1
|
Ashish A, Bangotra P, Dillu V, Prasad M, Banerjee S, Mehra R, Singh NL. Human exposure to uranium through drinking water and its detrimental impact on the human body organs. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:397. [PMID: 39180685 DOI: 10.1007/s10653-024-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
Human exposure to high concentrations of uranium is a major concern due to the risk of developing numerous internal organ malignancies over time. In addition to the numerous attributes of uranium in the nuclear power industry, the radiological characteristics and chemical toxicity of uranium present a substantial risk to human health. This study aims to evaluate potential negative health impacts associated with the ingestion of uranium through drinking water in the Noida and Greater Noida region within the Gautam Buddha districts of Uttar Pradesh (India), due to extreme industrial revolution in this geological location. The mean concentration of uranium in drinking water of the examined area was estimated to range from 0.23 to 78.21 µg l-1. The hair compartment biokinetic model is used to estimate the retention and radiological doses of uranium in distinct organs and tissues. Studies on time-dependent factors revealed variations in uranium retention, with lower levels observed in the Gastrointestinal Tract (GIT) region and higher levels on cortical bone surfaces causes the skeletal deformities. The kidney, liver, and other soft tissues (OST) exhibited a non-saturation pattern in the retention of uranium via exposure of drinking water. The age-wise non-carcinogenic and carcinogenic doses were estimated for the health hazards studies. The outcome of this study will be useful for water resource management authorities to supply safe potable water to the local residents.
Collapse
Affiliation(s)
- Ansumali Ashish
- Department of Radiology, SSAHS, Sharda University, Greater Noida, UP, 210306, India
| | - Pargin Bangotra
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
| | - Venus Dillu
- Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, UP, 201312, India
| | - Mukesh Prasad
- Department of Medical Physics, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, 248016, India
| | - Sushmita Banerjee
- Department of Environmental Sciences, SSBSR, Sharda University, Greater Noida, UP, 210306, India
| | - Rohit Mehra
- Department of Physics, Dr. B R Ambedkar National Institute of Technology, Jalandhar, 144008, India
| | - Nand Lal Singh
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| |
Collapse
|
2
|
Vellingiri B. A deeper understanding about the role of uranium toxicity in neurodegeneration. ENVIRONMENTAL RESEARCH 2023; 233:116430. [PMID: 37329943 DOI: 10.1016/j.envres.2023.116430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/01/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Natural deposits and human-caused releases of uranium have led to its contamination in the nature. Toxic environmental contaminants such as uranium that harm cerebral processes specifically target the brain. Numerous experimental researches have shown that occupational and environmental uranium exposure can result in a wide range of health issues. According to the recent experimental research, uranium can enter the brain after exposure and cause neurobehavioral problems such as elevated motion related activity, disruption of the sleep-wake cycle, poor memory, and elevated anxiety. However, the exact mechanism behind the factor for neurotoxicity by uranium is still uncertain. This review primarily aims on a brief overview of uranium, its route of exposure to the central nervous system, and the likely mechanism of uranium in neurological diseases including oxidative stress, epigenetic modification, and neuronal inflammation has been described, which could present the probable state-of-the-art status of uranium in neurotoxicity. Finally, we offer some preventative strategies to workers who are exposed to uranium at work. In closing, this study highlights the knowledge of uranium's health dangers and underlying toxicological mechanisms is still in its infancy, and there is still more to learn about many contentious discoveries.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
3
|
Berntsson E, Vosough F, Noormägi A, Padari K, Asplund F, Gielnik M, Paul S, Jarvet J, Tõugu V, Roos PM, Kozak M, Gräslund A, Barth A, Pooga M, Palumaa P, Wärmländer SKTS. Characterization of Uranyl (UO 22+) Ion Binding to Amyloid Beta (Aβ) Peptides: Effects on Aβ Structure and Aggregation. ACS Chem Neurosci 2023; 14:2618-2633. [PMID: 37487115 PMCID: PMC10401651 DOI: 10.1021/acschemneuro.3c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.
Collapse
Affiliation(s)
- Elina Berntsson
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Faraz Vosough
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Andra Noormägi
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Kärt Padari
- Institute
of Molecular and Cell Biology, University
of Tartu, 50090 Tartu, Estonia
| | - Fanny Asplund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Maciej Gielnik
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus, Denmark
| | - Suman Paul
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Vello Tõugu
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Per M. Roos
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- University
Healthcare Unit of Capio St. Göran Hospital, 112 81 Stockholm, Sweden
| | - Maciej Kozak
- Department
of Biomedical Physics, Institute of Physics, Faculty of Physics, Adam Mickiewicz University, 61-712 Poznań, Poland
- SOLARIS
National Synchrotron Radiation Centre, Jagiellonian
University, 31-007 Kraków, Poland
| | - Astrid Gräslund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Andreas Barth
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Margus Pooga
- Institute
of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Peep Palumaa
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Sebastian K. T. S. Wärmländer
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
4
|
Quazi MZ, Hwang J, Song Y, Park N. Hydrogel-Based Biosensors for Effective Therapeutics. Gels 2023; 9:545. [PMID: 37504424 PMCID: PMC10378974 DOI: 10.3390/gels9070545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Nanotechnology and polymer engineering are navigating toward new developments to control and overcome complex problems. In the last few decades, polymer engineering has received researchers' attention and similarly, polymeric network-engineered structures have been vastly studied. Prior to therapeutic application, early and rapid detection analyses are critical. Therefore, developing hydrogel-based sensors to manage the acute expression of diseases and malignancies to devise therapeutic approaches demands advanced nanoengineering. However, nano-therapeutics have emerged as an alternative approach to tackling strenuous diseases. Similarly, sensing applications for multiple kinds of analytes in water-based environments and other media are gaining wide interest. It has also been observed that these functional roles can be used as alternative approaches to the detection of a wide range of biomolecules and pathogenic proteins. Moreover, hydrogels have emerged as a three-dimensional (3D) polymeric network that consists of hydrophilic natural or synthetic polymers with multidimensional dynamics. The resemblance of hydrogels to tissue structure makes them more unique to study inquisitively. Preceding studies have shown a vast spectrum of synthetic and natural polymer applications in the field of biotechnology and molecular diagnostics. This review explores recent studies on synthetic and natural polymers engineered hydrogel-based biosensors and their applications in multipurpose diagnostics and therapeutics. We review the latest studies on hydrogel-engineered biosensors, exclusively DNA-based and DNA hydrogel-fabricated biosensors.
Collapse
Affiliation(s)
- Mohzibudin Z Quazi
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Jimin Hwang
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Youngseo Song
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Li Y, Li B, Chen L, Dong J, Xia Z, Tian Y. Chelating decorporation agents for internal contamination by actinides: Designs, mechanisms, and advances. J Inorg Biochem 2023; 238:112034. [PMID: 36306597 DOI: 10.1016/j.jinorgbio.2022.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
Abstract
During the wide utilization of the actinides in medicine, energy, military, and other fields, internal contaminations can profoundly endanger human health and public security. Chelating decorporation agents are the most effective therapies to reduce internal contamination that includes radiological and chemical toxicities. This review introduces the structures of chelating decorporation agents including inorganic salts, polyaminocarboxylic acids, peptides, polyphosphonates, siderophores, calixarenes, polyethylenimines, and fullerenes, and highlights ongoing advances in their designs and mechanisms. However, there are still numerous challenges that block their applications including coordination properties, pharmacokinetic properties, oral bioavailability, limited timing of administration, and toxicity. Therefore, additional efforts are needed to push novel decorporation agents with high efficiency and low toxicity for the treatment of internal contamination by actinides.
Collapse
Affiliation(s)
- Yongzhong Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bin Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziming Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ying Tian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
6
|
Zhang L, Chu J, Xia B, Xiong Z, Zhang S, Tang W. Health Effects of Particulate Uranium Exposure. TOXICS 2022; 10:575. [PMID: 36287855 PMCID: PMC9610560 DOI: 10.3390/toxics10100575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Uranium contamination has become a nonnegligible global health problem. Inhalation of particulate uranium is one of the predominant routes of occupational and environmental exposure. Uranium particle is a complex two-phase flow of matter that is both particulate and flowable. This particular physicochemical property may alter its biological activity. Epidemiological studies from occupationally exposed populations in the uranium industry have concluded that there is a possible association between lung cancer risk and uranium exposure, while the evidence for the risk of other tumors is not sufficient. The toxicological effects of particulate uranium exposure to animals have been shown in laboratory tests to focus on respiratory and central nervous system damage. Fibrosis and tumors can occur in the lung tissue of the respiratory tract. Uranium particles can also induce a concentration-dependent increase in cytotoxicity, targeting mitochondria. The understanding of the health risks and potential toxicological mechanisms of particulate uranium contamination is still at a preliminary stage. The diversity of particle parameters has limited the in-depth exploration. This review summarizes the current evidence on the toxicology of particulate uranium and highlights the knowledge gaps and research prospects.
Collapse
|
7
|
Skalny AV, Aschner M, Bobrovnitsky IP, Chen P, Tsatsakis A, Paoliello MMB, Buha Djordevic A, Tinkov AA. Environmental and health hazards of military metal pollution. ENVIRONMENTAL RESEARCH 2021; 201:111568. [PMID: 34174260 DOI: 10.1016/j.envres.2021.111568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
An increasing body of literature has demonstrated that armed conflicts and military activity may contribute to environmental pollution with metals, although the existing data are inconsistent. Therefore, in this paper, we discuss potential sources of military-related metal emissions, environmental metal contamination, as well as routes of metal exposure and their health hazards in relation to military activities. Emission of metals into the environment upon military activity occurs from weapon residues containing high levels of particles containing lead (Pb; leaded ammunition), copper (Cu; unleaded), and depleted uranium (DU). As a consequence, military activity results in soil contamination with Pb and Cu, as well as other metals including Cd, Sb, Cr, Ni, Zn, with subsequent metal translocation to water, thus increasing the risk of human exposure. Biomonitoring studies have demonstrated increased accumulation of metals in plants, invertebrates, and vertebrate species (fish, birds, mammals). Correspondingly, military activity is associated with human metal exposure that results from inhalation or ingestion of released particles, as well as injuries with subsequent metal release from embedded fragments. It is also notable that local metal accumulation following military injury may occur even without detectable fragments. Nonetheless, data on health effects of military-related metal exposures have yet to be systematized. The existing data demonstrate adverse neurological, cardiovascular, and reproductive outcomes in exposed military personnel. Moreover, military-related metal exposures also result in adverse neurodevelopmental outcome in children living within adulterated territories. Experimental in vivo and in vitro studies also demonstrated toxic effects of specific metals as well as widely used metal alloys, although laboratory data report much wider spectrum of adverse effects as compared to epidemiological studies. Therefore, further epidemiological, biomonitoring and laboratory studies are required to better characterize military-related metal exposures and their underlying mechanisms of their adverse toxic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Igor P Bobrovnitsky
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristidis Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
8
|
Labidi O, Vives‐Peris V, Gómez‐Cadenas A, Pérez‐Clemente RM, Sleimi N. Assessing of growth, antioxidant enzymes, and phytohormone regulation in Cucurbita pepo under cadmium stress. Food Sci Nutr 2021; 9:2021-2031. [PMID: 33841820 PMCID: PMC8020919 DOI: 10.1002/fsn3.2169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
One of the major problems worldwide is soil pollution by trace metal elements, which limits plant productivity and threatens human health. In this work, we have studied the effect of different concentrations of cadmium on Cucurbita pepo plants, evaluating different physiological and biochemical parameters: hormone signaling, metabolite concentration (malondialdehyde and hydrogen peroxide) and, in addition, the antioxidant enzyme activities of catalase and superoxide dismutase were evaluated. The production of biomass decreased under the Cd-stress. The results showed that C. pepo accumulates higher amounts of Cd2+ in roots than in shoots and fruits. Cd2+ differently affected the content of endogenous phytohormones. Furthermore, data suggest an essential involvement of roots in the regulation of tolerance to trace elements. As a result, indole acetic acid content increased in roots of treated plants, indicating that this phytohormone can stimulate root promotion and growth under Cd-stress. Similarly, salicylic acid content in roots and shoots increased in response to Cd2+, as well as abscisic acid levels in roots and fruits. In roots, the rambling accumulation pattern observed for jasmonic acid and salicylic acid suggests the lack of a specific regulation role against trace element toxicity. The activity of catalase and superoxide dismutase decreased, disrupted by the metal stress. However, the proline, malondialdehyde and hydrogen peroxide content significantly increased in Cd2+in all the analyzed tissues of the stressed plants. All these data suggest that C. pepo plants are equipped with an effective antioxidant mechanism against oxidative stress induced by cadmium up to a concentration of 500 μM.
Collapse
Affiliation(s)
- Oumayma Labidi
- RME‐Laboratory of Resources, Materials and EcosystemsFaculty of Sciences of BizerteUniversity of CarthageBizerteTunisia
| | - Vicente Vives‐Peris
- Departmento de Ciencias Agrarias i del Medi NaturalUniversitat Jaume ICastello ´de la PlanaSpain
| | - Aurelio Gómez‐Cadenas
- Departmento de Ciencias Agrarias i del Medi NaturalUniversitat Jaume ICastello ´de la PlanaSpain
| | - Rosa M. Pérez‐Clemente
- Departmento de Ciencias Agrarias i del Medi NaturalUniversitat Jaume ICastello ´de la PlanaSpain
| | - Noomene Sleimi
- RME‐Laboratory of Resources, Materials and EcosystemsFaculty of Sciences of BizerteUniversity of CarthageBizerteTunisia
| |
Collapse
|
9
|
Chu J, Chen C, Li X, Yu L, Li W, Cheng M, Tang W, Xiong Z. A responsive pure DNA hydrogel for label-free detection of lead ion. Anal Chim Acta 2021; 1157:338400. [PMID: 33832594 DOI: 10.1016/j.aca.2021.338400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/05/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
It is of great significance to develop facile and economical strategies for on-site detection and treatment of toxic metal ions. Stimulus-responsive DNA hydrogel materials have been increasingly used for convenient detection of metal ions due to their advantages such as simplicity, portability, and ease of storage. However, these methods still require encapsulation of signal tags by labeling or embedding. In this paper, a one-step preparation of Pb2+-responsive pure DNA hydrogel material was designed to realize a new label-free strategy for Pb2+ biosensing. The Pb2+-dependent DNAzyme strand and substrate strand were introduced to fabricate the DNA hydrogel. The presence of Pb2+ in the sample activates the enzyme strand in the hydrogel skeleton and triggers the cleavage of the substrate, thereby destroy the hydrogel structure. DNA fragments released by the collapsed hydrogel were readily measured as signal output for quantifying Pb2+ concentrations with a minimum detection limit of 7.7 nM. We successfully eliminated the need for embedding or labeling of signal molecules by using the DNA molecules that construct hydrogels as the signal output. And the newly developed method for label-free detection of Pb2+ based on pure DNA hydrogel is simple, easy readout, and cost-effective. By adjusting the DNAzyme and substrate sequences, label-free analysis of other metal ions can also be achieved. We expect that our strategy can be applied to the field detection of toxic metal ions.
Collapse
Affiliation(s)
- Jian Chu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Chun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Xijian Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Wenjing Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Mengxi Cheng
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China.
| | - Zhonghua Xiong
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| |
Collapse
|
10
|
Kaur S, Mehra R. Toxicological risk assessment of protracted ingestion of uranium in groundwater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:681-698. [PMID: 30046924 DOI: 10.1007/s10653-018-0162-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Groundwater samples have been collected from far-reaching locations in Solan and Shimla districts of Himachal Pradesh, India, and studied for uranium concentration using LED fluorimetry. In this region, uranium in groundwater varies from 0.12 to 19.43 μg L-1. Radiological and chemical toxicity is accounted for different uranium isotopes. The average mortality risk for uranium isotopes 234U, 235U, and 238U are 2.6 × 10-12, 3.5 × 10-10, and 5.9 × 10-8, respectively. Similarly, the mean morbidity risk for 234U, 235U and 238U are 4.1 × 10-12, 5.6 × 10-10 and 9.5 × 10-8, respectively. An attempt has also been made to calculate doses for different age-groups. Highest doses, ranging from 0.30 to 48.23 µSv year-1, are imparted to infants of 7-12 months of age which makes them the most vulnerable group of population. Using Hair Compartmental Model for uranium and mean daily uranium intake of 3.406 μg for 60-year exposure period, organ-specific doses due to uranium radioisotopes, retention in prime organs/tissues and excretion rates via urine, feces and hair pathway are estimated. In this manuscript, the transfer coefficients for kidney, liver, skeleton, GI tract, soft tissues, urinary bladder, and blood are analyzed. Hair compartment model and ICRP's biokinetic model are compared in terms of uranium load in different organs after 60 years of protracted ingestion. The study on biokinetic behavior of uranium is the first of its kind in the area which is dedicated to environmental and social cause.
Collapse
Affiliation(s)
- Sarabjot Kaur
- Environment Monitoring and Assessment Lab, Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Rohit Mehra
- Environment Monitoring and Assessment Lab, Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India.
| |
Collapse
|
11
|
Differential protein expression in metallothionein protection from depleted uranium-induced nephrotoxicity. Sci Rep 2016; 6:38942. [PMID: 27966587 PMCID: PMC5155243 DOI: 10.1038/srep38942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to investigate the underlying mechanism of metallothionein (MT) protection from depleted uranium (DU) using a proteomics approach to search for a DU toxicity-differential protein. MT−/− and MT+/+ mice were administrated with a single dose of DU (10 mg/kg, i.p.) or equal volume of saline. After 4 days, protein changes in kidney tissues were evaluated using a proteomics approach. A total of 13 differentially expressed proteins were identified using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The validating results showed that the expression of aminoacylase-3 (ACY-3) and the mitochondrial ethylmalonic encephalopathy 1 (ETHE1) decreased significantly after DU exposure; in addition, the reduction in MT−/− mice was more significant than that in MT+/+ mice. The results also showed that exogenous ETHE1 or ACY-3 could increase the survival rate of human embryonic kidney 293 (HEK293) cells after DU exposure. A specific siRNA of ETHE1 significantly increased cell apoptosis rates after DU exposure, whereas exogenous ETHE1 significantly decreased cell apoptosis rates. In summary, ACY-3 and ETHE1 might involve in protection roles of MT. ETHE1 could be a new sensitive molecular target of DU-induced cell apoptosis.
Collapse
|
12
|
Huang Y, Fang L, Zhu Z, Ma Y, Zhou L, Chen X, Xu D, Yang C. Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device. Biosens Bioelectron 2016; 85:496-502. [DOI: 10.1016/j.bios.2016.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/16/2016] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
|
13
|
Acharya C, Blindauer CA. Unexpected Interactions of the Cyanobacterial Metallothionein SmtA with Uranium. Inorg Chem 2016; 55:1505-15. [DOI: 10.1021/acs.inorgchem.5b02327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Celin Acharya
- Molecular
Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | |
Collapse
|
14
|
Schiavone S, Jaquet V, Trabace L, Krause KH. Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid Redox Signal 2013; 18:1475-90. [PMID: 22746161 PMCID: PMC3603496 DOI: 10.1089/ars.2012.4720] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/25/2012] [Accepted: 07/01/2012] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Severe life stress (SLS), as opposed to trivial everyday stress, is defined as a serious psychosocial event with the potential of causing an impacting psychological traumatism. RECENT ADVANCES Numerous studies have attempted to understand how the central nervous system (CNS) responds to SLS. This response includes a variety of morphological and neurochemical modifications; among them, oxidative stress is almost invariably observed. Oxidative stress is defined as disequilibrium between oxidant generation and the antioxidant response. CRITICAL ISSUES In this review, we discuss how SLS leads to oxidative stress in the CNS, and how the latter impacts pathophysiological outcomes. We also critically discuss experimental methods that measure oxidative stress in the CNS. The review covers animal models and human observations. Animal models of SLS include sleep deprivation, maternal separation, and social isolation in rodents, and the establishment of hierarchy in non-human primates. In humans, SLS, which is caused by traumatic events such as child abuse, war, and divorce, is also accompanied by oxidative stress in the CNS. FUTURE DIRECTIONS The outcome of SLS in humans ranges from resilience, over post-traumatic stress disorder, to development of chronic mental disorders. Defining the sources of oxidative stress in SLS might in the long run provide new therapeutic avenues.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
15
|
Roos PM, Vesterberg O, Syversen T, Flaten TP, Nordberg M. Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. Biol Trace Elem Res 2013; 151:159-70. [PMID: 23225075 DOI: 10.1007/s12011-012-9547-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/08/2012] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal degenerative disorder of motor neurons. The cause of this degeneration is unknown, and different causal hypotheses include genetic, viral, traumatic and environmental mechanisms. In this study, we have analyzed metal concentrations in cerebrospinal fluid (CSF) and blood plasma in a well-defined cohort (n = 17) of ALS patients diagnosed with quantitative electromyography. Metal analyses were performed with high-resolution inductively coupled plasma mass spectrometry. Statistically significant higher concentrations of manganese, aluminium, cadmium, cobalt, copper, zinc, lead, vanadium and uranium were found in ALS CSF compared to control CSF. We also report higher concentrations of these metals in ALS CSF than in ALS blood plasma, which indicate mechanisms of accumulation, e.g. inward directed transport. A pattern of multiple toxic metals is seen in ALS CSF. The results support the hypothesis that metals with neurotoxic effects are involved in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Al Kaddissi S, Legeay A, Elia AC, Gonzalez P, Camilleri V, Gilbin R, Simon O. Effects of uranium on crayfish Procambarus clarkii mitochondria and antioxidants responses after chronic exposure: what have we learned? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 78:218-224. [PMID: 22154145 DOI: 10.1016/j.ecoenv.2011.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 05/29/2023]
Abstract
We examined the impacts of Uranium (U) on mitochondria and on the response of antioxidants in the gills and the hepatopancreas of crayfish Procambarus clarkii after long-term exposure (30 and 60 days) to an environmentally relevant concentration (30 μg U/L). The expression of mitochondrial genes (12s, atp6, and cox1), as well as the genes involved in oxidative stress responses (sod(Mn) and mt) were evaluated. The activities of antioxidant enzymes (SOD, CAT, GPX and GST) were also studied. U accumulation in organs induced changes in genes' expression. The evolution of these transcriptional responses and differences between gene expression levels at high and low doses of exposure were also discussed. This study demonstrated that, after long-term exposure, U caused a decrease in antioxidant activities and induced oxidative stress. A possible ROS-mediated U cytotoxic mechanism is proposed. Expression levels of the investigated genes can possibly be used as a tool to evaluate U toxicity and seem to be more sensitive than the enzymatic activities. However a multiple biomarker approach is recommended as the perturbed pathways and the mode of action of this pollutant are not completely understood.
Collapse
Affiliation(s)
- Simone Al Kaddissi
- Laboratory of Radioecology and Ecotoxicology, Institute of Radioprotection and Nuclear Safety, Bd 186, BP 3, 13115 Saint-Paul-Lez-Durance, France
| | | | | | | | | | | | | |
Collapse
|