1
|
Zhang L, Zhang X, Liu C, Ma D, Wang H, Zhang P. Distribution and ecological risks of pharmaceuticals and personal care products with different anthropogenic pressures in typical watersheds in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177573. [PMID: 39566624 DOI: 10.1016/j.scitotenv.2024.177573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Due to global population growth and increased healthcare accessibility, pharmaceuticals and personal care products (PPCPs) are closely linked with human activities and have become new pollutants alongside some legacy priority pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Although PPCPs have been detected in numerous river basins in recent years, a few researches have been carried out on their association with human activities. In this paper, the concentrations of PPCPs and toxicological data were compiled for over 25 representative watersheds in China in the past two decades from various sources, including PubMed, Elsevier and Springer. Comprehensive analysis of the occurrence, spatial distribution, sources and ecological risk assessment was carried out for the 30 most frequently detected PPCPs in water environments. Multivariate statistical methods, including hierarchical cluster analysis (HCA), principal component analysis (PCA) and redundancy analysis (RDA), were employed to classify PPCPs and assess their relationship with human activities. The results indicated that the concentrations of PPCPs in rivers varied significantly across studied regions, ranging from non-detect to 21,885 ng/L. Many detected compounds in PPCPs were antibiotics and their occurrence was closely linked with the economic development, effectiveness of medicines and geographical location. Household emissions were identified as the primary contributor to the occurrence of PPCPs in river basins. A strong correlation has been observed between PPCPs level and socio-economic indicators from multivariate statistical analysis. Ecological risk assessment revealed that caffeine (CAF), ibuprofen (IBU) and anhydroerythromycin (ERY) pose the greatest threat to aquatic life, particularly in the Northern China. The data compiled in this study provide insights into the impacts of PPCPs and the relationship of their ecological risks with various human activities, particularly in the typical Chinese river basins. Our results are valuable for the effective management PPCPs.
Collapse
Affiliation(s)
- Liwei Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Xujia Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China.
| | - Chang Liu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Dalong Ma
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Hanxi Wang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Peng Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China.
| |
Collapse
|
2
|
Hernández-Tenorio R. Degradation pathways of sulfamethoxazole under phototransformation processes: A data base of the major transformation products for their environmental monitoring. ENVIRONMENTAL RESEARCH 2024; 262:119863. [PMID: 39214487 DOI: 10.1016/j.envres.2024.119863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Sulfamethoxazole (SMX) is frequently detected in wastewater and aquatic environments worldwide at concentrations from ng L-1 to μg L-1. Unfortunately, SMX is not completely removed in municipal wastewater treatment plants (WWTPs), thus, SMX and their transformation products (TPs) are discharged into aquatic environments, where can be transformed by phototransformation reactions. In this study, the phototransformation of SMX as well as generation of their major TPs under photolysis and photocatalysis processes was reviewed. SMX can be totally removed under photolysis and photocatalysis processes in aqueous solutions using simulated or natural radiation. Degradation pathways such as isomerization, hydroxylation, fragmentation, nitration, and substitution reactions were identified during the generation of the major TPs of SMX. Particularly, 26 TPs were considered for the creation of a data base of the major TPs of SMX generated under phototransformation processes. These 26 compounds could be used as reference during the SMX monitoring both wastewater and water bodies, using analytic methodologies such as target analysis and suspect screening. A data base of the major TPs of pharmaceuticals active compounds (PhACs) as SMX could help to implementation of best environmental monitoring programs for the study of the environmental risks both PhACs and their TPs with highest occurrence in aquatic environments.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Sede Noreste, Vía de la Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, nuevo León, C.P. 66628, Mexico.
| |
Collapse
|
3
|
Kusworo TD, Kumoro AC, Utomo DP. Photocatalytic nanohybrid membranes for highly efficient wastewater treatment: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115357. [PMID: 35617864 DOI: 10.1016/j.jenvman.2022.115357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Wastewater is inevitably generated from human activities as part of the life cycle chain that potentially damages the environment. The integration of photocatalytic reaction and membrane separation for wastewater treatment has gained great attention in recent studies. However, there are still many technical limitations for its application such as toxic metal release, catalyst deactivation, fouling/biofouling, polymer disintegration, and separation performance decline. Different types, combinations, and modifications of photocatalysts material combined with membranes such as semiconductor metal oxides, binary/ternary hybrid metal oxides, elemental doped semiconductors, and metal-organic frameworks (MOFs) for improving the performance and compatibility are presented and discussed. The strategies of incorporating photocatalysts into membrane matrix for pursuing the most stable membrane integrity, high photocatalytic efficiency, and excellent perm-selectivity performance in the very recent studies were discussed. This review also outlines the performance enhancement of photocatalytic membranes (PMs) in wastewater treatment and its potential for water reclamation. Photocatalysts enhanced membrane separation by inducing anti-fouling and self-cleaning properties as well as antibacterial activity. Based on the reviewed study, PMs are possible to achieve complete removal of emerging contaminants and ∼99% reduction of bacterial colony that leading on the zero liquid discharge (ZLD). However, the intensive exposure of photo-induced radicals potentially damages the polymeric membrane. Therefore, future studies should be focused on fabricating chemically stable host-membrane material. Moreover, the light source and the membrane module design for the practical application by considering the hydrodynamic and cost-efficiency should be a concern for technology diffusion to the industrial-scale application.
Collapse
Affiliation(s)
- Tutuk Djoko Kusworo
- Department of Chemical Engineering, Faculty of Engineering, University of Diponegoro, Semarang, 50275, Indonesia.
| | - Andri Cahyo Kumoro
- Department of Chemical Engineering, Faculty of Engineering, University of Diponegoro, Semarang, 50275, Indonesia
| | - Dani Puji Utomo
- Department of Chemical Engineering, Faculty of Engineering, University of Diponegoro, Semarang, 50275, Indonesia
| |
Collapse
|
4
|
Chakachaka V, Tshangana C, Mahlangu O, Mamba B, Muleja A. Interdependence of Kinetics and Fluid Dynamics in the Design of Photocatalytic Membrane Reactors. MEMBRANES 2022; 12:membranes12080745. [PMID: 36005662 PMCID: PMC9412706 DOI: 10.3390/membranes12080745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/18/2023]
Abstract
Photocatalytic membrane reactors (PMRs) are a promising technology for wastewater reclamation. The principles of PMRs are based on photocatalytic degradation and membrane rejection, the different processes occurring simultaneously. Coupled photocatalysis and membrane filtration has made PMRs suitable for application in the removal of emerging contaminants (ECs), such as diclofenac, carbamazepine, ibuprofen, lincomycin, diphenhydramine, rhodamine, and tamoxifen, from wastewater, while reducing the likelihood of byproducts being present in the permeate stream. The viability of PMRs depends on the hypotheses used during design and the kinetic properties of the systems. The choice of design models and the assumptions made in their application can have an impact on reactor design outcomes. A design’s resilience is due to the development of a mathematical model that links material and mass balances to various sub-models, including the fluid dynamic model, the radiation emission model, the radiation absorption model, and the kinetic model. Hence, this review addresses the discrepancies with traditional kinetic models, fluid flow dynamics, and radiation emission and absorption, all of which have an impact on upscaling and reactor design. Computational and analytical descriptions of how to develop a PMR system with high throughput, performance, and energy efficiency are provided. The potential solutions are classified according to the catalyst, fluid dynamics, thickness, geometry, and light source used. Two main PMR types are comprehensively described, and a discussion of various influential factors relating to PMRs was used as a premise for developing an ideal reactor. The aim of this work was to resolve potential divergences that occur during PMRs design as most real reactors do not conform to the idealized fluid dynamics. Lastly, the application of PMRs is evaluated, not only in relation to the removal of endocrine-disrupting compounds (EDCs) from wastewater, but also in dye, oil, heavy metals, and pesticide removal.
Collapse
|
5
|
Zhang X, Zhang N, Wei D, Zhang H, Song Y, Ma Y, Zhang H. Inducement of denitrification and the resistance to elevated sulfamethoxazole (SMX) antibiotic in an Anammox biofilm system. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Zhang X, Chen Z, Ma Y, Zhang N, Wei D, Zhang H, Zhang H. Response of partial nitrification sludge to the single and combined stress of CuO nanoparticles and sulfamethoxazole antibiotic on microbial activity, community and resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135759. [PMID: 32050397 DOI: 10.1016/j.scitotenv.2019.135759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Considering the inevitable release of antibiotics and nanoparticles (NPs) into the nitrogen containing wastewater, the combined impact of CuO NPs and sulfamethoxazole (SMX) antibiotic on partial nitrification (PN) process was investigated in four identical reactors. Results showed that the bioactivity of the aerobic ammonia-oxidizing bacteria (AOB) decreased by half after they were exposed to the combination of CuO NPs and SMX for short-term; however, there was no obvious variation in the bioactivity of AOB when they were exposed to either CuO NPs or SMX. During long-term exposure, the ammonia removal efficiency (ARE) of CuO NPs improved whereas that of SMX decreased, while the combination of CuO NPs and SMX significantly decreased ARE from 62.9% (in control) to 38.2% and had an unsatisfactory self-recovery performance. The combination of CuO NPs and SMX significantly changed the composition of microbial community, decreased the abundance of AOB, and significantly suppressed PN process. Reegarding the resistance genes, the CuO NPs-SMX combination did not improve the expression of copA, cusA, sul1 and sul2; however, it significantly induced the expression of sul3 and sulA.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Zhao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Nan Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Denghui Wei
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongli Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
7
|
Asha RC, Yadav MSP, Kumar M. Sulfamethoxazole removal in membrane-photocatalytic reactor system - experimentation and modelling. ENVIRONMENTAL TECHNOLOGY 2019; 40:1697-1704. [PMID: 29336216 DOI: 10.1080/09593330.2018.1428227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
In this study, the efficacy of membrane-photocatalytic reactor (MPR) in sulfamethoxazole (SMX) removal was explored at a fixed initial SMX concentration, i.e. 100 mg/L. A supported catalyst, i.e. TiO2 on granular activated carbon (GAC-TiO2), was used for MPR experiments. The SMX removal efficiency of the MPR was investigated under a range of hydraulic retention time (i.e. HRT from 51 to 152.5 min) and TiO2 catalyst dosage (55-50 mg/L). A maximum SMX removal efficiency of 83.6% was observed under 220 mg/L catalyst dosage and 80 min HRT. The increase in catalyst dosage from 55 to 550 mg/L has increased the transmembrane pressure of the reactor from 9.8 to 22.2 kPa. A multiple non-linear regression model was developed based on the experimental data and its significance was analyzed using two-way ANOVA. Based on the model, the optimal HRT and catalyst dosage for complete SMX removal (100%) were found out. The comparison of photocatalytic degradation experiments with sorption experiments conducted earlier revealed that SMX removal in the MPR was mainly by photocatalytic degradation and not by adsorption onto GAC-TiO2 catalyst. However, the performance of MPR in removing other emerging pollutants from real-time wastewaters could be explored before its field-scale application.
Collapse
Affiliation(s)
- Raju C Asha
- a Department of Civil Engineering , National Institute of Technology Calicut , Calicut , Kerala , India
| | - M S Priyanka Yadav
- a Department of Civil Engineering , National Institute of Technology Calicut , Calicut , Kerala , India
| | - Mathava Kumar
- b Department of Civil Engineering , Indian Institute of Technology Madras , Chennai , India
| |
Collapse
|
8
|
An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.025] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|