1
|
Barkat MQ, Manzoor M, Xu C, Hussain N, Salawi A, Yang H, Hussain M. Severe asthma beyond bronchodilators: Emerging therapeutic approaches. Int Immunopharmacol 2025; 152:114360. [PMID: 40049087 DOI: 10.1016/j.intimp.2025.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Asthma is characterized by reversible airway inflammation, obstruction, and structural remodeling, which lead to the eosinophils and lymphocytes accumulation at inflammation sites and the release of inflammatory cells, like mast cells and dendritic cells, from lungs' epithelial and smooth muscle cells that trigger the activation and release of cytokines and chemokines, attracting more cells and contributing to asthma development. Available pharmacological interventions, like bronchodilators and anti-inflammatory agents, are considered generally safe and effective to treat asthma, but many affected individuals with severe asthma still struggle with symptom control. This review highlights recent innovative therapies, such as chemoattractant receptor-homologous molecule expressed on Th2 cell (CRTH2) antagonists, S-nitrosoglutathione reductase (GSNOR) and phosphodiesterase (PDE) inhibitors, and other novel biological agents, which offer potential new strategies for managing severe asthma and may alter the disease's course. Kew words. Inflammation; CRTH2; GSNOR; PDE; Interleukins; Biological agents.
Collapse
Affiliation(s)
| | - Majid Manzoor
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310015, China
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates; AAU Health and Biomedical Research center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Musaddique Hussain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Ghimire S, Xue B, Li K, Gannon RM, Wohlford-Lenane CL, Thurman AL, Gong H, Necker GC, Zheng J, Meyerholz DK, Perlman S, McCray PB, Pezzulo AA. IL-13 decreases susceptibility to airway epithelial SARS-CoV-2 infection but increases disease severity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601941. [PMID: 39005257 PMCID: PMC11244965 DOI: 10.1101/2024.07.03.601941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Treatments available to prevent progression of virus-induced lung diseases, including coronavirus disease 2019 (COVID-19) are of limited benefit once respiratory failure occurs. The efficacy of approved and emerging cytokine signaling-modulating antibodies is variable and is affected by disease course and patient-specific inflammation patterns. Therefore, understanding the role of inflammation on the viral infectious cycle is critical for effective use of cytokine-modulating agents. We investigated the role of the type 2 cytokine IL-13 on SARS-CoV-2 binding/entry, replication, and host response in primary HAE cells in vitro and in a model of mouse-adapted SARS-CoV-2 infection in vivo. IL-13 protected airway epithelial cells from SARS-CoV-2 infection in vitro by decreasing the abundance of ACE2-expressing ciliated cells rather than by neutralization in the airway surface liquid or by interferon-mediated antiviral effects. In contrast, IL-13 worsened disease severity in mice; the effects were mediated by eicosanoid signaling and were abolished in mice deficient in the phospholipase A2 enzyme PLA2G2D. We conclude that IL-13-induced inflammation differentially affects multiple steps of COVID-19 pathogenesis. IL-13-induced inflammation may be protective against initial SARS-CoV-2 airway epithelial infection; however, it enhances disease progression in vivo. Blockade of IL-13 and/or eicosanoid signaling may be protective against progression to severe respiratory virus-induced lung disease.
Collapse
Affiliation(s)
- Shreya Ghimire
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Biyun Xue
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kun Li
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Ryan M. Gannon
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Christine L. Wohlford-Lenane
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Andrew L. Thurman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Huiyu Gong
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Grace C. Necker
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jian Zheng
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Stanley Perlman
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Paul B. McCray
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
3
|
Yuan HK, Lu J, Wang XL, Lv ZY, Li B, Zhu W, Yang YQ, Yin LM. The Effects of a Transgelin-2 Agonist Administered at Different Times in a Mouse Model of Airway Hyperresponsiveness. Front Pharmacol 2022; 13:873612. [PMID: 35784706 PMCID: PMC9243334 DOI: 10.3389/fphar.2022.873612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Airway hyperresponsiveness (AHR) is one of the most important features of asthma. Our previous study showed that inhaled transgelin-2 agonist, TSG12, effectively reduced pulmonary resistance in a mouse model of asthma in a dose-dependent manner. However, the optimal administration time of TSG12 to reduce AHR and the pharmacological effects are still unclear. In this study, the effects of TSG12 inhalation before and during AHR occurrence were examined. The results showed that the pulmonary resistance was reduced by 57% and the dynamic compliance was increased by 46% in the TSG12 Mch group (atomize TSG12 10 min before methacholine, p < 0.05 vs. model). The pulmonary resistance was reduced by 61% and the dynamic compliance was increased by 47% in the TSG12 + Mch group (atomize TSG12 and methacholine together, p < 0.05 vs. model). Quantitative real-time PCR showed that the gene expression levels of transgelin-2, myosin phosphatase target subunit-1, and myosin light chain were up-regulated by 6.4-, 1.9-, and 2.8-fold, respectively, in the TSG12 Mch group. The gene expression levels of transgelin-2, myosin phosphatase target subunit-1, and myosin light chain were up-regulated by 3.2-, 1.4-, and 1.9-fold, respectively, in the TSG12 + Mch group. The results suggested that TSG12 effectively reduces pulmonary resistance when TSG12 inhalation occurred both before and during AHR occurrence. Gene expression levels of transgelin-2 and myosin light chain were significantly up-regulated when TSG12 inhalation occurred before AHR occurrence. This study may provide a basis for the administration time of TSG12 for asthma treatment in the future.
Collapse
Affiliation(s)
- Hong-Kai Yuan
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Lu
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Ling Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Ying Lv
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Qing Yang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yong-Qing Yang, ; Lei-Miao Yin,
| | - Lei-Miao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yong-Qing Yang, ; Lei-Miao Yin,
| |
Collapse
|
4
|
Li X, Li Q, Ji T, Zhang H, Liu J, Wu M, Chen H, Lou J, Liu C, Xu Z, Ding Y. Pharmacokinetics, safety, and tolerability of TQC3564, a novel CRTh2 receptor antagonist: report of the first-in-human single- and multiple-dose escalation trials in healthy Chinese subjects. Expert Opin Investig Drugs 2022; 31:729-736. [PMID: 35574691 DOI: 10.1080/13543784.2022.2078192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND This is the first-in-human study to evaluate the pharmacokinetics, safety, and tolerability of TQC3564 (a novel CRTh2 receptor antagonist) in healthy Chinese subjects. RESEARCH DESIGN AND METHODS This project was a phase Ia clinical study of TQC3564 as a single-ascending dose (SAD) (25 to 1200 mg) and a multiple-ascending dose (MAD) (100 or 500 mg, QD) as well as a two-period crossover food-effect study (300 mg). RESULTS In the SAD and MAD study, TQC3564 were found to be safe and well tolerated, without dose-dependent adverse events (AEs), and all AEs were mild or moderate in severity. In the SAD study, the median tmax of TQC3564 was 2.5-4.5 h, and t1/2 was 8.13-35.7 h. Exposure was increased after food intake. The MAD study results showed that steady-state was achieved on day 4. Moreover, no apparent TQC3564 plasma accumulation was detected on day 7. CONCLUSIONS In healthy subjects, TQC3564 at a single dose of 25-1200 mg or 100-500 mg at multiple doses (QD) was safe and tolerable with acceptable PK profiles, indicating that TQC3564 has potential as a therapeutic option for asthma. (This study has been registered at http://www.chinadrugtrials.org.cn/ under identifier CTR20192397.).
Collapse
Affiliation(s)
- Xiaojiao Li
- Clinical Trial Unit, First Hospital, Jilin UniversityPhase I , Changchun, Jilin, China
| | - Qianqian Li
- Clinical Trial Unit, First Hospital, Jilin UniversityPhase I , Changchun, Jilin, China
| | - Tianliang Ji
- Cardiovascular Department, First Hospital, Jilin University, Jilin, China
| | - Hong Zhang
- Clinical Trial Unit, First Hospital, Jilin UniversityPhase I , Changchun, Jilin, China
| | - Jingrui Liu
- Clinical Trial Unit, First Hospital, Jilin UniversityPhase I , Changchun, Jilin, China
| | - Min Wu
- Clinical Trial Unit, First Hospital, Jilin UniversityPhase I , Changchun, Jilin, China
| | - Hong Chen
- Clinical Trial Unit, First Hospital, Jilin UniversityPhase I , Changchun, Jilin, China
| | - Jinfeng Lou
- Clinical Trial Unit, First Hospital, Jilin UniversityPhase I , Changchun, Jilin, China
| | - Chengjiao Liu
- Clinical Trial Unit, First Hospital, Jilin UniversityPhase I , Changchun, Jilin, China
| | - Zhongnan Xu
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing, Jiangsu, China
| | - Yanhua Ding
- Clinical Trial Unit, First Hospital, Jilin UniversityPhase I , Changchun, Jilin, China
| |
Collapse
|
5
|
Oyesola OO, Tait Wojno ED. Prostaglandin regulation of type 2 inflammation: From basic biology to therapeutic interventions. Eur J Immunol 2021; 51:2399-2416. [PMID: 34396535 PMCID: PMC8843787 DOI: 10.1002/eji.202048909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Type 2 immunity is critical for the protective and repair responses that mediate resistance to parasitic helminth infection. This immune response also drives aberrant inflammation during atopic diseases. Prostaglandins are a class of critical lipid mediators that are released during type 2 inflammation and are integral in controlling the initiation, activation, maintenance, effector functions, and resolution of Type 2 inflammation. In this review, we explore the roles of the different prostaglandin family members and the receptors they bind to during allergen‐ and helminth‐induced Type 2 inflammation and the mechanism through which prostaglandins promote or suppress Type 2 inflammation. Furthermore, we discuss the potential role of prostaglandins produced by helminth parasites in the regulation of host–pathogen interactions, and how prostaglandins may regulate the inverse relationship between helminth infection and allergy. Finally, we discuss opportunities to capitalize on our understanding of prostaglandin pathways to develop new therapeutic options for humans experiencing Type 2 inflammatory disorders that have a significant prostaglandin‐driven component including allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| |
Collapse
|
6
|
Yang D, Guo X, Liu T, Li Y, Du Z, Liu C. Efficacy and Safety of Prostaglandin D2 Receptor 2 Antagonism with Fevipiprant for Patients with Asthma: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Allergy Asthma Rep 2021; 21:39. [PMID: 34387775 DOI: 10.1007/s11882-021-01017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Accumulating evidence has shown that prostaglandin D2 (PGD2)-chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) pathway plays an important role in promoting eosinophilic airway inflammation in asthma. We aimed to assess the efficacy and safety of CRTH2 antagonist fevipiprant in patients with persistent asthma compared with placebo. RECENT FINDINGS We identified eligible studies by searching PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov. The study was registered as CRD 42020221714 ( http://www.crd.york.ac.uk/PROSPERO ). Ten randomized controlled trials with 7902 patients met our inclusion criteria. A statistically significant benefit of fevipiprant compared with placebo was shown in improving forced expiratory volume in 1 s (MD 0.05 L, 95% CI: 0.02 to 0.07; p < 0.0001), Asthma Control Questionnaire score (MD -0.10, 95% CI: -0.16 to -0.04; p = 0.001), and Asthma Quality of Life Questionnaire score (MD 0.08, 95% CI: 0.03 to 0.13; p = 0.003). Fevipiprant decreased number of patients with at least one asthma exacerbation requiring administration of systemic corticosteroids for 3 days or more (RR 0.86, 95% CI: 0.77 to 0.97; p = 0.01). Some benefits were a little more pronounced in the high eosinophil population (with an elevated blood eosinophil count or sputum eosinophil percentage) and in the 450 mg dose group. Fevipiprant was well tolerated with no safety issues compared with placebo. Fevipiprant could safely improve asthma outcomes compared to placebo. However, most of the differences didn't reach the minimal clinically important difference (MCID), thus the clinical benefits remained to be confirmed.
Collapse
Affiliation(s)
- Dan Yang
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Xinning Guo
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Ting Liu
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Yina Li
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Zhuman Du
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China.
| |
Collapse
|
7
|
Management of Exercise-Induced Bronchoconstriction in Athletes. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:2183-2192. [PMID: 32620432 DOI: 10.1016/j.jaip.2020.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is a phenomenon observed in asthma but is also seen in healthy individuals and frequently in athletes. High prevalence rates are observed in athletes engaged in endurance sports, winter sports, and swimming. The pathophysiology of EIB is thought to be related to hyperventilation, cold air, and epithelial damage caused by chlorine and fine particles in inspired air. Several diagnostic procedures can be used; however, the diagnosis of EIB based on self-reported symptoms is not reliable and requires an objective examination. The hyperosmolar inhalation test and eucapnic voluntary hyperpnea test, which involve indirect stimulation of the airway, are useful for the diagnosis of EIB. A short-acting β-agonist is the first choice for prevention of EIB, and an inhaled corticosteroid is essential for patients with asthma. Furthermore, treatment should accommodate antidoping requirements in elite athletes. Tailoring of the therapeutic strategy to the individual case and the prognosis after cessation of athletic activity are issues that should be clarified in the future.
Collapse
|
8
|
Wang X, Bartels C, Kulkarni S, Sangana R, Jain M, Zack J, Yu J. Population Pharmacokinetic Analysis of Fevipiprant in Healthy Subjects and Asthma Patients using a Tukey’s g-and-h Distribution. Drug Res (Stuttg) 2021; 71:326-334. [PMID: 33682912 DOI: 10.1055/a-1381-6579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Aim The objective of this analysis was to characterize the population pharmacokinetics (PK) of fevipiprant in asthma patients and to evaluate the effect of baseline covariates on the PK of fevipiprant.
Methods PK data from 1281 healthy subjects or asthma patients were available after single or once daily dosing of fevipiprant. Population PK analysis was conducted to describe fevipiprant plasma concentration data using a non-linear mixed effect modeling approach.
Results Fevipiprant PK was described by a two-compartment model with first-order absorption and first-order elimination. Exploration of fevipiprant PK in the population from the phase III studies revealed an over-dispersed and skewed distribution. This unusual distribution was described using Tukey’s g-and-h distribution (TGH) on the between-subject variability of apparent clearance (CL/F). The model identified a significant impact of disease status on CL/F, with the value in healthy subjects being 62% higher than that in asthma patients. Bodyweight, age and renal function showed statistically significant impact on fevipiprant clearance; however, compared with a typical asthma patient, the simulated difference in steady-state exposure was at most 16%.
Conclusion Fevipiprant PK was described by a two-compartment model with first-order absorption and first-order elimination. The TGH distribution was appropriate to describe the over-dispersed and skewed PK data as observed in the current studies. Asthma patients had approximately 37% higher exposure than healthy subjects did. Other covariates changed exposure by at most 16%.
Collapse
Affiliation(s)
- Xinting Wang
- Biostatistics & Pharmacometrics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Christian Bartels
- Biostatistics & Pharmacometrics, Novartis Pharma AG, Basel, Switzerland
| | - Swarupa Kulkarni
- PK Science, Novartis Pharmaceutics Corporation, East Hanover, NJ, USA
| | | | - Monish Jain
- PK Science, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Julia Zack
- PK Science, Novartis Pharmaceutics Corporation, East Hanover, NJ, USA
| | - Jing Yu
- Biostatistics & Pharmacometrics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
9
|
Brightling CE, Gaga M, Inoue H, Li J, Maspero J, Wenzel S, Maitra S, Lawrence D, Brockhaus F, Lehmann T, Brindicci C, Knorr B, Bleecker ER. Effectiveness of fevipiprant in reducing exacerbations in patients with severe asthma (LUSTER-1 and LUSTER-2): two phase 3 randomised controlled trials. THE LANCET RESPIRATORY MEDICINE 2020; 9:43-56. [PMID: 32979986 DOI: 10.1016/s2213-2600(20)30412-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Fevipiprant, an oral antagonist of the prostaglandin D2 receptor 2, reduced sputum eosinophils and improved lung function in phase 2 trials of patients with asthma. We aimed to investigate whether fevipiprant reduces asthma exacerbations in patients with severe asthma. METHODS LUSTER-1 and LUSTER-2 were two phase 3 randomised, double-blind, placebo-controlled, parallel-group, replicate 52-week studies; LUSTER-1 took place at 174 clinical sites in 25 countries and LUSTER 2 took place at 169 clinical sites in 19 countries. Fevipiprant or placebo was added to Global Initiative for Asthma Steps 4 and 5 therapy in adolescents and adults with severe asthma. Patients aged 12 years or older with uncontrolled asthma on dual or triple asthma therapy were randomly assigned by use of interactive response technology to one of three treatment groups (once-daily fevipiprant 150 mg, fevipiprant 450 mg, or placebo) in a 1:1:1 ratio within each of the randomisation strata: peripheral blood eosinophil counts (<250 cells per μL or ≥250 cells per μL), patient age (<18 years or ≥18 years), and use or non-use of oral corticosteroids as part of their standard of care asthma therapy. The primary efficacy endpoint was the annualised rate of moderate to severe asthma exacerbations with 150 mg or 450 mg doses of fevipiprant once daily compared with placebo over 52 weeks, in patients with high blood eosinophil counts (≥250 cells per μL) and in the overall study population. All patients who underwent randomisation and received at least one dose of study medication were included in efficacy and safety analyses. These trials are registered with ClinicalTrials.gov, NCT02555683 (LUSTER-1) and NCT02563067 (LUSTER-2), and are complete and no longer recruiting. FINDINGS Between Dec 11, 2015, and Oct 25, 2018, 894 patients were randomly assigned to fevipiprant 150 mg (n=301), fevipiprant 450 mg (n=295), or placebo (n=298) in LUSTER-1. Between Dec 3, 2015, and July 10, 2018, 877 patients were randomly assigned to fevipiprant 150 mg (n=296), fevipiprant 450 mg (n=294), or placebo (n=287) in LUSTER-2. In the high eosinophil population, in LUSTER-1 the annualised rate ratio of moderate to severe exacerbations compared with placebo was 1·04 (95% CI 0·77-1·41) for fevipiprant 150 mg and 0·83 (0·61-1·14) for fevipiprant 450 mg, and in LUSTER-2 it was 0·69 (0·50-0·96) for fevipiprant 150 mg and 0·72 (0·52-1·01) for fevipiprant 450 mg. In the overall population, in LUSTER-1 the annualised rate ratio of moderate to severe exacerbations compared with placebo was 0·96 (95% CI 0·75-1·22) for fevipiprant 150 mg and 0·78 (0·61-1·01) for fevipiprant 450 mg and in LUSTER-2 it was 0·82 (0·62-1·07) for fevipiprant 150 mg and 0·76 (0·58-1·00) for fevipiprant 450 mg. In the overall pooled population of both studies, serious adverse events occurred in 53 (9%) patients in the fevipiprant 150 mg group, 50 (9%) in the fevipiprant 450 mg group, and 50 (9%) in the placebo group. Adverse events leading to death occurred in two (<1%) patients in the fevipiprant 450 mg group and three (<1%) in the placebo group. INTERPRETATION Although neither trial showed a statistically significant reduction in asthma exacerbations after adjusting for multiple testing, consistent and modest reductions in exacerbations rates were observed in both studies with the 450 mg dose of fevipiprant. FUNDING Novartis.
Collapse
Affiliation(s)
- Christopher E Brightling
- Department of Respiratory Science, NIHR Biomedical Research Centre, Institute for Lung Health University of Leicester, Leicester, UK.
| | - Mina Gaga
- 7th Respiratory Medicine Dept and Asthma Centre, Athens Chest Hospital Sotiria, Athens, Greece
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Kagoshima University, Kagoshima, Japan
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital Guangzhou Medical University, Guangzhou, China
| | - Jorge Maspero
- Fundación CIDEA (Centro de Investigación de Enfermedades Alérgicas y Respiratorias), Buenos Aires, Argentina
| | - Sally Wenzel
- University of Pittsburgh Asthma Institute at the University of Pittsburgh Medical Center-University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | - Barbara Knorr
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Issahaku AR, Agoni C, Soremekun OS, Kubi PA, Kumi RO, Olotu FA, Soliman MES. Same Target, Different Therapeutic Outcomes: The Case of CAY10471 and Fevipiprant on CRTh2 Receptor in Treatment of Allergic Rhinitis and Asthma. Comb Chem High Throughput Screen 2020; 22:521-533. [PMID: 31538888 DOI: 10.2174/1386207322666190919113006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/12/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Prostaglandin 2 (PGD2) mediated signalling of Chemoattractant Receptorhomologous molecule expressed on Th2 cells (CRTh2) receptor has been implicated in the recruitment of inflammatory cells. This explains the design of highly selective compounds with innate abilities to antagonize PGD2-CRTh2 interactions and prevent pro-inflammatory allergies such as rhinitis and uncontrolled asthma. The development of PGD2-competitive CRTh2 binders; CAY10471 and Fevipiprant represent remarkable therapeutic progress even though they elicit disparate pharmacological propensities despite utilizing the same binding pocket. METHODS & RESULTS In this study, we seek to pinpoint the underlying phenomenon associated with differential CRTh2 therapeutic inhibition by CAY10471 and Fevipiprant using membraneembedded molecular dynamics simulation. Findings revealed that the common carboxylate group of both compounds elicited strong attractive charges with active site Arg170 and Lys210. Interestingly, a distinctive feature was the steady occurrence of high-affinity salt-bridges and an Arg170-mediated pi-cation interaction with the tetrahydrocarbozole ring of CAY10471. Further investigations into the active site motions of both ligands revealed that CAY10471 was relatively more stable. Comparative binding analyses also revealed that CAY10471 exhibited higher ΔG, indicating the cruciality of the ring stabilization role mediated by Arg170. Moreover, conformational analyses revealed that the inhibitory activity of CAY10471 was more prominent on CRTh2 compared to Fevipiprant. CONCLUSIONS These findings could further advance the strategic design of novel CRTh2 binders in the treatment of diseases related to pro-inflammatory allergies.
Collapse
Affiliation(s)
- Abdul R Issahaku
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Patrick A Kubi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Ransford O Kumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
11
|
Yousuf A, Ibrahim W, Greening NJ, Brightling CE. T2 Biologics for Chronic Obstructive Pulmonary Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:1405-1416. [PMID: 31076058 DOI: 10.1016/j.jaip.2019.01.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a significant cause of morbidity and mortality worldwide. In contrast to other chronic diseases, COPD is increasing in prevalence and is projected to be the third leading cause of death and disability worldwide by 2030. Recent advances in understanding the underlying pathophysiology of COPD has led to the development of novel targeted therapies (biologics and small molecules) that address the underlying pathophysiology of the disease. In severe asthma, biologics targeting type 2 (T2)- mediated immunity have been successful and have changed the treatment paradigm. In contrast, no biologics are currently licensed for the treatment of COPD. Those targeting non-T2 pathways have not demonstrated efficacy and in some cases raised concerns related to safety. With the increasing recognition of the eosinophil and perhaps T2-immunity possibly playing a role in a subgroup of patients with COPD, T2 biologics, specifically anti-IL-5(R), have been tested and demonstrated modest reductions in exacerbation frequency. Potential benefit was related to the baseline blood eosinophil count. These benefits were small compared with asthma. Thus, whether a subgroup of COPD sufferers might respond to anti-IL-5 or other T2-directed biologics remains to be fully addressed and requires further investigation.
Collapse
Affiliation(s)
- Ahmed Yousuf
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Infection, Immunity & Inflammation, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Wadah Ibrahim
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Infection, Immunity & Inflammation, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Neil J Greening
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Infection, Immunity & Inflammation, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Infection, Immunity & Inflammation, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.
| |
Collapse
|
12
|
Lee HY, Lee HY, Hur J, Kang HS, Choi JY, Rhee CK, Kang JY, Kim YK, Lee SY. Blockade of thymic stromal lymphopoietin and CRTH2 attenuates airway inflammation in a murine model of allergic asthma. Korean J Intern Med 2020; 35:619-629. [PMID: 32183504 PMCID: PMC7214371 DOI: 10.3904/kjim.2018.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIMS Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that plays a key role in Th2-mediated inflammation, both directly by promoting the proliferation of naïve CD4 Th2 cells, and indirectly by activating dendritic cells (DCs). TSLP-activated DCs induce the expansion of chemoattractant receptor homologous molecule expressed on Th2 (CRTH2)+ CD4+ Th2 memory cells, which undergo a Th2 response and express prostaglandin D2 (PGD2) synthase. CRTH2, a PGD2 receptor, is a selective Th2-cell surface marker. We investigated the effects of an anti-TSLP antibody (Ab) and a CRTH2 antagonist, as well as their mechanisms of action, in a mouse model of acute asthma. METHODS BALB/c mice were sensitized and challenged with ovalbumin. We then evaluated the effects of the administration of an anti-TSLP Ab either alone or together with a CRTH2 antagonist on cell counts, Th2 cytokine levels in bronchoalveolar fluid, and the levels of epithelium-derived cytokines such as TSLP, interleukin (IL) 33, and IL-25 in lung homogenates, as well as airway hyper-responsiveness (AHR). RESULTS Anti-TSLP Ab and the CRTH2 antagonist significantly attenuated eosinophilic airway inflammation, AHR, and the expression of Th2 cytokines. The expression of GATA-3 and the levels of IL-33 and IL-25 in lung tissues were affected by the combined anti-TSLP and CRTH2 antagonist treatment. CONCLUSION These results suggest that the dual blockade of TSLP and CRTH2 may serve as an effective treatment target for eosinophilic asthma.
Collapse
Affiliation(s)
- Hea Yon Lee
- Department of Health Promotion Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwa Young Lee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Hur
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Seon Kang
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joon Young Choi
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Young Kang
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Kyoon Kim
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Young Lee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Sook Young Lee, M.D. Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6061 Fax: +82-2-569-2158 E-mail:
| |
Collapse
|
13
|
Bronchial Asthma: Current Trends in Treatment. ACTA MEDICA MARTINIANA 2020. [DOI: 10.2478/acm-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Asthma is a heterogenous disease which pathophysiology is still poorly understood. Asthma was traditionally divided into allergic (extrinsic) and non-allergic (intrinsic) types, while patients with allergic type responded better to corticosteroids. Since 2013 the definition of asthma has changed. Recently, better insight into clinical consi -derations and underlying inflammatory phenotypes has been gained. Defining these phenotypes has already led to more specific clinical trials and, therefore, to more personalized and successfully targeted therapy. For future, much more effort is put in identifying new phenotype-specific biomarkers which could be helpful in stratification of heterogeneous patients with asthma.
Collapse
|
14
|
Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D 2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy 2020; 75:761-768. [PMID: 31355946 DOI: 10.1111/all.14001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023]
Abstract
Current research suggests that the prostaglandin D2 (PGD2 ) receptor 2 (DP2 ) is a principal regulator in the pathophysiology of asthma, because it stimulates and amplifies the inflammatory response in this condition. The DP2 receptor can be activated by both allergic and nonallergic stimuli, leading to several pro-inflammatory events, including eosinophil activation and migration, release of the type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 from T helper 2 (Th2) cells and innate lymphoid cells type 2 (ILCs), and increased airway smooth muscle mass via recruitment of mesenchymal progenitors to the airway smooth muscle bundle. Activation of the DP2 receptor pathway has potential downstream effects on asthma pathophysiology, including on airway epithelial cells, mucus hypersecretion, and airway remodelling, and consequently might impact asthma symptoms and exacerbations. Given the broad distribution of DP2 receptors on immune and structural cells involved in asthma, this receptor is being explored as a novel therapeutic target.
Collapse
Affiliation(s)
| | - Guy Brusselle
- Department of Respiratory Diseases Ghent University Hospital Ghent Belgium
| | - Pablo Altman
- Novartis Pharmaceuticals Corporation East Hanover NJ USA
| |
Collapse
|
15
|
Lee K, Lee SH, Kim TH. The Biology of Prostaglandins and Their Role as a Target for Allergic Airway Disease Therapy. Int J Mol Sci 2020; 21:ijms21051851. [PMID: 32182661 PMCID: PMC7084947 DOI: 10.3390/ijms21051851] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Prostaglandins (PGs) are a family of lipid compounds that are derived from arachidonic acid via the cyclooxygenase pathway, and consist of PGD2, PGI2, PGE2, PGF2, and thromboxane B2. PGs signal through G-protein coupled receptors, and individual PGs affect allergic inflammation through different mechanisms according to the receptors with which they are associated. In this review article, we have focused on the metabolism of the cyclooxygenase pathway, and the distinct biological effect of each PG type on various cell types involved in allergic airway diseases, including asthma, allergic rhinitis, nasal polyposis, and aspirin-exacerbated respiratory disease.
Collapse
|
16
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
17
|
Kanagalingam T, Solomon L, Vijeyakumaran M, Palikhe NS, Vliagoftis H, Cameron L. IL-2 modulates Th2 cell responses to glucocorticosteroid: A cause of persistent type 2 inflammation? IMMUNITY INFLAMMATION AND DISEASE 2019; 7:112-124. [PMID: 30994266 PMCID: PMC6688076 DOI: 10.1002/iid3.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Background Glucocorticosteroids (GCs) are the main treatment for asthma as they reduce type 2 cytokine expression and induce apoptosis. Asthma severity is associated with type 2 inflammation, circulating Th2 cells and higher GC requirements. Objective The aim of this study was to assess whether ex vivo production of interleukin 2 (IL‐2), a T‐cell survival factor, associated with clinical features of asthma severity, the proportion of blood Th2 cells and Th2 cell responses to GC. Methods Peripheral blood from asthma patients (n = 18) was obtained and the proportion of Th2 cells determined by flow cytometry. Peripheral blood cells were activated with mitogen (24 hours) and supernatant levels of IL‐2 and IL‐13 measured by enzyme‐linked immunosorbent assay. In vitro differentiated Th2 cells were treated with dexamethasone (DEX) and IL‐2 and assessed for apoptosis by flow cytometry (annexin V). Level of messenger RNA (mRNA) for antiapoptotic (BCL‐2) and proapoptotic (BIM) genes, IL‐13, GC receptor (GR) and FKBP5 were determined by quantitative real‐time polymerase chain reaction. GR binding was assessed by chromatin immunoprecipitation. Results IL‐2 produced by activated peripheral blood cells correlated negatively with lung function and positively with a daily dose of inhaled GC. When patients were stratified based on IL‐2 level, high IL‐2 producers made more IL‐13 and had a higher proportion of circulating Th2 cells. In vitro, increasing the level of IL‐2 in the culture media was associated with resistance to DEX‐induced apoptosis, with more BCL‐2/less BIM mRNA. Th2 cells cultured in high IL‐2 had more IL‐13, less GR mRNA, showed reduced binding of the GR to FKBP5, a known GC‐induced gene, and required higher concentrations of DEX for cytokine suppression. Conclusions and Clinical Relevance IL‐2 downregulates Th2 cell responses to GC, supporting both their survival and pro‐inflammatory capacity. These results suggest that a patient's potential to produce IL‐2 may be a determinant in asthma severity.
Collapse
Affiliation(s)
- Tharsan Kanagalingam
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Lauren Solomon
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Meerah Vijeyakumaran
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Nami Shrestha Palikhe
- Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa Cameron
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Paul AGA, Muehling LM, Eccles JD, Woodfolk JA. T cells in severe childhood asthma. Clin Exp Allergy 2019; 49:564-581. [PMID: 30793397 DOI: 10.1111/cea.13374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Severe asthma in children is a debilitating condition that accounts for a disproportionately large health and economic burden of asthma. Reasons for the lack of a response to standard anti-inflammatory therapies remain enigmatic. Work in the last decade has shed new light on the heterogeneous nature of asthma, and the varied immunopathologies of severe disease, which are leading to new treatment approaches for the individual patient. However, most studies to date that explored the immune landscape of the inflamed lower airways have focused on adults. T cells are pivotal to the inception and persistence of inflammatory processes in the diseased lungs, despite a contemporary shift in focus to immune events at the epithelial barrier. This article outlines current knowledge on the types of T cells and related cell types that are implicated in severe asthma. The potential for environmental exposures and other inflammatory cues to condition the immune environment of the lung in early life to favour pathogenic T cells and steroid resistance is discussed. The contributions of T cells and their cytokines to inflammatory processes and treatment resistance are also considered, with an emphasis on new observations in children that argue against conventional type 1 and type 2 T cell paradigms. Finally, the ability for new technologies to revolutionize our understanding of T cells in severe childhood asthma, and to guide future treatment strategies that could mitigate this disease, is highlighted.
Collapse
Affiliation(s)
- Alberta G A Paul
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jacob D Eccles
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Judith A Woodfolk
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
19
|
Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung K, Diamant Z, Eguiluz-Gracia I, Knol E, Kolios AGA, Levi-Schaffer F, Nocentini G, Palomares O, Puzzovio PG, Redegeld F, van Esch BCAM, Stellato C. Comparing biologicals and small molecule drug therapies for chronic respiratory diseases: An EAACI Taskforce on Immunopharmacology position paper. Allergy 2019; 74:432-448. [PMID: 30353939 DOI: 10.1111/all.13642] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), together with their comorbidities, bear a significant burden on public health. Increased appreciation of molecular networks underlying inflammatory airway disease needs to be translated into new therapies for distinct phenotypes not controlled by current treatment regimens. On the other hand, development of new safe and effective therapies for such respiratory diseases is an arduous and expensive process. Antibody-based (biological) therapies are successful in treating certain respiratory conditions not controlled by standard therapies such as severe allergic and refractory eosinophilic severe asthma, while in other inflammatory respiratory diseases, such as COPD, biologicals are having a more limited impact. Small molecule drug (SMD)-based therapies represent an active field in pharmaceutical research and development. SMDs expand biologicals' therapeutic targets by reaching the intracellular compartment by delivery as either an oral or topically based formulation, offering both convenience and lower costs. Aim of this review was to compare and contrast the distinct pharmacological properties and clinical applications of SMDs- and antibody-based treatment strategies, their limitations and challenges, in order to highlight how they should be integrated for their optimal utilization and to fill the critical gaps in current treatment for these chronic inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - Ian M. Adcock
- Molecular Cell Biology Group; National Heart & Lung Institute; Imperial College London; London UK
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Rodolfo Bianchini
- Comparative Medicine; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy Research; Allergy, Asthma and COPD Competence center; Lund University; Lund Sweden
| | - Gaetano Caramori
- Pulmonary Unit; Department of Biomedical Sciences; Dentistry, Morphological and Functional Imaging (BIOMORF); University of Messina; Messina Italy
| | - Luigi Cari
- Department of Medicine; Section of Pharmacology; University of Perugia; Perugia Italy
| | - Kian Fan Chung
- Experimental Studies Medicine at National Heart & Lung Institute; Imperial College London; Royal Brompton & Harefield NHS Trust; London UK
| | - Zuzana Diamant
- Department of Clinical Pharmacy and Pharmacology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
- Department of Respiratory Medicine and Allergology; Institute for Clinical Science; Skane University Hospital; Lund Sweden
| | - Ibon Eguiluz-Gracia
- Allergy Unit and Research Laboratory; Regional University Hospital of Málaga and Biomedical Research Institute of Malaga (IBIMA); Málaga Spain
| | - Edward F. Knol
- Departments of Immunology and Dermatology/Allergology; University Medical Center Utrecht; Utrecht The Netherlands
| | | | - Francesca Levi-Schaffer
- Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Giuseppe Nocentini
- Department of Medicine; Section of Pharmacology; University of Perugia; Perugia Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Pier Giorgio Puzzovio
- Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Frank A. Redegeld
- Faculty of Science; Division of Pharmacology; Department of Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Betty C. A. M. van Esch
- Faculty of Science; Division of Pharmacology; Department of Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”; University of Salerno; Salerno Italy
| |
Collapse
|
20
|
Marone G, Galdiero MR, Pecoraro A, Pucino V, Criscuolo G, Triassi M, Varricchi G. Prostaglandin D 2 receptor antagonists in allergic disorders: safety, efficacy, and future perspectives. Expert Opin Investig Drugs 2018; 28:73-84. [PMID: 30513028 DOI: 10.1080/13543784.2019.1555237] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prostaglandin D2 (PGD2) is a major cyclooxygenase mediator that is synthesized by activated human mast cells and other immune cells. The biological effects of PGD2 are mediated by D-prostanoid (DP1), DP2 (CRTH2) and thromboxane prostanoid (TP) receptors that are expressed on several immune and non-immune cells involved in allergic inflammation. PGD2 exerts various proinflammatory effects relevant to the pathophysiology of allergic disorders. Several selective, orally active, DP2 receptor antagonists and a small number of DP1 receptor antagonists are being developed for the treatment of allergic disorders. AREAS COVERED The role of DP2 and DP1 receptor antagonists in the treatment of asthma and allergic rhinitis. EXPERT OPINION Head-to-head studies that compare DP1 antagonists with the standard treatment for allergic rhinitis are necessary to verify the role of these novel drugs as mono- or combination therapies. Further clinical trials are necessary to verify whether DP2 antagonists as monotherapies or, more likely, as add-on therapies, will be effective for the treatment of different phenotypes of adult and childhood asthma. Long-term studies are necessary to evaluate the safety of targeted anti-PGD2 treatments.
Collapse
Affiliation(s)
- Giancarlo Marone
- a Department of Public Health , University of Naples Federico II , Naples , Italy.,b Monaldi Hospital Pharmacy , Naples , Italy
| | - Maria Rosaria Galdiero
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Antonio Pecoraro
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Valentina Pucino
- e William Harvey Research Institute, Barts and The London School of Medicine &Dentistry , Queen Mary University of London , London , UK
| | - Gjada Criscuolo
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| | - Maria Triassi
- a Department of Public Health , University of Naples Federico II , Naples , Italy
| | - Gilda Varricchi
- c Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , Naples , Italy.,d WAO Center of Excellence , Naples , Italy
| |
Collapse
|
21
|
Menzella F, Bertolini F, Biava M, Galeone C, Scelfo C, Caminati M. Severe refractory asthma: current treatment options and ongoing research. Drugs Context 2018; 7:212561. [PMID: 30534175 PMCID: PMC6284776 DOI: 10.7573/dic.212561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
Patients with severe asthma have a greater risk of asthma-related symptoms, morbidities, and exacerbations. Moreover, healthcare costs of patients with severe refractory asthma are at least 80% higher than those with stable asthma, mainly because of a higher use of healthcare resources and chronic side effects of oral corticosteroids (OCS). The advent of new promising biologicals provides a unique therapeutic option that could achieve asthma control without OCS. However, the increasing number of available molecules poses a new challenge: the identification and selection of the most appropriate treatment. Thanks to a better understanding of the basic mechanisms of the disease and the use of predictive biomarkers, especially regarding the Th2-high endotype, it is now easier than before to tailor therapy and guide clinicians toward the most suitable therapeutic choice, thus reducing the number of uncontrolled patients and therapeutic failures. In this review, we will discuss the different biological options available for the treatment of severe refractory asthma, their mechanism of action, and the overlapping aspects of their usage in clinical practice. The availability of new molecules, specific for different molecular targets, is a key topic, especially when considering that the same targets are sometimes part of the same phenotype. The aim of this review is to help clarify these doubts, which may facilitate the clinical decision-making process and the achievement of the best possible outcomes.
Collapse
Affiliation(s)
- Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia, IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesca Bertolini
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Mirella Biava
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Via Portuense 292, 00149 Rome, Italy
| | - Carla Galeone
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia, IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Chiara Scelfo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia, IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Marco Caminati
- Asthma Center and Allergy Unit, Verona University Hospital, Piazzale L.A. Scuro, 37134 Verona, Italy
| |
Collapse
|
22
|
Wang L, Yao D, Deepak RNVK, Liu H, Xiao Q, Fan H, Gong W, Wei Z, Zhang C. Structures of the Human PGD 2 Receptor CRTH2 Reveal Novel Mechanisms for Ligand Recognition. Mol Cell 2018; 72:48-59.e4. [PMID: 30220562 DOI: 10.1016/j.molcel.2018.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022]
Abstract
The signaling of prostaglandin D2 (PGD2) through G-protein-coupled receptor (GPCR) CRTH2 is a major pathway in type 2 inflammation. Compelling evidence suggests the therapeutic benefits of blocking CRTH2 signaling in many inflammatory disorders. Currently, a number of CRTH2 antagonists are under clinical investigation, and one compound, fevipiprant, has advanced to phase 3 clinical trials for asthma. Here, we present the crystal structures of human CRTH2 with two antagonists, fevipiprant and CAY10471. The structures, together with docking and ligand-binding data, reveal a semi-occluded pocket covered by a well-structured amino terminus and different binding modes of chemically diverse CRTH2 antagonists. Structural analysis suggests a ligand entry port and a binding process that is facilitated by opposite charge attraction for PGD2, which differs significantly from the binding pose and binding environment of lysophospholipids and endocannabinoids, revealing a new mechanism for lipid recognition by GPCRs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dandan Yao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - R N V Krishna Deepak
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138671, Singapore
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qingpin Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138671, Singapore
| | - Weimin Gong
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|