1
|
Rassouli A, Shihmani B, Mehrzad J, Shokrpoor S. The immunomodulatory effect of minocycline on gene expression of inflammation related cytokines in lipopolysaccharide-treated human peripheral blood mononuclear cells. Anim Biotechnol 2023; 34:2159-2165. [PMID: 35622407 DOI: 10.1080/10495398.2022.2077743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To evaluate the immunomodulatory effect of minocycline, the present study was carried out on the gene expression of toll-like receptor type-4 (TLR4) and some pro-inflammatory (IL-1β, IL-6) and anti-inflammatory cytokines (IL-10) associated with lipopolysaccharide (LPS) -induced inflammation in human peripheral blood mononuclear cells (PBMCs). The PBMCs were collected and then 5.4 × 106 PBMCs/mL were used in eight groups as follows: control group (only media), LPS group (only LPS), methylprednisolone (Pred) group (LPS plus Pred), meloxicam (Melo) group (LPS plus Melo), three minocycline groups [M1, M5 and M25] (LPS plus 1, 5, and 25 µg/mL minocycline, respectively) and minocycline control (MC) group (5 µg/mL minocycline). After incubation for 24 h, the PBMCs were subjected to quantitative PCR assays. Gene expression levels of TLR4 were not changed in any groups. The IL-1β levels were increased in the LPS group but the increases were much more intense in the other groups except Pred group. Compared with control group, IL-6 levels increased significantly in Melo, M1 and M25 groups. Significant increases of IL-10 levels were also observed in Melo, M25 and MC groups. It can be concluded that minocycline had dual pro- and anti-inflammatory activities with potential clinical immunomodulatory effects.
Collapse
Affiliation(s)
- Ali Rassouli
- Pharmacology Division, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Basim Shihmani
- Department of Comparative Biosciences, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Apostolova E, Lukova P, Baldzhieva A, Delattre C, Molinié R, Petit E, Elboutachfaiti R, Nikolova M, Iliev I, Murdjeva M, Kokova V. Structural Characterization and In Vivo Anti-Inflammatory Activity of Fucoidan from Cystoseira crinita (Desf.) Borry. Mar Drugs 2022; 20:714. [PMID: 36421993 PMCID: PMC9693085 DOI: 10.3390/md20110714] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the effects of fucoidan isolated from C. crinita on histamine-induced paw inflammation in rats, and on the serum levels of TNF-α, IL-1β, IL-6, and IL-10 in rats during systemic inflammation response. The levels of TNF-α in a model of acute peritonitis in rats were also investigated. The isolated crude fucoidan was identified as a sulfated xylogalactofucan with high, medium, and low molecular weight fractions and a content of fucose of 39.74%, xylose of 20.75%, and galactose of 15.51%. Fucoidan from C. crinita showed better anti-inflammatory effects in the rat paw edema model, and this effect was present during all stages of the experiment. When compared to controls, a commercial fucoidan from F. vesiculosus, the results also displayed anti-inflammatory activity on the 60th, 90th, and 120th minute of the experiment. A significant decrease in serum levels of IL-1β in rats treated with both doses of C. crinita fucoidan was observed in comparison to controls, whereas TNF-α concentrations were reduced only in the group treated with fucoidan from C. crinita at the dose of 25 mg/kg bw. In the model of carrageenan-induced peritonitis, we observed a tendency of decrease in the levels of the pro-inflammatory cytokine TNF-α in peritoneal fluid after a single dose of C. crinita fucoidan, but this did not reach the statistical significance margin. Single doses of C. crinita fucoidan did not alter serum levels of the anti-inflammatory cytokine IL-10 in animals with lipopolysaccharide-induced systemic inflammation.
Collapse
Affiliation(s)
- Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Roland Molinié
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Redouan Elboutachfaiti
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Abdelmeguid NE, Hammad TM, Abdel-Moneim AM, Salam SA. Effect of Epigallocatechin-3-gallate on Stress-Induced Depression in a Mouse Model: Role of Interleukin-1β and Brain-Derived Neurotrophic Factor. Neurochem Res 2022; 47:3464-3475. [PMID: 35939172 PMCID: PMC9546794 DOI: 10.1007/s11064-022-03707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) is a natural polyphenolic antioxidant in green tea leaves with well-known health-promoting properties. However, the influence of EGCG on a chronic animal model of depression remains to be fully investigated, and the details of the molecular and cellular changes are still unclear. Therefore, the present study aimed to investigate the antidepressant effect of EGCG in mice subjected to chronic unpredictable mild stress (CUMS). After eight consecutive weeks of CUMS, the mice were treated with EGCG (200 mg/kg b.w.) by oral gavage for two weeks. A forced swimming test (FST) was used to assess depressive symptoms. EGCG administration significantly alleviated CUMS-induced depression-like behavior in mice. EGCG also effectively decreased serum interleukin-1β (IL-1β) and increased the mRNA expression levels of brain-derived neurotrophic factor (BDNF) in the hippocampal CA3 region of CUMS mice. Furthermore, electron microscopic examination of CA3 neurons in CUMS mice showed morphological features of apoptosis, loss or disruption of the myelin sheath, and degenerating synapses. These neuronal injuries were diminished with the administration of EGCG. The treatment effect of EGCG in CUMS-induced behavioral alterations was comparable with that of clomipramine hydrochloride (Anafranil), a tricyclic antidepressant drug. In conclusion, our study demonstrates that the antidepressive action of EGCG involves downregulation of serum IL-1β, upregulation of BDNF mRNA in the hippocampus, and reduction of CA3 neuronal lesions.
Collapse
Affiliation(s)
- Nabila E Abdelmeguid
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Tasneem M Hammad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.,Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Ashraf M Abdel-Moneim
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
4
|
Ganguly R, Kumar R, Pandey AK. Baicalin provides protection against fluoxetine-induced hepatotoxicity by modulation of oxidative stress and inflammation. World J Hepatol 2022; 14:729-743. [PMID: 35646277 PMCID: PMC9099103 DOI: 10.4254/wjh.v14.i4.729] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fluoxetine is one of the most widely prescribed anti-depressant drugs belonging to the category of selective serotonin reuptake inhibitors. Long-term fluoxetine treatment results in hepatotoxicity. Baicalin, a natural compound obtained from the Chinese herb Scutellaria baicalensis is known to have antioxidant, hepatoprotective and anti-inflammatory effects. However, the beneficial effects of baicalin against fluoxetine-induced hepatic damage have not previously been reported.
AIM To evaluate the protective action of baicalin in fluoxetine-induced liver toxicity and inflammation.
METHODS Male albino Wistar rats were divided into seven groups. Group 1 was the normal control. Oral fluoxetine was administered at 10 mg/kg body weight to groups 2, 3, 4 and 5. In addition, groups 3 and 4 were also co-administered oral baicalin (50 mg/kg and 100 mg/kg, respectively) while group 5 received silymarin (100 mg/kg), a standard hepatoprotective compound for comparison. Groups 6 and 7 were used as a positive control for baicalin (100 mg/kg) and silymarin (100 mg/kg), respectively. All treatments were carried out for 28 d. After sacrifice of the rats, biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione-S-transferase (GST), advanced oxidation protein products (AOPP), malondialdehyde (MDA)], and liver injury [alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total protein, albumin, bilirubin] were studied in serum and tissue using standard protocols and diagnostic kits. Inflammatory markers [tumor necrosis factor (TNF-α), interleukin (IL)-6, IL-10 and interferon (IFN)-γ] in serum were evaluated using ELISA-based kits. The effect of baicalin on liver was also analyzed by histopathological examination of tissue sections.
RESULTS Fluoxetine-treated rats showed elevated levels of the serum liver function markers (total bilirubin, ALT, AST, and ALP) and inflammatory markers (TNF-α, IL-6, IL-10 and IFN-γ), with a decline in total protein and albumin levels. Biochemical markers of oxidative stress such as SOD, CAT, GST, GSH, MDA and AOPP in the liver tissue homogenate were also altered indicating a surge in reactive oxygen species leading to oxidative damage. Histological examination of liver tissue also showed degeneration of hepatocytes. Concurrent administration of baicalin (50 and 100 mg/kg) restored the biomarkers of oxidative stress, inflammation and hepatic damage in serum as well as in liver tissues to near normal levels.
CONCLUSION These findings suggested that long-term treatment with fluoxetine leads to oxidative stress via the formation of free radicals that consequently cause inflammation and liver damage. Concurrent treatment with baicalin alleviated fluoxetine-induced hepatotoxicity and liver injury by regulating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
5
|
Shafiekhani M, Dehghani A, Shahisavandi M, Nabavizadeh SA, Kabiri M, Hassani AH, Haghpanah A. Pharmacotherapeutic approach toward urological medications and vaccination during COVID-19: a narrative review. Ther Adv Urol 2021; 13:17562872211046794. [PMID: 34603508 PMCID: PMC8481748 DOI: 10.1177/17562872211046794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023] Open
Abstract
One year after the prevalence of the novel coronavirus pandemic, some aspects of the physiopathology, treatment and progression of coronavirus 2019 disease (COVID-19) have remained unknown. Since no comprehensive study on the use of urological medications in patients with COVID-19 has been carried out, this narrative review aimed to focus on clinically important issues about the treatment of COVID-19 and urologic medications regarding efficacy, modifications, side effects and interactions in different urologic diseases. In this review, we provide information about the pharmacotherapeutic approach toward urologic medications in patients with COVID-19 infection. This study provides an overview of medications in benign prostatic hyperplasia, prostate cancer, impotence and sexual dysfunction, urolithiasis, kidney transplantation and hypertension as the most frequent diseases in which the patients are on long-term medications. Also, the effect of urologic drugs on the efficacy of vaccination is briefly discussed.
Collapse
Affiliation(s)
- Mojtaba Shafiekhani
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, IranDepartment of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahita Dehghani
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Shahisavandi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Kabiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abdolreza Haghpanah
- Assistant Professor of Urology, Endourology Ward, Urology Department, Shiraz University of Medical Sciences, Shiraz, 71348-44119, Iran Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, 71348-44119, Iran
| |
Collapse
|
6
|
Nobile B, Durand M, Olié E, Guillaume S, Molès JP, Haffen E, Courtet P. The Anti-inflammatory Effect of the Tricyclic Antidepressant Clomipramine and Its High Penetration in the Brain Might Be Useful to Prevent the Psychiatric Consequences of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:615695. [PMID: 33767623 PMCID: PMC7985338 DOI: 10.3389/fphar.2021.615695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
At the time of writing (December 2020), coronavirus disease 2019 (COVID-19) has already caused more than one million deaths worldwide, and therefore, it is imperative to find effective treatments. The “cytokine storm” induced by Severe Acute Respiratory Syndrome-Coronavirus type 2 (SARS-CoV-2) is a good target to prevent disease worsening, as indicated by the results obtained with tocilizumab and dexamethasone. SARS-CoV-2 can also invade the brain and cause neuro-inflammation with dramatic neurological manifestations, such as viral encephalitis. This could lead to potentially incapacitating long-term consequences, such as the development of psychiatric disorders, as previously observed with SARS-CoV. Several pathways/mechanisms could explain the link between viral infection and development of psychiatric diseases, especially neuro-inflammation induced by SARS-CoV-2. Therefore, it is important to find molecules with anti-inflammatory properties that penetrate easily into the brain. For instance, some antidepressants have anti-inflammatory action and pass easily through the blood brain barrier. Among them, clomipramine has shown very strong anti-inflammatory properties in vitro, in vivo (animal models) and human studies, especially in the brain. The aim of this review is to discuss the potential application of clomipramine to prevent post-infectious mental complications. Repositioning and testing antidepressants for COVID-19 management could help to reduce peripheral and especially central inflammation and to prevent the acute and particularly the long-term consequences of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- B Nobile
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - M Durand
- Pathogenesis and Control of Chronic Infection, University of Montpellier, INSERM, EFS; CHU Montpellier, Montpellier, France
| | - E Olié
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| | - S Guillaume
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| | - J P Molès
- Pathogenesis and Control of Chronic Infection, University of Montpellier, INSERM, EFS; CHU Montpellier, Montpellier, France
| | - E Haffen
- FondaMental Foundation, Créteil, France.,Service de Psychiatrie de l'Adulte, CIC-1431 INSERM, CHU de Besançon, Laboratoire de Neurosciences, Université de Franche-Comté, Besancon, France
| | - P Courtet
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| |
Collapse
|
7
|
Zhang S, Zong Y, Ren Z, Hu J, Wu X, Xiao H, Qin S, Zhou G, Ma Y, Zhang Y, Yu J, Wang K, Lu G, Liu Q. Regulation of indoleamine 2, 3-dioxygenase in hippocampal microglia by NLRP3 inflammasome in lipopolysaccharide-induced depressive-like behaviors. Eur J Neurosci 2020; 52:4586-4601. [PMID: 33098156 DOI: 10.1111/ejn.15016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
In the brain, NLRP3 (Nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin-domain-containing 3) inflammasome is mainly expressed in microglia located in the hippocampus and other mood-regulated regions, which are particularly susceptible to stress. The activation of NLRP3 inflammasome and production of the activation products may contribute to the development of depressive disorder and memory deficits. Indoleamine 2, 3-dioxygenase (IDO) is a key factor mediating inflammation and major depressive disorder (MDD). We here generated NLRP3 and apoptosis-associated speck-like protein containing caspase recruitment domain (ASC)-knockout mice, respectively, to verify the effects of NLRP3 or ASC deficiency on lipopolysaccharide (LPS)-induced depressive-like behaviors, neuroinflammation, and regulation of IDO expression. Furthermore, we treated these mice with the antidepressant clomipramine (CLO) to observe its effect on depressive-like behaviors and the expression of the NLRP3 inflammasome and LPS-induced IDO. We found that intraperitoneal LPS administration led to marked depressive-like behavior and neuroinflammation. NLRP3 or ASC deficiency attenuated LPS-induced depressive-like symptoms and increased IDO gene expression, which was accompanied by inhibition of LPS-induced microglial activation, suggesting that IDO may be a downstream mediator of the NLRP3 inflammasome in inflammation-mediated depressive-like behaviors. Clomipramine administration ameliorated depressive-like behavior in LPS-treated mice by regulating the expression of ASC and IDO. In conclusion, NLRP3 inflammasome is involved in LPS-induced depressive-like behaviors, and that NLRP3 and ASC may play roles in regulating IDO expression in microglia. This may be a potential mechanism for its involvement in MDD. The antidepressant effect of clomipramine may be exerted through the regulation of ASC-mediated expression of IDO.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Zong
- Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, China.,Suzhou CTI Biotechnology Co., Ltd., Jiangsu, China
| | - Zhonggan Ren
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juntao Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinyuan Wu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Honglei Xiao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Yuanyuan Ma
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yaodong Zhang
- Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Henan, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology School of Basic Medical Sciences, Shanghai, China
| | - Kaidi Wang
- Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guocai Lu
- Department of Health Toxicology, College of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, China.,Suzhou CTI Biotechnology Co., Ltd., Jiangsu, China
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| |
Collapse
|
8
|
El-Hawary SS, El-Kammar HA, Farag MA, Saleh DO, El Dine RS. Metabolomic profiling of five Agave leaf taxa via UHPLC/PDA/ESI-MS inrelation to their anti-inflammatory, immunomodulatory and ulceroprotective activities. Steroids 2020; 160:108648. [PMID: 32298660 DOI: 10.1016/j.steroids.2020.108648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Agave plants are popular for their myriad applications in traditional medicine attributed to their reported anti-inflammatory, immunomodulatory, cytotoxic and antifungal activities. The aim of this study was to examine the anti-inflammatory, immunomodulatory and ulceroprotective activity of Agave species in relation to their metabolite fingerprint via a metabolome based ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) approach coupled to chemometrics. The metabolomic differences among five examined Agave leaves viz. Agave americana L., A. americana var. marginata Trel, A. angustifolia Haw. cv. marginata, A. desmettiana Jacobi, A. pygmaea Gentry were determined via a total of 56 annotated metabolites. Identification based on MSn and UV spectra revealed 25 steroidal saponins and sapogenins, 6 flavonoids, 2 homoisoflavonoids, 7 phenolic acids, 6 fatty acids and 3 fatty acid amides, some of which are reported for the first time in Agave. Metabolites heterogeneity was assessed among leaf taxa via multivariate data analyses for samples classification, showing that saponins is the major metabolite contributing to their classification. The carrageenan induced acute inflammatory rat model was used to assess the anti-inflammatory activity of Agave extracts via monitoring of blood cytokine levels. Additionally, their effects on ethanol-induced gastric ulcer in rats were evaluated. A. pygmaea showed the most significant anti-inflammatory and immunomodulatory activity, while A. angustifolia var. marginata possessed the highest ulceroprotective activity, which could be attributable to the high abundance of various saponins and homoisoflavonoids in those taxa.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt
| | - Heba A El-Kammar
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Dalia O Saleh
- Pharmacology Department, National Research Centre, Cairo 12622, Egypt
| | - Riham Salah El Dine
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
9
|
Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, Ojha S, Patil CR. Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int J Mol Sci 2019; 20:E4367. [PMID: 31491986 PMCID: PMC6770891 DOI: 10.3390/ijms20184367] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is one of the common events in the majority of acute as well as chronic debilitating diseases and represent a chief cause of morbidity in today's era of modern lifestyle. If unchecked, inflammation leads to development of rheumatoid arthritis, diabetes, cancer, Alzheimer's disease, and atherosclerosis along with pulmonary, autoimmune and cardiovascular diseases. Inflammation involves a complex network of many mediators, a variety of cells, and execution of multiple pathways. Current therapy for inflammatory diseases is limited to the steroidal and non-steroidal anti-inflammatory agents. The chronic use of these drugs is reported to cause severe adverse effects like gastrointestinal, cardiovascular, and renal abnormalities. There is a massive need to explore new anti-inflammatory agents with selective action and lesser toxicity. Plants and isolated phytoconstituents are promising and interesting sources of new anti-inflammatories. However, drug development from natural sources has been linked with hurdles like the complex nature of extracts, difficulties in isolation of pure phytoconstituents, and the yield of isolated compounds in minute quantities that is insufficient for subsequent lead development. Although various in-vivo and in-vitro models for anti-inflammatory drug development are available, judicious selection of appropriate animal models is a vital step in the early phase of drug development. Systematic evaluation of phytoconstituents can facilitate the identification and development of potential anti-inflammatory leads from natural sources. The present review describes various techniques of anti-inflammatory drug screening with its advantages and limitations, elaboration on biological targets of phytoconstituents in inflammation and biomarkers for the prediction of adverse effects of anti-inflammatory drugs. The systematic approach proposed through present article for anti-inflammatory drug screening can rationalize the identification of novel phytoconstituents at the initial stage of drug screening programs.
Collapse
Affiliation(s)
- Kalpesh R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India.
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Banappa S Unger
- Pharmacology & Toxicology Division, ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sameer N Goyal
- SVKM's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sateesh Belemkar
- School of Pharmacy and Technology Management, SVKM's NMIMS, MPTP, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Sanjay J Surana
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, PO Box 17666, United Arab Emirates.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India.
| |
Collapse
|
10
|
Zlatanova H, Vladimirova S, Kostadinov I, Delev D, Deneva T, Kostadinova I. Biological Screening of Novel Structural Analog of Celecoxib as Potential Anti-Inflammatory and Analgesic Agent. ACTA ACUST UNITED AC 2019; 55:medicina55040093. [PMID: 30959829 PMCID: PMC6524057 DOI: 10.3390/medicina55040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 04/03/2019] [Indexed: 11/30/2022]
Abstract
Background and objectives: The clinical use of non-steroidal anti-inflammatory drugs is limited due to high incidence of adverse drug reactions. The pyrrole heterocycle is included in the chemical structure of a number of drugs with various activities and shows relatively good tolerability and safety. The objectives of our study were to evaluate the analgesic and anti-inflammatory activity, as well as possible organ toxicity, of 2-[3-acetyl-5-(4-chloro-phenyl)-2-methyl-pyrrol-1-yl]-3-(1H-indol-3-yl)-propionic acid (compound 3g), a novel N-pyrrolylcarboxylic acid structurally similar to celecoxib. Materials and methods: All experiments were performed on 6-week-old male Wistar rats divided into parallel groups (n = 8). Antinociception was assessed using animal pain models with thermal and chemical stimuli (paw withdrawal, tail-flick, and formalin tests). Criteria for the analgesic effect were increased latency in the paw withdrawal and tail-flick tests and decreased paw licking time in the formalin test compared to animals treated with saline (control). Anti-inflammatory activity was measured using a carrageenan-induced paw edema model; the criterion for anti-inflammatory effect was decreased edema compared to control. Blood samples were obtained after animals were sacrificed to assess possible organ toxicity. Statistical analysis was performed with IBM SPSS 20.0. Results: 2-[3-Acetyl-5-(4-chloro-phenyl)-2-methyl-pyrrol-1-yl]-3-(1H-indol-3-yl)-propionic acid had analgesic action against chemical stimulus after single and multiple administration and against thermal stimulus after single administration. Compound 3g significantly suppressed carrageenan-induced paw edema after both single and continuous administration. After continuous administration, hematological tests showed that compound 3g decreased leukocyte and platelet levels and elevated serum creatinine levels. Conclusions: Antinociception with the tested compound is most likely mediated by spinal, peripheral, and anti-inflammatory mechanisms. Possible tolerance of the analgesic action at the spinal level develops after continuous administration. Anti-inflammatory activity is significant and probably the leading cause of antinociception. After multiple administration, compound 3g showed signs of potential nephrotoxicity and antiplatelet activity, as well as suppression of leukocyte levels.
Collapse
Affiliation(s)
- Hristina Zlatanova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University Plovdiv, 4002 Plovdiv, Bulgaria.
| | - Stanislava Vladimirova
- Department of Organic Synthesis and Fuels, Faculty of Chemical Technologies, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
| | - Ilia Kostadinov
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University Plovdiv, 4002 Plovdiv, Bulgaria.
| | - Delian Delev
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University Plovdiv, 4002 Plovdiv, Bulgaria.
| | - Tanya Deneva
- Medical University Plovdiv, 4002 Plovdiv, Bulgaria.
| | - Ivanka Kostadinova
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University Plovdiv, 4002 Plovdiv, Bulgaria.
| |
Collapse
|
11
|
Immunoregulatory natural compounds in stress-induced depression: An alternative or an adjunct to conventional antidepressant therapy? Food Chem Toxicol 2019; 127:81-88. [PMID: 30858105 DOI: 10.1016/j.fct.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
The interplay of chronic stress, neuroinflammation and altered immune reactivity has been shown to be important for the pathophysiology of brain disorders such as schizophrenia, depressive disorders and post-traumatic stress disorder. This immuno-inflammatory theory has been extensively studied in the past three decades leading to the formation of the integrative discipline of psychoneuroimmunology. Targeting of the central nervous system by conventional pharmacotherapeutic methods is mainly through modulation of neuroendocrine systems such as the dopaminergic, GABA-ergic, adrenergic and serotoninergic systems. In recent years an increasing number of both experimental and clinical studies have shown that antidepressants can affect the immune system by reducing the production of pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. However, due to the serious adverse effects accompanying the chronic administration of psychoactive drugs there is a continuous need to produce novel therapeutics that are both potent and safe. The present review aims to summarize the current knowledge in the field of psychoneuroimmunology and to delineate the main interactions between stress, inflammation, immunity and the brain. Additionally, this paper explores the use of plant-derived molecules that display a strong anti-stress effect and simultaneously modulate the immune response as an alternative or adjuvant to classical antidepressant drugs.
Collapse
|
12
|
Zabihi M, Hajhashemi V, Minaiyan M, Talebi A. Evaluation of the central and peripheral effects of doxepin on carrageenan-induced inflammatory paw edema in rat. Res Pharm Sci 2017; 12:337-345. [PMID: 28855946 PMCID: PMC5566009 DOI: 10.4103/1735-5362.212052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The anti-inflammatory effects of anti-depressants have been demonstrated recently. Doxepin, a tricyclic antidepressant drug (TCA), has some special properties in comparison with the other members of its family. It has some H1, H2, alpha-1 adrenergic and muscarinic receptor blocking effects. It revealed also anti-nociceptive and relatively potent sedative effects. This study was aimed to evaluate its possible anti-inflammatory effect in a well-established animal model. Male Wistar rats weighing 200-250 g were used in carrageenan-induced inflammatory paw edema model. The test and control drugs were injected by intraperitoneal (i.p.) and intracerebral (i.c.v.) routes. The anti-inflammatory activity of doxepin (15, 30 and 60 mg/kg, i.p. and 50 and 100 μg/rat, i.c.v.) and the reference drug, dexamethasone (2 mg/kg, i.p.) were evaluated by determination and comparison of some involved biological markers including the paw volume, cytokine levels (interleukin 6 (IL-6), IL-1β, tumor necrosis factor α (TNFα)), myeloperoxidase (MPO) activity and histopathological parameters. All i.p. doses of doxepin showed significant anti-inflammatory effect. It also significantly reduced MPO activity and cytokine levels and improved histopathologic parameters of carrageenan-injected paw tissues. I.c.v. administration of the drug did not show any significant reduction of carrageenan-induced paw edema. Although the exact mechanism of the anti-inflammatory effect of doxepin is not clear, it seems that reduced leukocyte migration and pro-inflammatory cytokines play important role in its anti-inflammatory effect. Also central sites are not involved in the anti-inflammatory effect of the drug.
Collapse
Affiliation(s)
- Mohsen Zabihi
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Valiollah Hajhashemi
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohsen Minaiyan
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ardeshir Talebi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
13
|
Zabihi M, Hajhashemi V, Talebi A, Minaiyan M. Evaluation of central and peripheral effects of doxepin on acetic acid-induced colitis in rat and the involved mechanisms. EXCLI JOURNAL 2017; 16:414-425. [PMID: 28694747 PMCID: PMC5491921 DOI: 10.17179/excli2016-727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/01/2017] [Indexed: 12/16/2022]
Abstract
Anti-colitis effect of antidepressants has been demonstrated recently. Doxepin, a tricyclic antidepressant drug (TCA), with potent H1, H2, alpha1 adrenergic and muscarinic receptor blocking effects could be a good candidate for investigation for its anti-colitis activity. Moreover high prevalence of depression in patients who suffer from IBD (inflammatory bowel disease), defends this idea that adjuvant therapy with an antidepressant drug which has anti-inflammatory effect, may exert favorable effects in the control of the disease. In this study colitis was induced by acetic acid instillation into rat's colon. Doxepin was injected by intraperitoneal (10, 20, 40 mg/kg, twice daily, i.p.) or intracerebroventricular (50 and 100 microgram/rat, i.c.v.) routes to separate the mechanisms are absolutely exerted centrally or mediated both centrally and peripherally prior to induction of colitis. Dexamethasone (2 mg/kg/day, i.p.) was used as reference drug. All the treatments continued for three successive days. The effectiveness of drug was evaluated by determination of cytokines (TNFα, IL6 and IL1β) and myeloperoxidase (MPO) activity as well as macroscopic scores and histopathological parameters. Doxepin after i.p. administration was effective to reduce colitis severity through reduction in the macroscopic and microscopic colonic parameters, MPO activity and cytokines levels. Intracerebroventricular administration of the drug in contrast, did not show any significant protective effect suggesting no important central mechanisms for anti-colitis activity of doxepin. Doxepin as an ancient antidepressive drug has anti-colitis and anti-inflammatory properties which are mainly exerted peripherally so it could be introduced as a good candidate for depressed people who suffered from IBD disorders.
Collapse
Affiliation(s)
- Mohsen Zabihi
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Valiollah Hajhashemi
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Department of Clinical Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Gellén B, Völgyi K, Györffy BA, Darula Z, Hunyadi-Gulyás É, Baracskay P, Czurkó A, Hernádi I, Juhász G, Dobolyi Á, Kékesi KA. Proteomic investigation of the prefrontal cortex in the rat clomipramine model of depression. J Proteomics 2017; 153:53-64. [DOI: 10.1016/j.jprot.2016.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
|