kg of ash); and Nickel had the largest impact on producing cancers (0.093-0.35 cases/kg of ash). Among organic chemicals, dioxins from incinerated batteries produced the largest ecotoxicological impact (1.07E-04 to 3.64E-04PAFm(3)/kg). Furans in incinerated batteries can generate the largest number of cancers and non-cancer diseases, representing 8.12E-09 to 2.28E-08 and 8.96E-10 and 2.52E-09 cases/kg of ash, respectively. The results reveal hazards of burning discarded cellphones to recover precious metals, and pinpoints opportunities for manufacturers to reduce toxic materials used in specific electronic components marketed globally.
Collapse
Affiliation(s)
- Kathleen Hibbert
- School of Social Ecology, University of California, Irvine, CA 92697, USA
| | - Oladele A Ogunseitan
- School of Social Ecology, University of California, Irvine, CA 92697, USA; Department of Population Health & Disease Prevention, Program in Public Health, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Feldt T, Fobil JN, Wittsiepe J, Wilhelm M, Till H, Zoufaly A, Burchard G, Göen T. High levels of PAH-metabolites in urine of e-waste recycling workers from Agbogbloshie, Ghana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:369-76. [PMID: 23921367 DOI: 10.1016/j.scitotenv.2013.06.097] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/16/2013] [Accepted: 06/24/2013] [Indexed: 05/23/2023]
Abstract
The informal recycling of electronic waste (e-waste) is an emerging source of environmental pollution in Africa. Among other toxins, polycyclic aromatic hydrocarbons (PAHs) are a major health concern for exposed individuals. In a cross-sectional study, the levels of PAH metabolites in the urine of individuals working on one of the largest e-waste recycling sites of Africa, and in controls from a suburb of Accra without direct exposure to e-waste recycling activities, were investigated. Socioeconomic data, basic health data and urine samples were collected from 72 exposed individuals and 40 controls. In the urine samples, concentrations of the hydroxylate PAH metabolites (OH-PAH) 1-hydroxyphenanthrene (1-OH-phenanthrene), the sum of 2- and 9-hydroxyphenanthrene (2-/9-OH-phenanthrene), 3-hydroxyphenanthrene (3-OH-phenanthrene), 4-hydroxyphenanthrene (4-OH-phenanthrene) and 1-hydroxypyrene (1-OH-pyrene), as well as cotinine and creatinine, were determined. In the exposed group, median urinary concentrations were 0.85 μg/g creatinine for 1-OH-phenanthrene, 0.54 μg/g creatinine for 2-/9-OH-phenanthrene, 0.99 μg/g creatinine for 3-OH-phenanthrene, 0.22 μg/g creatinine for 4-OH-phenanthrene, and 1.33 μg/g creatinine for 1-OH-pyrene, all being significantly higher compared to the control group (0.55, 0.37, 0.63, 0.11 and 0.54 μg/g creatinine, respectively). Using a multivariate linear regression analysis including sex, cotinine and tobacco smoking as covariates, exposure to e-waste recycling activities was the most important determinant for PAH exposure. On physical examination, pathological findings were rare, but about two thirds of exposed individuals complained about cough, and one quarter about chest pain. In conclusion, we observed significantly higher urinary PAH metabolite concentrations in individuals who were exposed to e-waste recycling compared to controls who were not exposed to e-waste recycling activities. The impact of e-waste recycling on exposure to environmental toxins and health of individuals living in the surroundings of e-waste recycling sites warrant further investigation.
Collapse
Affiliation(s)
- Torsten Feldt
- Clinical Research Unit, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht Str. 74, 20359 Hamburg, Germany; Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Tian Z, Zhu H, Cheng Z, Kang M, Luo C, Li J, Zhang G. Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation near an e-waste recycling site in South China: concentration, distribution, source, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 439:187-93. [PMID: 23063924 DOI: 10.1016/j.scitotenv.2012.08.018] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/28/2012] [Accepted: 08/05/2012] [Indexed: 06/01/2023]
Abstract
This study determined the concentrations of PAHs generated from e-waste recycling activities and their potential impacts on soil, vegetation, and human health. The total PAH concentrations in soils and plants ranged from 127 to 10,600 and 199 to 2420 ng/g, respectively. Samples from an e-waste burning site had higher PAH concentrations than samples from adjacent locations. The PAHs in plants varied with plant species and tissue, and Lactuca sativa L. contained the highest PAHs of all the vegetable species. Various land use types showed different PAH concentrations in soils, with vegetable fields showing higher concentrations than paddy fields. Low molecular weight PAHs, such as phenanthrene, were the predominant congeners in soils, whereas high molecular weight PAHs, such as fluoranthene, pyrene, and benzo[a]anthracene, were enriched in plants relative to soils. Dissimilar PAH profiles in soil and the corresponding vegetation indicated that the uptake of PAHs by plants was selective. A source analysis showed that the contamination by PAHs originated primarily from the open burning of e-waste. The total daily intakes of PAHs and carcinogenic PAHs through vegetables at the e-waste dismantling site were estimated to be 279 and 108 ng/kg/d, respectively, indicating that the consumption of vegetables grown near e-waste recycling sites is risky and should be completely avoided.
Collapse
Affiliation(s)
- Yan Wang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang N, Li HB, Long JL, Cai C, Dai JL, Zhang J, Wang RQ. Contamination, source, and input route of polycyclic aromatic hydrocarbons in historic wastewater-irrigated agricultural soils. ACTA ACUST UNITED AC 2012; 14:3076-85. [DOI: 10.1039/c2em30650f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|