1
|
Tanwar AK, Sengar N, Mase N, Singh IP. Tetrahydroisoquinolines - an updated patent review for cancer treatment (2016 - present). Expert Opin Ther Pat 2024; 34:873-906. [PMID: 39126639 DOI: 10.1080/13543776.2024.2391288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Cancer is a prominent cause of death globally, triggered by both non-genetic and genetic alterations in genes influenced by various environmental factors. The tetrahydroisoquinoline (THIQ), specifically 1,2,3,4-tetrahydroisoquinoline serves as fundamental element in various alkaloids, prevalent in proximity to quinoline and indole alkaloids. AREA COVERED In this review, the therapeutic applications of THIQ derivatives as an anticancer agent from 2016 to 2024 have been examined. The patents were gathered through comprehensive searches of the Espacenet, Google patent, WIPO, and Sci Finder databases. The therapeutic areas encompassed in the patents include numerous targets of cancer. EXPERT OPINION THIQ analogues play a crucial role in medicinal chemistry, with many being integral to pharmacological processes and clinical trials. Numerous THIQ compounds have been synthesized for therapeutic purposes, notably in cancer treatment. They show great promise for developing anticancer drugs, demonstrating strong affinity and efficacy against various cancer targets. The creation of multi-target ligands is a compelling avenue for THIQ-based anticancer drug discovery.
Collapse
Affiliation(s)
- Ankur Kumar Tanwar
- Departments of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Neha Sengar
- Departments of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Nobuyuki Mase
- Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Inder Pal Singh
- Departments of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| |
Collapse
|
2
|
Kooshari A, Shahriyary F, Shahidi M, Vafajoo M, Amirzargar MR. Tetrahydroisoquinoline reduces angiogenesis by interacting myeloma cells with HUVECs mediated by extracellular vesicles. Med Oncol 2024; 41:217. [PMID: 39102060 DOI: 10.1007/s12032-024-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Multiple myeloma (MM) is a neoplastic condition resulting from the uncontrolled expansion of B-cell-derived plasma cells. The importance of angiogenesis in MM development has also been demonstrated. Extracellular vesicles (EVs) have vital functions in interactions between neighboring cells, such as angiogenesis. The objective of this in vitro study was to examine the transfection and angiogenesis effects of MM-EVs on endothelial cells (ECs) upon treatment with Tetrahydroisoquinoline (THIQ) as a bioactive organic compound derivative from isoquinoline. Following treatment of multiple myeloma cells (U266) with THIQ, MM-EVs were harvested and transmigrated to human umbilical vein endothelial cells (HUVEC) in a co-culture model. EVs transmigration was traced by flow cytometry. Correspondingly, the expression of angiogenic genes and/or proteins in U266 cells and HUVECs was measured by RT-PCR and ELISA methods. Likewise, the proliferation and migration of HUVECs treated with THIQ-treated MM-EVs were visualized and estimated by performing both tube formation and scratch wound healing methods. Surprisingly, the anti-angiogenic effect of THIQ-treated MM-EVs was evident by the decreased expression of CD34, VEGFR2, and IL-6 at the mRNA and/or protein levels after internalization of MM-EVs in HUVEC. Finally, tube formation and scratch wound healing experiments showed inhibition of HUVEC cell proliferation and migration by THIQ-treated MM-EVs compared to control MM-EVs. MM-EVs derived from THIQ-treated myeloma cells (U266) inhibited angiogenesis in HUVECs. This phenomenon is coordinated by the internalized THIQ-treated MM-EVs in HUVECs, and ultimately the reduction of angiogenic factors and inhibition of tube formation and scratch wound healing.
Collapse
Affiliation(s)
- Ahmad Kooshari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Fahimeh Shahriyary
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran.
| | - Mahshid Vafajoo
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| |
Collapse
|
3
|
Zhou L, Li C, Dong L, Liu Y, He Y, Liu G, Bai J, Ma L, Jiang Y. Construction of Multi-Enzyme Integrated Catalysts for Deracemization of Cyclic Chiral Amines. Chembiochem 2024; 25:e202400346. [PMID: 38775416 DOI: 10.1002/cbic.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/19/2024] [Indexed: 07/13/2024]
Abstract
Multi-enzyme cascade catalysis has become an important technique for chemical reactions used in manufacturing and scientific study. In this research, we designed a four-enzyme integrated catalyst and used it to catalyse the deracemization reaction of cyclic chiral amines, where monoamine oxidase (MAO) catalyses the enantioselective oxidation of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MTQ), imine reductase (IRED) catalyses the stereo selective reduction of 1-methyl-3,4-dihydroisoquinoline (MDQ), formate dehydrogenase (FDH) is used for the cyclic regeneration of cofactors, and catalase (CAT) is used for decomposition of oxidative reactions. The four enzymes were immobilized via polydopamine (PDA)-encapsulated dendritic organosilica nanoparticles (DONs) as carriers, resulting in the amphiphilic core-shell catalysts. The hydrophilic PDA shell ensures the dispersion of the catalyst in water, and the hydrophobic DON core creates a microenvironment with the spatial confinement effect of the organic substrate and the preconcentration effect to enhance the stability of the enzymes and the catalytic efficiency. The core-shell structure improves the stability and reusability of the catalyst and rationally arranges the position of different enzymes according to the reaction sequence to improve the cascade catalytic performance and cofactor recovery efficiency.
Collapse
Affiliation(s)
- Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Chunliu Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Lele Dong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jing Bai
- College of Food Science and Biology, Hebei University of Science & Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang, 050018, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
4
|
Lauritano C, Bazzani E, Montuori E, Bolinesi F, Mangoni O, Riccio G, Buondonno A, Saggiomo M. Salinity Stress Acclimation Strategies in Chlamydomonas sp. Revealed by Physiological, Morphological and Transcriptomic Approaches. Mar Drugs 2024; 22:351. [PMID: 39195467 DOI: 10.3390/md22080351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Climate changes may include variations in salinity concentrations at sea by changing ocean dynamics. These variations may be especially challenging for marine photosynthetic organisms, affecting their growth and distribution. Chlamydomonas spp. are ubiquitous and are often found in extreme salinity conditions. For this reason, they are considered good model species to study salinity adaptation strategies. In the current study, we used an integrated approach to study the Chlamydomonas sp. CCMP225 response to salinities of 20‱ and 70‱, by combining physiological, morphological, and transcriptomic analyses, and comparing differentially expressed genes in the exponential and stationary growth phases under the two salinity conditions. The results showed that the strain is able to grow under all tested salinity conditions and maintains a surprisingly high photosynthetic efficiency even under high salinities. However, at the highest salinity condition, the cells lose their flagella. The transcriptomic analysis highlighted the up- or down-regulation of specific gene categories, helping to identify key genes responding to salinity stress. Overall, the findings may be of interest to the marine biology, ecology, and biotechnology communities, to better understand species adaptation mechanisms under possible global change scenarios and the potential activation of enzymes involved in the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton, 80133 Naples, Italy
| | - Emma Bazzani
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin 2, D02 VF25 Dublin, Ireland
| | - Eleonora Montuori
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton, 80133 Naples, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesco Bolinesi
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
- CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy
| | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
- CoNISMa, Piazzale Flaminio, 9, 00196 Roma, Italy
| | - Gennaro Riccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Angela Buondonno
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Maria Saggiomo
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
5
|
Mayorquín-Torres MC, Simoens A, Bonneure E, Stevens CV. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity: An Update 2004-2024. Chem Rev 2024; 124:7907-7975. [PMID: 38809666 DOI: 10.1021/acs.chemrev.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The increasing importance of azaheterocyclic phosphonates in the agrochemical, synthetic, and medicinal field has provoked an intense search in the development of synthetic routes for obtaining novel members of this family of compounds. This updated review covers methodologies established since 2004, focusing on the synthesis of azaheterocyclic phosphonates, of which the phosphonate moiety is directly substituted onto to the azaheterocyclic structure. Emphasizing recent advances, this review classifies newly developed synthetic approaches according to the ring size and providing information on biological activities whenever available. Furthermore, this review summarizes information on various methods for the formation of C-P bonds, examining sustainable approaches such as the Michaelis-Arbuzov reaction, the Michaelis-Becker reaction, the Pudovik reaction, the Hirao coupling, and the Kabachnik-Fields reaction. After analyzing the biological activities and applications of azaheterocyclic phosphonates investigated in recent years, a predominant focus on the evaluation of these compounds as anticancer agents is evident. Furthermore, emerging applications underline the versatility and potential of these compounds, highlighting the need for continued research on synthetic methods to expand this interesting family.
Collapse
Affiliation(s)
- Martha C Mayorquín-Torres
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Andreas Simoens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Eli Bonneure
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
6
|
Thangeswaran D, Shamsuddin S, Balakrishnan V. A comprehensive review on the progress and challenges of tetrahydroisoquinoline derivatives as a promising therapeutic agent to treat Alzheimer's disease. Heliyon 2024; 10:e30788. [PMID: 38803973 PMCID: PMC11128835 DOI: 10.1016/j.heliyon.2024.e30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Alzheimer's disease (AD) is the most common and irreversible neurodegenerative disorder worldwide. While the precise mechanism behind this rapid progression and multifaceted disease remains unknown, the numerous drawbacks of the available therapies are prevalent, necessitating effective alternative treatment methods. In view of the rising demand for effective AD treatment, numerous reports have shown that tetrahydroisoquinoline (THIQ) is a valuable scaffold in various clinical medicinal molecules and has a promising potential as a therapeutic agent in treating AD due to its significant neuroprotective, anti-inflammatory, and antioxidative properties via several mechanisms that target the altered signaling pathways. Therefore, this review comprehensively outlines the potential application of THIQ derivatives in AD treatment and the challenges in imparting the action of these prospective therapeutic agents. The review emphasizes a number of THIQ derivatives, including Dauricine, jatrorrhizine, 1MeTIQ, and THICAPA, that have been incorporated in AD studies in recent years. Subsequently, a dedicated section of the review briefly discusses the emerging potential benefits of multi-target therapeutics, which lie in their ability to be integrated with alternative therapeutics. Eventually, this review elaborates on the rising challenges and future recommendations for the development of therapeutic drug agents to treat AD effectively. In essence, the valuable research insights of THIQ derivatives presented in this comprehensive review would serve as an integral reference for future studies to develop potent therapeutic drugs for AD research.
Collapse
Affiliation(s)
- Danesh Thangeswaran
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
7
|
Rinaldi Tosi ME, Palermo V, Giannini FA, Fernández Baldo MA, Díaz JRA, Lima B, Feresin GE, Romanelli GP, Baldoni HA. N-Sulfonyl-1,2,3,4-tetrahydroisoquinoline Derivatives: Synthesis, Antimicrobial Evaluations, and Theoretical Insights. Chem Biodivers 2023; 20:e202300905. [PMID: 37798253 DOI: 10.1002/cbdv.202300905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Microbial contamination remains a significant economic challenge in the food industry, emphasizing the need for innovative antimicrobial solutions. In this study, we synthesized N-sulfonyl-1,2,3,4-tetrahydroisoquinolines (NSTHIQ) derivatives using an environmentally friendly Preyssler heteropolyacid catalyst, obtaining moderate to high yields (35-91 %) under mild conditions. Two derivatives (5 and 6) exhibited significant antifungal properties against various fungal species, including Aspergillus spp, Penicillium spp, and Botrytis cinerea. ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis revealed the absence of hepatic toxicity in all compounds, making derivatives 2, 3, 4, and 5 potential candidates for further development. However, derivatives 6 and 7 exhibited immunotoxicity. In support of our experimental findings, reactivity indices were computed using Density Functional Theory principles, deriving valuable insights into the chemical properties of these derivatives. This study underscores the potential of NSTHIQ compounds as potent antifungal agents, coupled with the importance of employing environmentally friendly catalysts in drug discovery.
Collapse
Affiliation(s)
- Martín E Rinaldi Tosi
- Laboratorio de Biotecnología y Tecnologías Biomédicas, Centro de Estudios para la Innovación y el Desarrollo (CEPID), Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Felipe Velázquez 471 CP, 5700, Ciudad de San Luis, Argentina
| | - Valeria Palermo
- Grupo de Investigación en Síntesis Orgánica Ecoeficiente (GISOE), Centro de Investigación y Desarrollo en Ciencias Aplicadas 'Dr. Jorge J. Ronco' (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC-CONICET, Calle 47 Nro 257, B1900AJK, La Plata, Argentina
| | - Fernando A Giannini
- Área de Química General e Inorgánica, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, D5700BWS, San Luis, Argentina
| | - Martín A Fernández Baldo
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Área de Química Analítica - Instituto de Química de San Luis, INQUISAL (UNSL - CONICET), Chacabuco 917, D5700BWS, San Luis, Argentina
| | - Jorge R A Díaz
- Área de Química General e Inorgánica, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, D5700BWS, San Luis, Argentina
| | - Beatriz Lima
- Instituto de Biotecnología, Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martin, 1109 O, San Juan, Argentina
| | - Gabriela E Feresin
- Instituto de Biotecnología, Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martin, 1109 O, San Juan, Argentina
| | - Gustavo P Romanelli
- Grupo de Investigación en Síntesis Orgánica Ecoeficiente (GISOE), Centro de Investigación y Desarrollo en Ciencias Aplicadas 'Dr. Jorge J. Ronco' (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC-CONICET, Calle 47 Nro 257, B1900AJK, La Plata, Argentina
- CISAV. Cátedra de Química Orgánica, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calles 60 y 119 s/n, B1904AAN, La Plata, Argentina
| | - Héctor A Baldoni
- Área de Química General e Inorgánica, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, D5700BWS, San Luis, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL, CONICET-UNSL, Av. Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| |
Collapse
|
8
|
Filipović A, Džambaski Z, Bondžić AM, Bondžić BP. Visible-light promoted photoredox catalysis in flow: addition of biologically important α‑amino radicals to michael acceptors. Photochem Photobiol Sci 2023; 22:2259-2270. [PMID: 37340217 DOI: 10.1007/s43630-023-00448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Visible light promoted photoredox catalyzed formation of α-amino radicals from cyclic tertiary amine compounds and their subsequent addition to Michael acceptors performed in flow conditions allowed access to a wide range of functionalized N-aryl-substituted tetrahydroisoquinolines (THIQs) and N-aryl-substituted tetrahydro-β-carbolines (THBCs). Visible light in conjunction with Ru(bpy)3Cl2 photocatalyst allowed the formation and high reactivities of α-amino radicals in flow conditions at room temperature. These reactions gave valuable products with high efficiencies; some previously unavailable reaction pathways photo or thermal reaction conditions; i.e. direct synthesis of 1-substituted (THBCs) via α-amino radical path were successfully realized in flow. The use of custom-made FEP tube microreactor proved to be the key to succesfull α-amino-radical formation and overall reaction performance in flow. Three types of light transparent custom-made microfluidic devices were tested, among them glass/silicon and FEP type reactor showed very good results in the conversion of tested compounds. Plausible reaction mechanism is proposed in accordance with known principles of photo activation of tertiary amines. Visible light promoted C(sp3)-H functionalization of N-aryl-protected tetrahydroisoquinolines and N-aryl-protected tetrahydro-β-carbolines in microflow conditions via a-amino radical pathway with various coupling partners in excellent yields and efficiencies.
Collapse
Affiliation(s)
- Ana Filipović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Republic of Serbia
| | - Zdravko Džambaski
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Republic of Serbia
| | - Aleksandra M Bondžić
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000, Belgrade, Serbia
| | - Bojan P Bondžić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Republic of Serbia.
| |
Collapse
|
9
|
Song J, Kim A, Hong I, Kim S, Byun WS, Lee HS, Kim HS, Lee SK, Kwon Y. Synthesis and biological evaluation of atropisomeric tetrahydroisoquinolines overcoming docetaxel resistance in triple-negative human breast cancer cells. Bioorg Chem 2023; 137:106573. [PMID: 37229969 DOI: 10.1016/j.bioorg.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Herein, atropisomeric 8-aryltetrahydroisoquinolines have been synthesized and biologically evaluated. Based on our structure-activity relationship study, a highly bioactive racemic compound has been produced, and it exhibited high antiproliferative activities against various cancer cell lines, including docetaxel-resistant breast cancer cell lines. Each enantiomer can be synthesized in an enantioselective manner by employing the chiral phosphoric acid-catalyzed atroposelective Pictet-Spengler cyclization. An axially (R)-configured enantiomer showed a higher biological activity compared with the axially (S)-configured enantiomer. Further biological studies suggested that the (R)-enantiomer overcomes docetaxel resistance via the downregulation of signal transducer and activator of transcription 3 activation and consequently induces cellular apoptosis in docetaxel-resistant triple-negative breast cancer cell lines.
Collapse
Affiliation(s)
- Jayoung Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Intaek Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangji Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
10
|
Liu M, Liu J, Li J, Zhao Z, Zhou K, Li Y, He P, Wu J, Bao Z, Yang Q, Yang Y, Ren Q, Zhang Z. Blending Aryl Ketone in Covalent Organic Frameworks to Promote Photoinduced Electron Transfer. J Am Chem Soc 2023; 145:9198-9206. [PMID: 37125453 DOI: 10.1021/jacs.3c01273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aryl-ketone derivatives have been acknowledged as promising organic photocatalysts for photosynthesis. However, they are limited by their photostability and have been less explored for photoinduced electron transfer (PET) applications. Herein we demonstrate a novel strategy to cover the shortage of aryl-ketone photocatalysts and control the photoreactivity by implanting symmetric aryl ketones into the conjugated covalent organic frameworks (COFs). To prove the concept, three comparative materials with the same topology and varied electronic structures were built, adopting truxenone knot and functionalized terephthalaldehyde linkers. Spectroscopic investigation and excited carrier dynamics analysis disclosed improvements in the photostability and electronic transfer efficiency as well as the structure-performance relationships toward N-aryl tetrahydroisoquinoline oxidation. This system provides a robust rule of thumb for designing new-generation aryl-ketone photocatalysts.
Collapse
Affiliation(s)
- Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Junnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yueming Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Peipei He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jiashu Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| |
Collapse
|
11
|
Chrzanowska M, Grajewska A, Rozwadowska MD. Diastereoselective Synthesis of (–)-6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic Acid via Morpholinone Derivatives. Molecules 2023; 28:molecules28073200. [PMID: 37049962 PMCID: PMC10095930 DOI: 10.3390/molecules28073200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
A simple and convenient synthesis of (–)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid is described, applying a combination of two synthetic methods: the Petasis reaction and Pomeranz–Fritsch–Bobbitt cyclization. The diastereomeric morpholinone derivative N-(2,2-diethoxyethyl)-3-(3,4-dimethoxyphenyl)-5-phenyl-1,4-oxazin-2-one formed in the Petasis reaction was further transformed into 1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid via Pomeranz–Fritsch–Bobbitt cyclization, a classical method of synthesis leading to the tetrahydroisoquinoline core. We review important examples of applications of the Pomeranz–Fritsch process and its modifications in the synthesis of chiral tetrahydroisoquinoline derivatives that have been published in the past two decades.
Collapse
Affiliation(s)
- Maria Chrzanowska
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Grajewska
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Maria D. Rozwadowska
- Faculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
12
|
Jiang C, Pan T, Jiang Y, Zhang Z, Zeng M, Sun S, Li Z, Wu Y, Qiu J, Niu M, Gu X. Design and evaluation of dibenzoazepine-tetrahydroisoquinoline hybrids as potential P-glycoprotein inhibitors against multidrug resistant K562/A02 cells. Eur J Med Chem 2023; 249:115150. [PMID: 36708676 DOI: 10.1016/j.ejmech.2023.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Multidrug resistance (MDR) caused by P-glycoprotein (P-gp) is a main barrier to the success of cancer chemotherapies. In this study, fourteen novel dibenzoazepine-tetrahydroisoquinoline hybrids were prepared as potential P-gp inhibitors to surmount MDR caused by P-gp. Amongst them, 8a displayed the most potent inhibition effect on P-gp, thus effectively reversing P-gp-mediated drug resistance with a reversal fold (RF) value of 93.17 in K562/A02 cells. Excitingly, the EC50 value of 8a on MDR reversing effect was 48.74 nM, which was nearly two thousand-fold lower than its IC50 value (95.94 μM) for intrinsic cytotoxicity on K562/A02 cells. Further investigation showed that 8a exerted the MDR reversal effect through impairing P-gp function rather than affecting its expression. Molecular docking and CETSA results illustrated that 8a possessed a relatively high affinity for P-gp, thus effectively improving the stability of P-gp. Furthermore, 8a exhibited a much poorer inhibitory effect on CYP3A4 activity than CYP3A4 inhibitor ketoconazole, thus might not cause unfavorable drug-drug interactions. These data together suggested that 8a may be a promising lead to design P-gp inhibitors, and warranted further investigation on overcoming P-gp-mediated MDR.
Collapse
Affiliation(s)
- Chunyu Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Ting Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yunxiang Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zhiyu Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Meifeng Zeng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Shuang Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yiqing Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China; Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
13
|
Cárdenas‐Fernández M, Roddan R, Carter EM, Hailes HC, Ward JM. The Discovery of Imine Reductases and their Utilisation for the Synthesis of Tetrahydroisoquinolines. ChemCatChem 2023; 15:e202201126. [PMID: 37081856 PMCID: PMC10107726 DOI: 10.1002/cctc.202201126] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Imine reductases (IREDs) are NADPH-dependent enzymes with significant biocatalytic potential for the synthesis of primary, secondary, and tertiary chiral amines. Their applications include the reduction of cyclic imines and the reductive amination of prochiral ketones. In this study, twenty-nine novel IREDs were revealed through genome mining. Imine reductase activities were screened at pH 7 and 9 and in presence of either NADPH or NADH; some IREDs showed good activities at both pHs and were able to accept both cofactors. IREDs with Asn and Glu at the key 187 residue showed preference for NADH. IREDs were also screened against a series of dihydroisoquinolines to synthesise tetrahydroisoquinolines (THIQs), bioactive alkaloids with a wide range of therapeutic properties. Selected IREDs showed high stereoselectivity, as well high THIQ yields (>90 %) when coupled to a glucose-6-phosphate dehydrogenase for NADPH cofactor recycling.
Collapse
Affiliation(s)
- Max Cárdenas‐Fernández
- Department of Biochemical EngineeringUniversity College LondonGower Street, Bernard Katz BuildingLondonWC1E 6BTUK
- School of BiosciencesUniversity of Kent KentCT2 7NJUK
| | - Rebecca Roddan
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Eve M. Carter
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringUniversity College LondonGower Street, Bernard Katz BuildingLondonWC1E 6BTUK
| |
Collapse
|
14
|
Fan J, Wang Y, Hu X, Liu Y, Che CM. Iron porphyrin-catalysed C(sp 3)–H amination with alkyl azides for the synthesis of complex nitrogen-containing compounds. Org Chem Front 2023. [DOI: 10.1039/d2qo01972h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
With the readily prepared iron porphyrin complex as a catalyst and starting with alkyl azides, a panel of nitrogen-containing skeletons representing the families of natural alkaloids and bioactive compounds could be prepared in good yields.
Collapse
Affiliation(s)
- Jianqiang Fan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Ye Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Xuefu Hu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong 518057, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, China
| |
Collapse
|
15
|
Rodríguez-Álvarez S, Palazón JM, Dorta RL. Iron Trichloride-Mediated Cascade Reaction of Aminosugar Derivatives for the Synthesis of Fused Tetrahydroisoquinoline-Tetrahydrofuran Systems. ACS OMEGA 2022; 7:39061-39070. [PMID: 36340113 PMCID: PMC9631894 DOI: 10.1021/acsomega.2c04804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A method to obtain tetrahydroisoquinolines (THIQs) fused to tetrahydrofuran rings from aminosugar derivatives has been developed. The procedure relies on a key deprotection of benzyl ethers followed by a double-cyclization sequence, using FeCl3 as the sole reagent. This tandem reaction affords the construction of novel fused polycyclic heterocycles with total stereochemical control.
Collapse
|
16
|
Li J, Wang H, Jin H, Xiang Z, Chen L, Walsh PJ, Liang G. Base-Promoted Tandem Synthesis of 3,4-Dihydroisoquinolones. Org Lett 2022; 24:8125-8129. [DOI: 10.1021/acs.orglett.2c03167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, P.R. China
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P.R. China
| | - Huan Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Huimin Jin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, P.R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P.R. China
| | - Zhenhua Xiang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, P.R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P.R. China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, P.R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, P.R. China
| |
Collapse
|
17
|
Kaur P, Sharma P, Kumar V, Sahal D, Kumar R. Chitosan-supported FeCl3 catalyzed multicomponent synthesis of tetrahydroisoquinoline-indole hybrids with promising activity against chloroquine resistant Plasmodium falciparum. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Soni JP, Sathish M, Nachtigall FM, Santos LS, Shankaraiah N. Brown seaweed‐derived alginic acid: An efficient and reusable catalyst for Pictet‐Spengler reaction to access tetrahydro‐β‐carboline and tetrahydroisoquinoline frameworks. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jay Prakash Soni
- National Institute of Pharmaceutical Education and Research Hyderabad Department of Medicinal Chemistry 500037 Hyderabad INDIA
| | - Manda Sathish
- Catholic University of the Maule: Universidad Catolica del Maule Research center for Advance Studies of Maule, 3460000 Talca CHILE
| | - Fabiane M. Nachtigall
- Universidad Autonoma de Chile Instituto de Ciencias Quimicas Aplicadas 3467987 Talca CHILE
| | - Leonardo S. Santos
- Talca University: Universidad de Talca Chemistry Institute of Natural Resources 3460000 Talca CHILE
| | - Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER Department of Medicinal Chemistry Balanagar 500037 Hyderabad INDIA
| |
Collapse
|
19
|
Synthesis and biological evaluation of tetrahydroisoquinoline-derived antibacterial compounds. Bioorg Med Chem 2022; 57:116648. [DOI: 10.1016/j.bmc.2022.116648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022]
|
20
|
Xia Y, Wade NW, Palermo PN, Wang Y, Wang YM. Contrasteric coupling of allenes and tetrahydroisoquinolines by iron-catalysed allenic C(sp 2)-H functionalisation. Chem Commun (Camb) 2021; 57:13329-13332. [PMID: 34816837 PMCID: PMC8665127 DOI: 10.1039/d1cc05949a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An iron-catalysed C-H functionalisation of simple monosubstituted allenes for the synthesis of 1-tetrahydroisoquinolinyl 1,1-disubstituted allenes is reported. This transformation represents the first example of a direct conversion of allenic C-H bonds to C-C bonds through cross dehydrogenative coupling. The optimized protocol features broad scope and employs mild, functional group tolerant conditions.
Collapse
Affiliation(s)
- Yue Xia
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Nicholas W Wade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Philip N Palermo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
21
|
Marras V, Caboni P, Secci F, Guillot R, Aitken DJ, Frongia A. A Brønsted acid catalyzed tandem reaction for the diastereoselective synthesis of cyclobuta-fused tetrahydroquinoline carboxylic esters. Org Biomol Chem 2021; 19:8912-8916. [PMID: 34612296 DOI: 10.1039/d1ob01518d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel Brønsted acid catalyzed tandem reaction provides highly functionalized cyclobuta-fused tetrahydroquinoline carboxylic esters from anilines and 2-alkylenecyclobutanones in good to high yield. During the reaction a dynamic diastereoselective cyclization is achieved, resulting in the formation of three contiguous stereocenters with high stereoselectivity.
Collapse
Affiliation(s)
- Valentina Marras
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| | - Pierluigi Caboni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Francesco Secci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| | - Régis Guillot
- Université Paris Saclay, CNRS, ICMMO, CP3A Organic Synthesis Group & Services Communs, 420 rue du Doyen Georges Poitou, 91405 Orsay cedex, France
| | - David J Aitken
- Université Paris Saclay, CNRS, ICMMO, CP3A Organic Synthesis Group & Services Communs, 420 rue du Doyen Georges Poitou, 91405 Orsay cedex, France
| | - Angelo Frongia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
22
|
Cheng YY, Li WS, Wu HL. Application of Rh(I)/Bicyclo[2.2.1]heptadiene Catalysts to the Enantioselective Synthesis of Chiral Amines. CHEM REC 2021; 21:3954-3963. [PMID: 34596958 DOI: 10.1002/tcr.202100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022]
Abstract
The development of efficient synthetic methods for accessing enantioenriched α-chiral amines is of great importance in the disciplines of medicinal and synthetic organic chemistry. Enantioselective Rh-catalyzed 1,2-addition reactions to activated imine derivatives are regarded as useful protocols for forming α-chiral amines. This personal account outlines our efforts to develop chiral bicyclo[2.2.1]heptadiene ligands for Rh-catalyzed asymmetric additions of various organoboron reagents to a wide range of imine derivatives. Transformations of the thus-obtained adducts into known natural products or molecules of pharmaceutical importance serve to confirm their synthetic usefulness.
Collapse
Affiliation(s)
- Yu-Yi Cheng
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| |
Collapse
|
23
|
Yang J, Song Y, Tang MC, Li M, Deng J, Wong NK, Ju J. Genome-Directed Discovery of Tetrahydroisoquinolines from Deep-Sea Derived Streptomyces niveus SCSIO 3406. J Org Chem 2021; 86:11107-11116. [PMID: 33770435 DOI: 10.1021/acs.joc.1c00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A genome-directed discovery strategy to identify new tetrahydroisoquinolines (THIQs) was applied to deep-sea derived Streptomyces niveus SCSIO 3406; 11 THIQs were found representing three THIQ classes. Known aclidinomycins A (1) and B (2) were isolated along with nine new compounds, aclidinomycins C-K (3-11). The structures were elucidated using extensive spectroscopic analyses and single-crystal X-ray diffraction methods. The core skeleton of compounds 6-9 contains a fused tetrahydropyran (THP) as an integral part of a distinct type of 6/6/6/6/5/5 polycyclic motif. This is the first report of such a system. Beyond their discovery, we also report here a proposed biosynthetic route to these interesting natural products as well as a preliminary survey of their antimicrobial activities.
Collapse
Affiliation(s)
- Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Man-Cheng Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingzhe Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Junwei Deng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nai-Kei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
24
|
Subrizi F, Wang Y, Thair B, Méndez‐Sánchez D, Roddan R, Cárdenas‐Fernández M, Siegrist J, Richter M, Andexer JN, Ward JM, Hailes HC. Multienzyme One-Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids. Angew Chem Int Ed Engl 2021; 60:18673-18679. [PMID: 34101966 PMCID: PMC8457072 DOI: 10.1002/anie.202104476] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Indexed: 12/25/2022]
Abstract
The tetrahydroisoquinoline (THIQ) ring system is present in a large variety of structurally diverse natural products exhibiting a wide range of biological activities. Routes to mimic the biosynthetic pathways to such alkaloids, by building cascade reactions in vitro, represents a successful strategy and can offer better stereoselectivities than traditional synthetic methods. S-Adenosylmethionine (SAM)-dependent methyltransferases are crucial in the biosynthesis and diversification of THIQs; however, their application is often limited in vitro by the high cost of SAM and low substrate scope. In this study, we describe the use of methyltransferases in vitro in multi-enzyme cascades, including for the generation of SAM in situ. Up to seven enzymes were used for the regioselective diversification of natural and non-natural THIQs on an enzymatic preparative scale. Regioselectivites of the methyltransferases were dependent on the group at C-1 and presence of fluorine in the THIQs. An interesting dual activity was also discovered for the catechol methyltransferases used, which were found to be able to regioselectively methylate two different catechols in a single molecule.
Collapse
Affiliation(s)
- Fabiana Subrizi
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Yu Wang
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | | | - Rebecca Roddan
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Max Cárdenas‐Fernández
- Department of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUK
| | - Jutta Siegrist
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB)Branch BiocatSchulgasse 11a94315StraubingGermany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - John M. Ward
- Department of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
25
|
Subrizi F, Wang Y, Thair B, Méndez‐Sánchez D, Roddan R, Cárdenas‐Fernández M, Siegrist J, Richter M, Andexer JN, Ward JM, Hailes HC. Multienzyme One-Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:18821-18827. [PMID: 38505091 PMCID: PMC10947541 DOI: 10.1002/ange.202104476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Indexed: 12/28/2022]
Abstract
The tetrahydroisoquinoline (THIQ) ring system is present in a large variety of structurally diverse natural products exhibiting a wide range of biological activities. Routes to mimic the biosynthetic pathways to such alkaloids, by building cascade reactions in vitro, represents a successful strategy and can offer better stereoselectivities than traditional synthetic methods. S-Adenosylmethionine (SAM)-dependent methyltransferases are crucial in the biosynthesis and diversification of THIQs; however, their application is often limited in vitro by the high cost of SAM and low substrate scope. In this study, we describe the use of methyltransferases in vitro in multi-enzyme cascades, including for the generation of SAM in situ. Up to seven enzymes were used for the regioselective diversification of natural and non-natural THIQs on an enzymatic preparative scale. Regioselectivites of the methyltransferases were dependent on the group at C-1 and presence of fluorine in the THIQs. An interesting dual activity was also discovered for the catechol methyltransferases used, which were found to be able to regioselectively methylate two different catechols in a single molecule.
Collapse
Affiliation(s)
- Fabiana Subrizi
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Yu Wang
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | | | - Rebecca Roddan
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Max Cárdenas‐Fernández
- Department of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUK
| | - Jutta Siegrist
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB)Branch BiocatSchulgasse 11a94315StraubingGermany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - John M. Ward
- Department of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
26
|
Xu W, Guo J, Chen Z, Si C, Wei B. Titanium Tetrachloride‐Mediated Approach to Access 2‐Chloro‐2‐Substituted Isoindolin‐1‐ones through the Addition of Alkynes to Acyliminium ions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wen‐Ke Xu
- Department of Natural Medicine School of Pharmacy Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Jia‐Ming Guo
- Department of Natural Medicine School of Pharmacy Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Zhao‐Dan Chen
- Department of Natural Medicine School of Pharmacy Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Chang‐Mei Si
- Department of Natural Medicine School of Pharmacy Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Bang‐Guo Wei
- Department of Natural Medicine School of Pharmacy Fudan University 826 Zhangheng Road Shanghai 201203 China
| |
Collapse
|
27
|
Chiu W, Chen J, Liu S, Barve IJ, Huang W, Sun C. One‐pot Synthesis of Isoquinoline‐Fused Isoquinolines via Intramolecular Hydroamination/Aza‐Claisen Type Rearrangement Cascade. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wei‐Jung Chiu
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hsueh Road Hsinchu 300-10 Taiwan
| | - Jin‐Yu Chen
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hsueh Road Hsinchu 300-10 Taiwan
| | - Shih‐I Liu
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hsueh Road Hsinchu 300-10 Taiwan
| | - Indrajeet J. Barve
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hsueh Road Hsinchu 300-10 Taiwan
- Department of Chemistry MES Abasaheb Garware College Pune India
| | - Wan‐Wen Huang
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hsueh Road Hsinchu 300-10 Taiwan
| | - Chung‐Ming Sun
- Department of Applied Chemistry National Chiao-Tung University 1001 Ta-Hsueh Road Hsinchu 300-10 Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 100, Shih-Chuan 1st Road Kaohsiung 807-08 Taiwan
| |
Collapse
|
28
|
Yang WL, Liu TT, Ni T, Zhu B, Luo X, Deng WP. Iridium-Catalyzed Asymmetric Cascade Allylation/Pictet-Spengler Cyclization Reaction for the Enantioselective Synthesis of 1,3,4-Trisubstituted Tetrahydroisoquinolines. Org Lett 2021; 23:2790-2796. [PMID: 33734718 DOI: 10.1021/acs.orglett.1c00709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iridium-catalyzed trifluoroacetic acid-promoted asymmetric cascade allylation/Pictet-Spengler cyclization reaction of azomethine ylides with aromatic allylic alcohols is reported. This protocol provides a facile and scalable method for the construction of 1,3,4-trisubstituted tetrahydroisoquinolines containing two stereogenic centers in good yields (up to 96%) with generally excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Furthermore, a series of aromatic heterocycle-fused piperidines were also obtained with excellent enantiocontrol by this methodology.
Collapse
|
29
|
Faheem, Karan Kumar B, Chandra Sekhar KVG, Chander S, Kunjiappan S, Murugesan S. Medicinal chemistry perspectives of 1,2,3,4-tetrahydroisoquinoline analogs - biological activities and SAR studies. RSC Adv 2021; 11:12254-12287. [PMID: 35423735 PMCID: PMC8696937 DOI: 10.1039/d1ra01480c] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Isoquinoline alkaloids are a large group of natural products in which 1,2,3,4-tetrahydroisoquinolines (THIQ) form an important class. THIQ based natural and synthetic compounds exert diverse biological activities against various infective pathogens and neurodegenerative disorders. Due to these reasons, the THIQ heterocyclic scaffold has garnered a lot of attention in the scientific community which has resulted in the development of novel THIQ analogs with potent biological activity. The present review provides a much-needed update on the biological potential of THIQ analogs, their structural-activity relationship (SAR), and their mechanism of action. In addition, a note on commonly used synthetic strategies for constructing the core scaffold has also been discussed.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Medchal Dist. Hyderabad 500078 Telangana India
| | - Subhash Chander
- Amity Institute of Phytomedicine and Phytochemistry, Amity University Uttar Pradesh Noida-201313 India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education Krishnankoil-626126 Tamil Nadu India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Pilani Campus Pilani-333031 Rajasthan India
| |
Collapse
|
30
|
Viveros-Ceballos JL, Matías-Valdez LA, Sayago FJ, Cativiela C, Ordóñez M. New approaches towards the synthesis of 1,2,3,4-tetrahydro isoquinoline-3-phosphonic acid (Tic P). Amino Acids 2021; 53:451-459. [PMID: 33646426 DOI: 10.1007/s00726-021-02962-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/17/2021] [Indexed: 11/25/2022]
Abstract
Two new strategies for the efficient synthesis of racemic 1,2,3,4-tetrahydroisoquinoline-3-phosphonic acid (TicP) (±)-2 have been developed. The first strategy involves the electron-transfer reduction of the easily obtained α,β-dehydro phosphonophenylalanine followed by a Pictet-Spengler cyclization. The second strategy involves a radical decarboxylation-phosphorylation reaction on 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic). In both strategies, the highly electrophilic N-acyliminium ion is formed as a key intermediate, and the target compound is obtained in good yield using mild reaction conditions and readily available starting materials, complementing existing methodologies and contributing to the easy accessibility of (±)-2 for further research.
Collapse
Affiliation(s)
- José Luis Viveros-Ceballos
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico.
| | - Lizeth A Matías-Valdez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico
| | - Francisco J Sayago
- Departamento de Química Orgánica, ISQCH, Universidad de Zaragoza, CSIC, 50009, Zaragoza, Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica, ISQCH, Universidad de Zaragoza, CSIC, 50009, Zaragoza, Spain
| | - Mario Ordóñez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
31
|
Singh P. Synthetic Approaches Towards the Synthesis of C-1 Azole Substituted Tetrahydroisoquinolines. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201228140959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C-1 substituted tetrahydroisoquinolines have emerged as important scaffolds in
pharmaceutical and medical research. Although various methods for α-substitution on tetrahydroisoquinolines
have been discovered, the introduction of the azole group at C-1 position
remains a challenge. Recently, direct C-H activation methods and multicomponent reactions
have been employed towards the synthesis of azole containing tetrahydroisoquinolines. A
summary of such synthetic strategies is presented here as these promising methods can help
in developing more efficient synthetic routes. This minireview covers the available synthetic
methods and their mechanistic pathways for the preparation of C-1 azole substituted tetrahydroisoquinolines.
Collapse
Affiliation(s)
- Pushpinder Singh
- Department of Chemistry, DAV University, Jalandhar, Punjab, 144012, India
| |
Collapse
|
32
|
Li WS, Kuo TS, Wu PY, Chen CT, Wu HL. Enantioselective Synthesis of 1-Aryl Tetrahydroisoquinolines by the Rhodium-Catalyzed Reaction of 3,4-Dihydroisoquinolinium Tetraarylborates. Org Lett 2021; 23:1141-1146. [PMID: 33492973 DOI: 10.1021/acs.orglett.1c00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 1-aryl tetrahydroisoquinolines (1-aryl THIQs) are omnipresent in biologically active molecules. Here we report on the direct asymmetric synthesis of these valuable compounds via the reaction of 3,4-dihydroisoquinolinium tetraarylborates. The dual roles of anionic tetraarylborates, which function as both prenucleophiles and stabilizers of 3,4-dihydroisoquinolinium cations, enable this rhodium(I)-catalyzed protocol to convergently provide enantioenriched 1-aryl THIQs in good yields (≤95%) with ≤97% ee, as demonstrated by the formal synthesis of (-)-solifenacin and the facile synthesis of (-)-Cryptostyline I.
Collapse
Affiliation(s)
- Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Company, Ltd., 1F, No. 8, Aly. 29, Ln. 335, Chenggong Road, Hukou Township, Hsinchu 30345, Taiwan
| | - Chien-Tien Chen
- Department of Chemistry, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
33
|
Puerto Galvis CE, Granados CC, Kouznetsov VV, Macías MA. Synthesis and X-ray crystallographic analysis of free base and hexafluorophosphate salts of 3,4-dihydroisoquinolines from the Bischler–Napieralski reaction. NEW J CHEM 2021. [DOI: 10.1039/d0nj05235c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Free base and hexafluorophosphate salts of 3,4-dihydroisoquinolines from the Bischler–Napieralski reaction: potential supramolecular modulation. Centrosymmetric/enantiomorphic crystals.
Collapse
Affiliation(s)
- Carlos E. Puerto Galvis
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| | - Cristian C. Granados
- Crystallography and Chemistry of Materials
- CrisQuimMat
- Department of Chemistry
- Universidad de los Andes
- Bogotá 111711
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| | - Mario A. Macías
- Crystallography and Chemistry of Materials
- CrisQuimMat
- Department of Chemistry
- Universidad de los Andes
- Bogotá 111711
| |
Collapse
|
34
|
Deepthi A, Thomas NV, Sruthi SL. An overview of the reactions involving azomethine imines over half a decade. NEW J CHEM 2021. [DOI: 10.1039/d1nj01090e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Azomethine imines constitute a versatile class of 1,3-dipoles which was used extensively for biologically relevant N-heterocycle synthesis – a five-year recap.
Collapse
Affiliation(s)
- Ani Deepthi
- Department of Chemistry
- University of Kerala
- Thiruvananthapuram 695581
- India
| | - Noble V. Thomas
- Department of Chemistry
- University of Kerala
- Thiruvananthapuram 695581
- India
| | - S. L. Sruthi
- Department of Chemistry
- University of Kerala
- Thiruvananthapuram 695581
- India
| |
Collapse
|
35
|
Ayipo YO, Mordi MN, Mustapha M, Damodaran T. Neuropharmacological potentials of β-carboline alkaloids for neuropsychiatric disorders. Eur J Pharmacol 2020; 893:173837. [PMID: 33359647 DOI: 10.1016/j.ejphar.2020.173837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/24/2022]
Abstract
Neuropsychiatric disorders are diseases of the central nervous system (CNS) which are characterised by complex pathomechanisms that including homeostatic failure, malfunction, atrophy, pathology remodelling and reactivity anomaly of the neuronal system where treatment options remain challenging. β-Carboline (βC) alkaloids are scaffolds of structurally diverse tricyclic pyrido[3,4-b]indole alkaloid with vast occurrence in nature. Their unique structural features which favour interactions with enzymes and protein receptor targets account for their potent neuropharmacological properties. However, our current understanding of their biological mechanisms for these beneficial effects, especially for neuropsychiatric disorders is sparse. Therefore, we present a comprehensive review of the scientific progress in the last two decades on the prospective pharmacology and physiology of the βC alkaloids in the treatment of some neuropsychiatric conditions such as depression, anxiety, Alzheimer's disease, Parkinson's disease, brain tumour, essential tremor, epilepsy and seizure, licking behaviour, dystonia, agnosia, spasm, positive ingestive response as demonstrated in non-clinical models. The current evidence supports that βC alkaloids offer potential therapeutic agents against most of these disorders and amenable for further drug design.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Chemical, Geological and Physical Sciences, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
36
|
Zhao J, Méndez-Sánchez D, Roddan R, Ward JM, Hailes HC. Norcoclaurine Synthase-Mediated Stereoselective Synthesis of 1,1’-Disubstituted, Spiro- and Bis-Tetrahydroisoquinoline Alkaloids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianxiong Zhao
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Daniel Méndez-Sánchez
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Rebecca Roddan
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 8HX, United Kingdom
| | - John M. Ward
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Helen C. Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
37
|
Kaur P, Gurjar KK, Kumar V, Gohit S, Gupta V, Kumar R. Metal‐Free Multicomponent Construction of Tetrahydroisoquinoline‐Indole Derivatives via In Situ Generated
ortho
‐Quinonoid Intermediate. ChemistrySelect 2020. [DOI: 10.1002/slct.202002802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pavneet Kaur
- Department of Chemistry Central University of Punjab Bathinda 151001 Punjab India
| | | | - Vinod Kumar
- Department of Chemistry Central University of Punjab Bathinda 151001 Punjab India
| | - Sonali Gohit
- Department of Chemistry Central University of Punjab Bathinda 151001 Punjab India
| | - Vijay Gupta
- Department of Chemistry Central University of Punjab Bathinda 151001 Punjab India
| | - Rakesh Kumar
- Department of Chemistry Central University of Punjab Bathinda 151001 Punjab India
| |
Collapse
|
38
|
Wang Y, Zhu J, Guo R, Lindberg H, Wang YM. Iron-catalyzed α-C-H functionalization of π-bonds: cross-dehydrogenative coupling and mechanistic insights. Chem Sci 2020; 11:12316-12322. [PMID: 34094439 PMCID: PMC8163013 DOI: 10.1039/d0sc05091a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 12/02/2022] Open
Abstract
The deprotonation of propargylic C-H bonds for subsequent functionalization typically requires stoichiometric metal alkyl or amide reagents. In addition to the undesirable generation of stoichiometric metallic waste, these conditions limit the functional group compatibility and versatility of this functionalization strategy and often result in regioisomeric mixtures. In this article, we report the use of dicarbonyl cyclopentadienyliron(ii) complexes for the generation of propargylic anion equivalents toward the direct electrophilic functionalization of propargylic C-H bonds under mild, catalytic conditions. This technology was applied to the direct conversion of C-H bonds to C-C bonds for the synthesis of several functionalized scaffolds through a one-pot cross dehydrogenative coupling reaction with tetrahydroisoquinoline and related privileged heterocyclic scaffolds. A series of NMR studies and deuterium-labelling experiments indicated that the deprotonation of the propargylic C-H bond was the rate-determining step when a Cp*Fe(CO)2-based catalyst system was employed.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Jin Zhu
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Rui Guo
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Haley Lindberg
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
39
|
Chen L, Yang Y, Liu L, Gao Q, Xu S. Iridium-Catalyzed Enantioselective α-C(sp3)–H Borylation of Azacycles. J Am Chem Soc 2020; 142:12062-12068. [DOI: 10.1021/jacs.0c06756] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Luhua Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qian Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| |
Collapse
|
40
|
Kouznetsov VV, Ortiz-Villamizar MC, Méndez-Vargas LY, Galvis CEP. A Review on Metal-Free Oxidative α-Cyanation and Alkynylation of N-Substituted Tetrahydroisoquinolines as a Rapid Route for the Synthesis of Isoquinoline Alkaloids. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200420073539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a fast-growing research field in modern organic chemistry, the crossdehydrogenative
coupling (CDC) has seen considerable development in its scope of application,
uptake into industry, and understanding of its mechanism to functionalize the tetrahydroisoquinoline
(THIQ) scaffold. Among the vast number of possibilities offered by
the CDC coupling, the metal-free oxidative α-cyanation and alkynylation reactions have
emerged as powerful strategies in the synthesis of diverse and potentially bioactive
THIQs. Even though transition-metal catalyzed CDC reactions have undoubtedly made
significant progress in THIQ chemistry, general and selective protocols for the metal-free
oxidative α-cyanation and alkynylation reactions of THIQs are urgently needed. Thereby,
this critical discussion is aimed to highlight the recent progress in this field of CDC reactions
where Csp3-H bonds are activated without metal catalysts to introduce the CN and the alkynyl groups into
the THIQ core.
Collapse
Affiliation(s)
- Vladimir V. Kouznetsov
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Marlyn C. Ortiz-Villamizar
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Leonor Y. Méndez-Vargas
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Carlos E. Puerto Galvis
- Laboratory of Organic and Bimolecular Chemistry, CMN, Industrial University of Santande, Guatiguará Technology Park, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| |
Collapse
|
41
|
Beng TK, Moreno A. Catalytic, selective, and stereocontrolled construction of C4 quaternary and homobenzylic dihydroisoquinolones by sp 3 C-H benzylation. RSC Adv 2020; 10:8805-8809. [PMID: 35496534 PMCID: PMC9050025 DOI: 10.1039/c9ra10888b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/21/2020] [Indexed: 11/24/2022] Open
Abstract
C1 benzylated isoquinoline derivatives constitute the core of benzylisoquinoline alkaloids (BIAs). However, their C4 congeners remain elusive. Here, we describe a diastereoselective, catalytic, and modular C(sp3)–C(sp3) coupling protocol wherein β-amino sp3 C–H bonds of readily affordable vicinally functionalized dihydroisoquinolones are replaced by sp3 C–benzyl bonds. The method provides expedient access to C4 quaternary and homobenzylic dihydroisoquinolones, which are attractive fragments for potential drug discovery. A diastereoselective and catalytic C(sp3)–C(sp3) coupling protocol wherein β-amino sp3 C–H bonds are replaced by sp3 C–benzyl bonds, leading to C4 quaternary and homobenzylic dihydroisoquinolones, is described.![]()
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Antonio Moreno
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
42
|
Yang L, Zhu J, Sun C, Deng Z, Qu X. Biosynthesis of plant tetrahydroisoquinoline alkaloids through an imine reductase route. Chem Sci 2020; 11:364-371. [PMID: 32190259 PMCID: PMC7067268 DOI: 10.1039/c9sc03773j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/17/2019] [Indexed: 01/10/2023] Open
Abstract
Herein, we report a biocatalytic approach to synthesize plant tetrahydroisoquinoline alkaloids (THIQAs) from dihydroisoquinoline (DHIQ) precursors using imine reductases and N-methyltransferase (NMT). The imine reductase IR45 was engineered to significantly expand its substrate specificity, enabling efficient and stereoselective conversion of 1-phenyl and 1-benzyl 6,7-dimethoxy-DHIQs into the corresponding (S)-tetrahydroisoquinolines (S-THIQs). Coclaurine N-methyltransferase (CNMT) was able to further efficiently convert these (S)-THIQ intermediates into (S)-THIQAs. By assembling IRED, CNMT, and glucose dehydrogenase (GDH) in one reaction, we effectively constituted two artificial biosynthetic pathways in Escherichia coli and successfully applied them to the production of five (S)-THIQAs. This highly efficient (100% yield from DHIQs) and easily tailorable (adding other genes) biosynthetic approach will be useful for producing a variety of plant THIQAs.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Microbial Metabolism , School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China .
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education , School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , China
| | - Jinmei Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education , School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , China
| | - Chenghai Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education , School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism , School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China .
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism , School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China .
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education , School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , China
| |
Collapse
|
43
|
Krishna Reddy SM, Suresh P, Thamotharan S, Nanubolu JB, Suresh S, Selva Ganesan S. Substrate controlled, regioselective carbopalladation for the one-pot synthesis of C4-substituted tetrahydroisoquinoline analogues. RSC Adv 2020; 10:15794-15799. [PMID: 35493635 PMCID: PMC9052373 DOI: 10.1039/d0ra01539c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/11/2020] [Indexed: 11/21/2022] Open
Abstract
6-Exo-trig cyclization reaction through regioselective carbopalladation was demonstrated with N-(2-halobenzyl)-N-allylamines to furnish the corresponding C4-substituted tetrahydroisoquinoline derivatives.
Collapse
Affiliation(s)
| | - Pavithira Suresh
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory
- Department of Bioinformatics
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur 613401
| | - Jagadeesh Babu Nanubolu
- Centre for X-ray Crystallography
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Surisetti Suresh
- Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | | |
Collapse
|
44
|
Yang EL, Sun B, Huang ZY, Lin JG, Jiao B, Xiang L. Synthesis, Purification, and Selective β 2-AR Agonist and Bronchodilatory Effects of Catecholic Tetrahydroisoquinolines from Portulaca oleracea. JOURNAL OF NATURAL PRODUCTS 2019; 82:2986-2993. [PMID: 31625751 DOI: 10.1021/acs.jnatprod.9b00418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A green, biomimetic, phosphate-mediated Pictet-Spengler reaction was used in the synthesis of three catecholic tetrahydroisoquinolines, 1, 2, and 12, present in the medicinal plant Portulaca oleracea, as well as their analogues 3-11, 13, and 14, with dopamine hydrochloride and aldehydes as the substrates. AB-8 macroporous resin column chromatography was applied for purification of the products from the one-step high-efficacy synthesis. It eliminated the difficulties in the isolation of catecholic tetrahydroisoquinolines from the aqueous reaction system and unreacted dopamine hydrochloride. Activity screening in CHO-K1/Gα15 cell models consistently expressing α1B-, β1-, or β2-adrenergic receptors indicated that 12 and 2, compounds that are present in P. oleracea, possessed the most potent β2-adrenergic receptor agonist activity and 2 was a selective β2-adrenergic receptor agonist at the concentration of 100 μM. Both 12 and 2 exhibited dose-dependent bronchodilator effects on the histamine-induced contraction of isolated guinea-pig tracheal smooth muscle, with EC50 values of 0.8 and 2.8 μM, respectively. These findings explain the scientific rationale of P. oleracea use as an antiasthmatic herb in folk medicine and provide the basis for the discovery of novel antiasthma drugs.
Collapse
Affiliation(s)
- Er-Lan Yang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong 250012 , People's Republic of China
| | - Bin Sun
- National Glycoengineering Research Center , Shandong University , Jinan , Shandong 250012 , People's Republic of China
| | - Zi-Yi Huang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong 250012 , People's Republic of China
| | - Jian-Guang Lin
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong 250012 , People's Republic of China
| | - Bo Jiao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong 250012 , People's Republic of China
| | - Lan Xiang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Pharmacognosy, School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong 250012 , People's Republic of China
| |
Collapse
|
45
|
Nie H, Zhu Y, Hu X, Wei Z, Yao L, Zhou G, Wang P, Jiang R, Zhang S. Josiphos-Type Binaphane Ligands for Iridium-Catalyzed Enantioselective Hydrogenation of 1-Aryl-Substituted Dihydroisoquinolines. Org Lett 2019; 21:8641-8645. [DOI: 10.1021/acs.orglett.9b03251] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huifang Nie
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Yupu Zhu
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Xiaomu Hu
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Zhao Wei
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Lin Yao
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Gang Zhou
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Pingan Wang
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Ru Jiang
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Shengyong Zhang
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| |
Collapse
|
46
|
Marcyk PT, Cook SP. Synthesis of Tetrahydroisoquinolines Through an Iron-Catalyzed Cascade: Tandem Alcohol Substitution and Hydroamination. Org Lett 2019; 21:6741-6744. [PMID: 31418575 DOI: 10.1021/acs.orglett.9b02353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapid assembly of saturated nitrogen heterocycles-the synthetically more challenging variants of their aromatic relatives-can expedite the synthesis of biologically relevant molecules. Starting from a benzylic alcohol tethered to an unactivated alkene, an iron-catalyzed tandem alcohol substitution and hydroamination provides access to tetrahydroisoquinolines in a single synthetic step. Using a mild iron-based catalyst, the combination of these operations forms two carbon-nitrogen bonds and provides a unique annulation strategy to access this valuable core.
Collapse
Affiliation(s)
- Paul T Marcyk
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Silas P Cook
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
47
|
Barber JS, Scales S, Tran-Dubé M, Wang F, Sach NW, Bernier L, Collins MR, Zhu J, McAlpine IJ, Patman RL. Rhodium(III)-Catalyzed C-H Activation: Ligand-Controlled Regioselective Synthesis of 4-Methyl-Substituted Dihydroisoquinolones. Org Lett 2019; 21:5689-5693. [PMID: 31264873 DOI: 10.1021/acs.orglett.9b02029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rh-catalyzed C-H functionalization of O-pivaloyl benzhydroxamic acids with propene gas provides access to 4-methyl-substituted dihydroisoquinolones. Good to excellent levels of regioselectivity are achieved using [CptRhCl2]2 as a precatalyst under optimized conditions. Thorough examination of aryl/heteroaryl O-pivaloyl hydroxamic acid substrates, ligand effects on C-H site selectivity, alkene scope, and demonstration of scale are discussed within.
Collapse
Affiliation(s)
- Joyann S Barber
- Pfizer Oncology Medicinal Chemistry , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Stephanie Scales
- Pfizer Oncology Medicinal Chemistry , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Michelle Tran-Dubé
- Pfizer Oncology Medicinal Chemistry , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Fen Wang
- Pfizer Oncology Medicinal Chemistry , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Neal W Sach
- Pfizer Oncology Medicinal Chemistry , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Louise Bernier
- Pfizer Oncology Medicinal Chemistry , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Michael R Collins
- Pfizer Oncology Medicinal Chemistry , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - JinJiang Zhu
- Pfizer Oncology Medicinal Chemistry , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Indrawan J McAlpine
- Pfizer Oncology Medicinal Chemistry , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Ryan L Patman
- Pfizer Oncology Medicinal Chemistry , 10770 Science Center Drive , San Diego , California 92121 , United States
| |
Collapse
|
48
|
Altinoz MA, Topcu G, Hacimuftuoglu A, Ozpinar A, Ozpinar A, Hacker E, Elmaci İ. Noscapine, a Non-addictive Opioid and Microtubule-Inhibitor in Potential Treatment of Glioblastoma. Neurochem Res 2019; 44:1796-1806. [PMID: 31292803 DOI: 10.1007/s11064-019-02837-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023]
Abstract
Noscapine is a phthalide isoquinoline alkaloid that easily traverses the blood brain barrier and has been used for years as an antitussive agent with high safety. Despite binding opioid receptors, noscapine lacks significant hypnotic and euphoric effects rendering it safe in terms of addictive potential. In 1954, Hans Lettré first described noscapine as a mitotic poison. The drug was later tested for cancer treatment in the early 1960's, yet no effect was observed likely as a result of its short biological half-life and limited water solubility. Since 1998, it has regained interest thanks to studies from Emory University, which showed its anticancer activity in animal models with negligible toxicity. In contrast to other microtubule-inhibitors, noscapine does not affect the total intracellular tubulin polymer mass. Instead, it forces the microtubules to spend an increased amount of time in a paused state leading to arrest in mitosis and subsequently inducing mitotic slippage/mitotic catastrophe/apoptosis. In experimental models, noscapine does not induce peripheral neuropathy, which is common with other microtubule inhibitors. Noscapine also inhibits tumor growth and enhances cancer chemosensitivity via selective blockage of NF-κB, an important transcription factor in glioblastoma pathogenesis. Due to their anticancer activities and high penetration through the blood-brain barrier, noscapine analogues strongly deserve further study in various animal models of glioblastoma as potential candidates for future patient therapy.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey. .,Department of Psychiatry, Maastricht University, Maastricht, The Netherlands.
| | - Gulacti Topcu
- Department of Pharmacy, Bezmi Alem University, Istanbul, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Erzurum Ataturk University, Erzurum, Turkey
| | - Alp Ozpinar
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, USA
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - Emily Hacker
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, USA
| | - İlhan Elmaci
- Department of Neurosurgery, Acibadem Hospital, Istanbul, Turkey
| |
Collapse
|
49
|
Kiss L, Ouchakour L, Ábrahámi RA, Nonn M. Stereocontrolled Synthesis of Functionalized Azaheterocycles from Carbocycles through Oxidative Ring Opening/Reductive Ring Closing Protocols. CHEM REC 2019; 20:120-141. [PMID: 31250972 DOI: 10.1002/tcr.201900025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Fluorine-containing organic scaffolds are of significant interest in medicinal chemistry. The incorporation of fluorine into biomolecules can lead to remarkable changes in their physical, chemical, and biological properties. There are already many drugs on the market, which contain at least one fluorine atom. Saturated functionalized azaheterocycles as bioactive substances have gained increasing attention in pharmaceutical chemistry. Due to the high biorelevance of organofluorine molecules and the importance of N-heterocyclic compounds, selective stereocontrolled procedures to the access of new fluorine-containing saturated N-heterocycles are considered to be a hot research topic. This account summarizes the synthesis of functionalized and fluorine-containing saturated azaheterocycles starting from functionalized cycloalkenes and based on oxidative ring cleavage of diol intermediates followed by ring expansion with reductive amination.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| | - Lamiaa Ouchakour
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| | - Renáta A Ábrahámi
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| |
Collapse
|
50
|
Zhao J, Méndez-Sánchez D, Ward JM, Hailes HC. Biomimetic Phosphate-Catalyzed Pictet-Spengler Reaction for the Synthesis of 1,1'-Disubstituted and Spiro-Tetrahydroisoquinoline Alkaloids. J Org Chem 2019; 84:7702-7710. [PMID: 31095375 PMCID: PMC7007230 DOI: 10.1021/acs.joc.9b00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Tetrahydroisoquinoline (THIQ) alkaloids
are an important group
of compounds that exhibit a range of bioactivities. Here, a phosphate
buffer-catalyzed Pictet–Spengler reaction (PSR) using unreactive
ketone substrates is described. A variety of 1,1′-disubstituted
and spiro-tetrahydroisoquinoline alkaloids were readily prepared in
one-step and high yields, highlighting the general applicability of
this approach. This study features the role of phosphate in the aqueous-based
PSR and provides an atom-efficient, sustainable route to new THIQs.
Collapse
Affiliation(s)
- Jianxiong Zhao
- Department of Chemistry , University College London , Christopher Ingold Building, 20 Gordon Street , London WC1H 0AJ , U.K
| | - Daniel Méndez-Sánchez
- Department of Chemistry , University College London , Christopher Ingold Building, 20 Gordon Street , London WC1H 0AJ , U.K
| | - John M Ward
- Department of Biochemical Engineering , University College London , London WC1E 6BT , U.K
| | - Helen C Hailes
- Department of Chemistry , University College London , Christopher Ingold Building, 20 Gordon Street , London WC1H 0AJ , U.K
| |
Collapse
|