1
|
Xu H, Habich A, Ferreira D, Elisabet L, Westman E, Eriksdotter M. Long-term effects of cholinesterase inhibitors and memantine on cognitive decline, cardiovascular events, and mortality in dementia with Lewy bodies: An up to 10-year follow-up study. Alzheimers Dement 2024; 20:6740-6754. [PMID: 39177108 PMCID: PMC11485406 DOI: 10.1002/alz.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION We aimed to assess the impact of cholinesterase inhibitors (ChEIs) and memantine on cognition, major adverse cardiovascular events (MACE) and mortality in dementia with Lewy bodies (DLB). METHODS A total of 1,095 incident DLB patients from the Swedish Registry on cognitive/dementia disorders were included. Using an inverse probability of treatment weighting, the effect of initiating ChEI or memantine within 90 days of DLB diagnosis and nonuse was evaluated on cognitive trajectories and risks of MACE and death. RESULTS The use of ChEIs significantly slowed cognitive decline at follow-ups (Mini-Mental State Examination [MMSE] -0.39 points/y; 95% confidence interval [CI], -0.96 to 0.18) compared to memantine (-2.49 points/y; -4.02 to -0.97) and nonuse (-2.50 points/y; -4.28 to -0.73). Treatment groups did not differ in MACE events. ChEI use was associated with lower risk of death in the first year after DLB diagnosis (adjusted hazard ratio [HR] 0.66, 95% CI 0.46, 0.94). DISCUSSION Our findings illuminate the potential benefits of ChEI treatment in DLB patients. HIGHLIGHTS Cholinesterase inhibitors slow cognitive decline over a 5-year follow-up period when compared to both memantine treatment and nonuse in patients with dementia with Lewy bodies. Cholinesterase Inhibitors reduce risk of mortality within the initial year, but this effect is not sustained after 1 year in patients with dementia with Lewy bodies.
Collapse
Affiliation(s)
- Hong Xu
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- Facultad de Ciencias de la SaludUniversidad Fernando Pessoa CanariasLas PalmasEspaña
| | - Londos Elisabet
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- Institution of Clinical SciencesLund UniversityMalmöSweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- Theme Inflammation and AgingKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Agarwal K, Backler W, Bayram E, Bloom L, Boeve BF, Cha J, Denslow M, Ferman TJ, Galasko D, Galvin JE, Gomperts SN, Irizarry MC, Kantarci K, Kaushik H, Kietlinski M, Koenig A, Leverenz JB, McKeith I, McLean PJ, Montine TJ, Moose SO, O'Brien JT, Panier V, Ramanathan S, Ringel MS, Scholz SW, Small J, Sperling RA, Taylor A, Taylor J, Ward RA, Witten L, Hyman BT. Lewy body dementia: Overcoming barriers and identifying solutions. Alzheimers Dement 2024; 20:2298-2308. [PMID: 38265159 PMCID: PMC10942666 DOI: 10.1002/alz.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024]
Abstract
Despite its high prevalence among dementias, Lewy body dementia (LBD) remains poorly understood with a limited, albeit growing, evidence base. The public-health burden that LBD imposes is worsened by overlapping pathologies, which contribute to misdiagnosis, and lack of treatments. For this report, we gathered and analyzed public-domain information on advocacy, funding, research outputs, and the therapeutic pipeline to identify gaps in each of these key elements. To further understand the current gaps, we also conducted interviews with leading experts in regulatory/governmental agencies, LBD advocacy, academic research, and biopharmaceutical research, as well as with funding sources. We identified wide gaps across the entire landscape, the most critical being in research. Many of the experts participated in a workshop to discuss the prioritization of research areas with a view to accelerating therapeutic development and improving patient care. This white paper outlines the opportunities for bridging the major LBD gaps and creates the framework for collaboration in that endeavor. HIGHLIGHTS: A group representing academia, government, industry, and consulting expertise was convened to discuss current progress in Dementia with Lewy Body care and research. Consideration of expert opinion,natural language processing of the literature as well as publicly available data bases, and Delphi inspired discussion led to a proposed consensus document of priorities for the field.
Collapse
Affiliation(s)
| | | | - Ece Bayram
- Parkinson and Other Movement Disorders CenterDepartment of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | | | | - Maria Denslow
- Alzheimer Disease and Brain HealthEisai, Inc.NutleyNew JerseyUSA
| | - Tanis J. Ferman
- Department of Psychiatry and PsychologyMayo ClinicJacksonvilleFloridaUSA
| | - Douglas Galasko
- Department of Neurosciencesand Shiley‐Marcos Alzheimer's Disease Research CenterUC San DiegoLa JollaCaliforniaUSA
| | - James E. Galvin
- Department of NeurologyComprehensive Center for Brain HealthUniversity of Miami Miller School of MedicineBoca RatonFloridaUSA
| | | | | | - Kejal Kantarci
- Department of RadiologyDivision of NeuroradiologyMayo Clinic RochesterRochesterMinnesotaUSA
| | | | | | | | - James B. Leverenz
- Cleveland Lou Ruvo Center for Brain HealthNeurological InstituteCleveland ClinicClevelandOhioUSA
| | - Ian McKeith
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | | | | | - John T. O'Brien
- Department of PsychiatryUniversity of Cambridge School of Clinical MedicineCambridgeUK
| | | | - Sharad Ramanathan
- Departments of Molecular and Cell BiologyStem Cell and Regenerative Biology and Applied PhysicsHarvard UniversityCambridgeMassachusettsUSA
| | | | - Sonja W. Scholz
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
- Department of NeurologyJohns Hopkins University Medical CenterBaltimoreMarylandUSA
| | | | - Reisa A. Sperling
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Rebecca A. Ward
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Lisa Witten
- The Boston Consulting GroupBostonMassachusettsUSA
| | - Bradley T. Hyman
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
3
|
Prins ND, de Haan W, Gardner A, Blackburn K, Chu HM, Galvin JE, Alam JJ. Phase 2A Learnings Incorporated into RewinD-LB, a Phase 2B Clinical Trial of Neflamapimod in Dementia with Lewy Bodies. J Prev Alzheimers Dis 2024; 11:549-557. [PMID: 38706271 PMCID: PMC11061005 DOI: 10.14283/jpad.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/21/2023] [Indexed: 05/07/2024]
Abstract
BACKGROUND In an exploratory 91-participant phase 2a clinical trial (AscenD-LB, NCT04001517) in dementia with Lewy bodies (DLB), neflamapimod showed improvement over placebo on multiple clinical endpoints. To confirm those results, a phase 2b clinical study (RewinD-LB, NCT05869669 ) that is similar to AscenD-LB has been initiated. OBJECTIVES To optimize the choice of patient population, primary endpoint, and biomarker evaluations in RewinD-LB. DESIGN Evaluation of the efficacy results from AscenD-LB, the main results of which, and a re-analysis after stratification for absence or presence of AD co-pathology (assessed by plasma ptau181), have been published. In addition, the MRI data from a prior phase 2a clinical trial in Early Alzheimer's disease (AD), were reviewed. SETTING 22 clinical sites in the US and 2 in the Netherlands. PARTICIPANTS Probable DLB by consensus criteria and abnormal dopamine uptake by DaTscan™ (Ioflupane I123 SPECT). INTERVENTION Neflamapimod 40mg capsules or matching placebo capsules, twice-a-day (BID) or three-times-a-day (TID), for 16 weeks. MEASUREMENTS 6-test Neuropsychological Test Battery (NTB) assessing attention and executive function, Clinical Dementia Rating Sum-of-Boxes (CDR-SB), Timed Up and Go (TUG), International Shopping List Test (ISLT). RESULTS Within AscenD-LB, patients without evidence of AD co-pathology exhibited a neflamapimod treatment effect that was greater than that in the overall population and substantial (cohen's d effect size vs. placebo ≥ for CDR-SB, TUG, Attention and ISLT-recognition). In addition, the CDR-SB and TUG performed better than the cognitive tests to demonstrate neflamapimod treatment effect in comparison to placebo. Further, clinical trial simulations indicate with 160-patients (randomized 1:1), RewinD-LB conducted in patients without AD co-pathology has >95% (approaching 100%) statistical power to detect significant improvement over placebo on the CDR-SB. Preliminary evidence of positive treatment effects on beta functional connectivity by EEG and basal forebrain atrophy by MRI were obtained in AscenD-LB and the Early AD study, respectively. CONCLUSION In addition to use of a single dose regimen of neflamapimod (40mg TID), key distinctions between phase 2b and phase 2a include RewinD-LB (1) excluding patients with AD co-pathology, (2) having CDR-SB as the primary endpoint, and (3) having MRI studies to evaluate effects on basal forebrain atrophy.
Collapse
Affiliation(s)
- N D Prins
- John J. Alam, MD, CervoMed, Inc., 20 Park Plaza, Suite 424, Boston, MA 02116, , Tel: +1-617-948-2107
| | | | | | | | | | | | | |
Collapse
|
4
|
Tolea MI, Ezzeddine R, Camacho S, Galvin JE. Emerging drugs for dementia with Lewy Bodies: a review of Phase II & III trials. Expert Opin Emerg Drugs 2023; 28:167-180. [PMID: 37531299 DOI: 10.1080/14728214.2023.2244425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Despite faster cognitive decline and greater negative impact on patients and family caregivers, drug development efforts in Dementia with Lewy Bodies (DLB) fall behind those for Alzheimer's Disease (AD). Current off-label drug DLB treatment options are limited to symptomatic agents developed to address cognitive deficits in AD, motor deficits in Parkinson's Disease, or behavioral symptoms in psychiatric disease. Aided by recent improvements in DLB diagnosis, a new focus on the development of disease-modifying agents (DMA) is emerging. AREAS COVERED Driven by evidence supporting different pathological mechanisms in DLB and PDD, this review assesses the evidence on symptomatic drug treatments and describes current efforts in DMA development in DLB. Specifically, our goals were to: (1) review evidence supporting the use of symptomatic drug treatments in DLB; (2) review the current DMA pipeline in DLB with a focus on Phase II and III clinical trials; and (3) identify potential issues with the development of DMA in DLB. Included in this review were completed and ongoing drug clinical trials in DLB registered on ClinicalTrials.gov (no time limits set for the search) or disseminated at the 2023 international conference on Clinical Trials in AD. Drug clinical trials registered in non-US clinical trial registries were not included. EXPERT OPINION Adoption of current symptomatic drug treatments used off-label in DLB relied on efficacy of benefits in other disorders rather than evidence from randomized controlled clinical trials. Symptoms remain difficult to manage. Several DMA drugs are currently being evaluated as either repurposing candidates or novel small molecules. Continued improvement in methodological aspects including development of DLB-specific outcome measures and biomarkers is needed to move the field of DMA drug development forward.
Collapse
Affiliation(s)
- Magdalena I Tolea
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Reem Ezzeddine
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simone Camacho
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Townsend LTJ, Anderson KN, Boeve BF, McKeith I, Taylor JP. Sleep disorders in Lewy body dementia: Mechanisms, clinical relevance, and unanswered questions. Alzheimers Dement 2023; 19:5264-5283. [PMID: 37392199 DOI: 10.1002/alz.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/03/2023]
Abstract
In Lewy body dementia (LBD), disturbances of sleep and/or arousal including insomnia, excessive daytime sleepiness, rapid eye movement (REM) sleep behavior disorder, obstructive sleep apnea, and restless leg syndrome are common. These disorders can each exert a significant negative impact on both patient and caregiver quality of life; however, their etiology is poorly understood. Little guidance is available for assessing and managing sleep disorders in LBD, and they remain under-diagnosed and under-treated. This review aims to (1) describe the specific sleep disorders which occur in LBD, considering their putative or potential mechanisms; (2) describe the history and diagnostic process for these disorders in LBD; and (3) summarize current evidence for their management in LBD and consider some of the ongoing and unanswered questions in this field and future research directions.
Collapse
Affiliation(s)
- Leigh T J Townsend
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kirstie N Anderson
- Regional Sleep Service, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian McKeith
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Brück CC, Wolters FJ, Ikram MA, de Kok IMCM. Projections of costs and quality adjusted life years lost due to dementia from 2020 to 2050: A population-based microsimulation study. Alzheimers Dement 2023; 19:4532-4541. [PMID: 36916447 DOI: 10.1002/alz.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/15/2023]
Abstract
INTRODUCTION Efficient healthcare planning requires reliable projections of the future increase in costs and quality-adjusted life years (QALYs) lost due to dementia. METHODS We used the microsimulation model MISCAN-Dementia to simulate life histories and dementia occurrence using population-based Rotterdam Study data and nationwide birth cohort demographics. We estimated costs and QALYs lost in the Netherlands from 2020 to 2050, incorporating literature estimates of cost and utility for patients and caregivers by dementia severity and care setting. RESULTS Societal costs and QALYs lost due to dementia are estimated to double between 2020 and 2050. Costs are incurred predominantly through institutional (34%), formal home (31%), and informal home care (20%). Lost QALYs are mostly due to shortened life expectancy (67%) and, to a lesser extent, quality of life with severe dementia (14%). DISCUSSION To limit healthcare costs and quality of life losses due to dementia, interventions are needed that slow symptom progression and reduce care dependency.
Collapse
Affiliation(s)
- Chiara C Brück
- Department of Public Health, Erasmus MC, Rotterdam, The Netherlands
| | - Frank J Wolters
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine and Alzheimer Center, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
7
|
Abdelnour C, Gonzalez MC, Gibson LL, Poston KL, Ballard CG, Cummings JL, Aarsland D. Dementia with Lewy Bodies Drug Therapies in Clinical Trials: Systematic Review up to 2022. Neurol Ther 2023; 12:727-749. [PMID: 37017910 PMCID: PMC10195935 DOI: 10.1007/s40120-023-00467-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023] Open
Abstract
INTRODUCTION Reviews of randomized clinical trials (RCTs) in dementia with Lewy bodies (DLB) are essential for informing ongoing research efforts of symptomatic therapies and potentially disease-modifying therapies (DMTs). METHODS We performed a systematic review of all clinical trials conducted until September 27, 2022, by examining 3 international registries: ClinicalTrials.gov, the European Union Drug Regulating Authorities Clinical Trials Database, and the International Clinical Trials Registry Platform, to identify drugs in trials in DLB. RESULTS We found 25 agents in 40 trials assessing symptomatic treatments and DMTs for DLB: 7 phase 3, 31 phase 2, and 2 phase 1 trials. We found an active pipeline for drug development in DLB, with most ongoing clinical trials in phase 2. We identified a recent trend towards including participants at the prodromal stages, although more than half of active clinical trials will enroll mild to moderate dementia patients. Additionally, repurposed agents are frequently tested, representing 65% of clinical trials. CONCLUSION Current challenges in DLB clinical trials include the need for disease-specific outcome measures and biomarkers, and improving representation of global and diverse populations.
Collapse
Affiliation(s)
- Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Maria Camila Gonzalez
- Department of Quality and Health Technology, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Lucy L Gibson
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Dag Aarsland
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Chwiszczuk LJ, Breitve MH, Kirsebom BEB, Selnes P, Fløvig JC, Knapskog AB, Skogseth RE, Hubbers J, Holst-Larsen E, Rongve A. The ANeED study - ambroxol in new and early dementia with Lewy bodies (DLB): protocol for a phase IIa multicentre, randomised, double-blinded and placebo-controlled trial. Front Aging Neurosci 2023; 15:1163184. [PMID: 37304077 PMCID: PMC10250712 DOI: 10.3389/fnagi.2023.1163184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Background Currently, there are no disease-modifying pharmacological treatment options for dementia with Lewy bodies (DLB). The hallmark of DLB is pathological alpha-synuclein (aS) deposition. There are growing amounts of data suggesting that reduced aS clearance is caused by failure in endolysosomal and authophagic pathways, as well as and glucocerebrosidase (GCase) dysfunction and mutations in the GCase gene (GBA). The population's studies demonstrated that the incidence of GBA mutations is higher among Parkinson's disease (PD) patients, and carriers of such mutations have a higher risk of developing PD. The incidence of GBA mutations is even higher in DLB and a genome-wide association study (GWAS) confirmed the correlation between GBA mutations and DLB. In vivo experiments have shown that ambroxol (ABX) may increase GCase activity and GCase levels and therefore enhance aS autophagy-lysosome degradation pathways. Moreover, there is an emerging hypothesis that ABX may have an effect as a DLB modifying drug. The aims of the study "Ambroxol in new and early Dementia with Lewy Bodies (ANeED) are to investigate the tolerability, safety and effects of ABX in patients with DLB. Methods This is a multicentre, phase IIa, double-blinded, randomised and placebo-controlled clinical trial, using a parallel arm design for 18 months' follow-up. The allocation ratio is 1:1 (treatment:placebo). Discussion The ANeED study is an ongoing clinical drug trial with ABX. The unique, but not fully understood mechanism of ABX on the enhancement of lysosomal aS clearance may be promising as a possible modifying treatment in DLB. Trial Registration The clinical trial is registered in the international trials register - clinicaltrials.com (NCT0458825) and nationally at the Current Research Information System in Norway (CRISTIN 2235504).
Collapse
Affiliation(s)
- Luiza Jadwiga Chwiszczuk
- Department of Old Age Related Medicine, Haugesund Hospital, Helse Fonna Trust, Haugesund, Norway
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Trust, Haugesund, Norway
| | - Monica Haraldseid Breitve
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Trust, Haugesund, Norway
- Department of Clinical Neuropsychology, Haugesund Hospital, Helse Fonna Trust, Haugesund, Norway
| | | | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | | | | | - Ragnhild E. Skogseth
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Jessica Hubbers
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Trust, Haugesund, Norway
| | | | - Arvid Rongve
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Trust, Haugesund, Norway
- Sant Olavs Hospital, Trondheim, Norway
- Institute of Clinical Medicine, University in Bergen, Bergen, Norway
| |
Collapse
|
9
|
Son S, Lee NR, Gee MS, Song CW, Lee SJ, Lee SK, Lee Y, Kim HJ, Lee JK, Inn KS, Kim NJ. Chemical Knockdown of Phosphorylated p38 Mitogen-Activated Protein Kinase (MAPK) as a Novel Approach for the Treatment of Alzheimer's Disease. ACS CENTRAL SCIENCE 2023; 9:417-426. [PMID: 36968534 PMCID: PMC10037464 DOI: 10.1021/acscentsci.2c01369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 05/28/2023]
Abstract
Targeted protein degradation (TPD) provides unique advantages over gene knockdown in that it can induce selective degradation of disease-associated proteins attributed to pathological mutations or aberrant post-translational modifications (PTMs). Herein, we report a protein degrader, PRZ-18002, that selectively binds to an active form of p38 MAPK. PRZ-18002 induces degradation of phosphorylated p38 MAPK (p-p38) and a phosphomimetic mutant of p38 MAPK in a proteasome-dependent manner. Given that the activation of p38 MAPK plays pivotal roles in the pathophysiology of Alzheimer's disease (AD), selective degradation of p-p38 may provide an attractive therapeutic option for the treatment of AD. In the 5xFAD transgenic mice model of AD, intranasal treatment of PRZ-18002 reduces p-p38 levels and alleviates microglia activation and amyloid beta (Aβ) deposition, leading to subsequent improvement of spatial learning and memory. Collectively, our findings suggest that PRZ-18002 ameliorates AD pathophysiology via selective degradation of p-p38, highlighting a novel therapeutic TPD modality that targets a specific PTM to induce selective degradation of neurodegenerative disease-associated protein.
Collapse
Affiliation(s)
- Seung
Hwan Son
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Rae Lee
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Min Sung Gee
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chae Won Song
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Soo Jin Lee
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang-Kyung Lee
- Department
of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Yoonji Lee
- College
of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hee Jin Kim
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Jong Kil Lee
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Kyung-Soo Inn
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Nam-Jung Kim
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| |
Collapse
|
10
|
Wei H, Masurkar AV, Razavian N. On gaps of clinical diagnosis of dementia subtypes: A study of Alzheimer's disease and Lewy body disease. Front Aging Neurosci 2023; 15:1149036. [PMID: 37025965 PMCID: PMC10070837 DOI: 10.3389/fnagi.2023.1149036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and Lewy body disease (LBD) are the two most common neurodegenerative dementias and can occur in combination (AD+LBD). Due to overlapping biomarkers and symptoms, clinical differentiation of these subtypes could be difficult. However, it is unclear how the magnitude of diagnostic uncertainty varies across dementia spectra and demographic variables. We aimed to compare clinical diagnosis and post-mortem autopsy-confirmed pathological results to assess the clinical subtype diagnosis quality across these factors. Methods We studied data of 1,920 participants recorded by the National Alzheimer's Coordinating Center from 2005 to 2019. Selection criteria included autopsy-based neuropathological assessments for AD and LBD, and the initial visit with Clinical Dementia Rating (CDR) stage of normal, mild cognitive impairment, or mild dementia. Longitudinally, we analyzed the first visit at each subsequent CDR stage. This analysis included positive predictive values, specificity, sensitivity and false negative rates of clinical diagnosis, as well as disparities by sex, race, age, and education. If autopsy-confirmed AD and/or LBD was missed in the clinic, the alternative clinical diagnosis was analyzed. Findings In our findings, clinical diagnosis of AD+LBD had poor sensitivities. Over 61% of participants with autopsy-confirmed AD+LBD were diagnosed clinically as AD. Clinical diagnosis of AD had a low sensitivity at the early dementia stage and low specificities at all stages. Among participants diagnosed as AD in the clinic, over 32% had concurrent LBD neuropathology at autopsy. Among participants diagnosed as LBD, 32% to 54% revealed concurrent autopsy-confirmed AD pathology. When three subtypes were missed by clinicians, "No cognitive impairment" and "primary progressive aphasia or behavioral variant frontotemporal dementia" were the leading primary etiologic clinical diagnoses. With increasing dementia stages, the clinical diagnosis accuracy of black participants became significantly worse than other races, and diagnosis quality significantly improved for males but not females. Discussion These findings demonstrate that clinical diagnosis of AD, LBD, and AD+LBD are inaccurate and suffer from significant disparities on race and sex. They provide important implications for clinical management, anticipatory guidance, trial enrollment and applicability of potential therapies for AD, and promote research into better biomarker-based assessment of LBD pathology.
Collapse
Affiliation(s)
- Hui Wei
- Manning College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Arjun V. Masurkar
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, United States
| | - Narges Razavian
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
- Center for Data Science, New York University, New York, NY, United States
| |
Collapse
|
11
|
Zagórska A, Czopek A, Fryc M, Jaromin A, Boyd BJ. Drug Discovery and Development Targeting Dementia. Pharmaceuticals (Basel) 2023; 16:151. [PMID: 37259302 PMCID: PMC9965722 DOI: 10.3390/ph16020151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 08/04/2023] Open
Abstract
Dementia, most often associated with neurodegenerative diseases, affects millions of people worldwide, predominantly the elderly. Unfortunately, no treatment is still available. Therefore, there is an urgent need to address this situation. This review presents the state of the art of drug discovery and developments in targeting dementia. Several approaches are discussed, such as drug repurposing, the use of small molecules, and phosphodiesterase inhibitors. Furthermore, the review also provides insights into clinical trials of these molecules. Emphasis has been placed on small molecules and multi-target-directed ligands, as well as disease-modifying therapies. Finally, attention is drawn to the possibilities of applications of nanotechnology in managing dementia.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Fryc
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
12
|
Landry IS, Aluri J, Schuck E, Ino M, Horie K, Boyd P, Reyderman L, Lai R. Phase 1 Single Ascending and Multiple Ascending Dose Studies of Phosphodiesterase-9 Inhibitor E2027: Confirmation of Target Engagement and Selection of Phase 2 Dose in Dementia With Lewy Bodies Trial. Alzheimer Dis Assoc Disord 2022; 36:200-207. [PMID: 35700341 DOI: 10.1097/wad.0000000000000515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/30/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND E2027 is a novel, highly selective and potent inhibitor of phosphodiesterase9 (PDE9) being evaluated as a treatment for dementia with Lewy bodies. METHODS Phase 1, randomized, double-blind, single ascending dose (SAD, n=96) and multiple ascending dose (MAD, n=68) studies evaluated E2027 doses (5 to 1200 mg) in healthy subjects. The impact of age, race (Japanese/non-Japanese), and food on pharmacokinetics (PK)/pharmacodynamics were evaluated. Serial cerebrospinal fluid (CSF) samples were collected to assess the target engagement. RESULTS E2027 PK profiles were biphasic (elimination half-life: ~30 hours. Approximately 3-fold accumulation was observed following multiple once-daily dosing. E2027 single doses of 50 to 400 mg resulted in mean maximum increases in CSF cyclic guanosine monophosphate ranging from 293% to 461% within 5.37 to 12.9 hours after dose administration to assess target engagement. Dose-response modelling of steady-state predose CSF cyclic guanosine monophosphate concentrations showed ≥200% increase from baseline is maintained with doses of ≥50 mg QD. The most common adverse events with E2027 were post-LP syndrome and back pain. PK profiles were similar between Japanese and non-Japanese. Higher exposure observed in fed versus fasted state was not considered clinically significant. PK exposure was higher in elderly subjects. CONCLUSIONS S.E2027 was well-tolerated following single and multiple administration. E2027 achieved maximal and sustained target engagement at 50 mg QD, the dose selected for the phase 2 clinical trial.
Collapse
|
13
|
Landry IS, Boyd P, Aluri J, Darpo B, Xue H, Brown R, Reyderman L, Lai R. E2027 Cardiac Safety Evaluation With Concentration-Response Modeling of ECG Data to Inform Dose Selection in Studies in Patients With Dementia With Lewy Bodies. Alzheimer Dis Assoc Disord 2022; 36:208-214. [PMID: 35622456 DOI: 10.1097/wad.0000000000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND E2027 is a novel, highly selective and potent inhibitor of phosphodiesterase 9 in development for dementia with Lewy bodies. Cardiac safety assessments for emerging agents are essential to avoid drug-induced QT interval prolongation, which may predispose individuals to potentially fatal ventricular arrhythmias. To evaluate the cardiac safety of E2027 and to inform dose selection for the phase 2 study of E2027 in dementia with Lewy bodies, we evaluated concentration-response modeling of pooled electrocardiogram data. PATIENTS AND METHODS A post hoc concentration-QTc analysis evaluated potential QT effects using data from 2 randomized, double-blind studies in healthy subjects: a single ascending dose (SAD) study and a multiple ascending dose (MAD) study. Daily E2027 doses ranged from 5 to 1200 mg. RESULTS A linear mixed-effects model was used to establish the relationship between plasma concentrations of E2027 and change from the baseline of QTcF (ΔQTcF). A significant but shallow relationship was observed in the estimated slope of the concentration-ΔQTcF: 0.002 ms/ng/mL (90% confidence interval: 0.0007-0.0031) with a small, nonsignificant treatment effect-specific intercept of -0.6 ms. Based on this pooled concentration-QTc analysis, an effect on the QTcF interval >10 ms can be excluded up to E2027 plasma concentrations of ∼3579 ng/mL, corresponding to a dose at least 4-fold larger than the 50 mg phase 2 dose. CONCLUSION This pooled post hoc analysis evaluating cardiac safety of E2027 demonstrated that clinically concerning QTcF prolongation and related cardiac complications are highly unlikely with proposed E2027 doses planned for phase 2.
Collapse
|
14
|
Goldman JG, Holden SK. Cognitive Syndromes Associated With Movement Disorders. Continuum (Minneap Minn) 2022; 28:726-749. [PMID: 35678400 DOI: 10.1212/con.0000000000001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article reviews the recognition and management of cognitive syndromes in movement disorders, including those with parkinsonism, chorea, ataxia, dystonia, and tremor. RECENT FINDINGS Cognitive and motor syndromes are often intertwined in neurologic disorders, including neurodegenerative diseases such as Parkinson disease, atypical parkinsonian syndromes, Huntington disease, and other movement disorders. Cognitive symptoms often affect attention, working memory, and executive and visuospatial functions preferentially, rather than language and memory, but heterogeneity can be seen in the various movement disorders. A distinct cognitive syndrome has been recognized in patients with cerebellar syndromes. Appropriate recognition and screening for cognitive changes in movement disorders may play a role in achieving accurate diagnoses and guiding patients and their families regarding progression and management decisions. SUMMARY In the comprehensive care of patients with movement disorders, recognition of cognitive syndromes is important. Pharmacologic treatments for the cognitive syndromes, including mild cognitive impairment and dementia, in these movement disorders lag behind the therapeutics available for motor symptoms, and more research is needed. Patient evaluation and management require a comprehensive team approach, often linking neurologists as well as neuropsychologists, psychologists, psychiatrists, social workers, and other professionals.
Collapse
|
15
|
A53T α-synuclein induces neurogenesis impairment and cognitive dysfunction in line M83 transgenic mice and reduces the proliferation of embryonic neural stem cells. Brain Res Bull 2022; 182:118-129. [PMID: 35182691 DOI: 10.1016/j.brainresbull.2022.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 12/26/2022]
Abstract
Dementia with Lewy body (DLB) is the second most common degenerative dementia after Alzheimer's disease. There is no therapeutic drug for DLB currently. It's urgent for us to understand the pathological mechanism of dementia mediated by α-synuclein, as the main component of Lewy body. Here, we found that the A53T α-synuclein transgenic mice showed decreased nesting behavior starting from the age of 1 month. The results in Morris water maze test suggested that the 6-month-old mice had learning memory deficits. Golgi staining indicated that the apical neuronal dendritic spines of hippocampal CA1 neurons were significantly reduced in 6-month-old homozygotes and heterozygotes, although MAP2 protein expression revealed no significant difference in the hippocampus among wild-type mice, homozygotes and heterozygotes. In vitro, we proved mutant A53T α-synuclein decreased the dendritic branches and dendrite spines on the embryonic mice hippocampal neurons. Furthermore, Ki67 immunofluorescence staining identified that the Ki67-positive cells of the hippocampal dentate gyrus and subventricular zone were significantly reduced in 6-month-old homozygotes and heterozygotes, compared with age-matched wild-type mice. Similarly, when 6-month-old mice were injected with BrdU for one day, the immunostaining results also confirmed that BrdU-positive cells were significantly reduced in homozygous and heterozygous mice. Lastly, we transfected primary embryonic hippocampal neural stem cells with lentivirus vector expressing A53T α-synuclein in vitro. Both BrdU staining and Western blotting showed that A53T α-synuclein significantly decreased the proliferation of embryonic neural stem cells. Taken together, these data suggest that A53T α-synuclein can induce adult neurogenesis impairment and cognitive dysfunction. The A53T α-synuclein transgenic mice may be used as an animal model for DLB. Promoting adult neurogenesis may be a promising approach to treat DLB pathogenesis.
Collapse
|
16
|
Chiu SY, Bowers D, Armstrong MJ. Lewy Body Dementias: Controversies and Drug Development. Neurotherapeutics 2022; 19:55-67. [PMID: 34859379 PMCID: PMC9130410 DOI: 10.1007/s13311-021-01161-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2021] [Indexed: 01/03/2023] Open
Abstract
Lewy body dementia (LBD) is one of the most common neurodegenerative dementias. Clinical trials for symptomatic and disease-modifying therapies in LBD remain a national research priority, but there are many challenges in both past and active drug developments in LBD. This review highlights the controversies in picking the appropriate populations, interventions, target selections, and outcome measures, which are all critical components of clinical trial implementation in LBD. The heterogeneity of LBD neuropathology and clinical presentations, limited understanding of core features such as cognitive fluctuations, and lack of validated LBD-specific outcome measures and biomarkers represent some of the major challenges in LBD trials.
Collapse
Affiliation(s)
- Shannon Y Chiu
- Department of Neurology, University of Florida, PO Box 100268, Gainesville, FL, 32611, USA.
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32603, USA
| | - Melissa J Armstrong
- Department of Neurology, University of Florida, PO Box 100268, Gainesville, FL, 32611, USA
| |
Collapse
|
17
|
Bergamini G, Coloma P, Massinet H, Steiner MA. What evidence is there for implicating the brain orexin system in neuropsychiatric symptoms in dementia? Front Psychiatry 2022; 13:1052233. [PMID: 36506416 PMCID: PMC9732550 DOI: 10.3389/fpsyt.2022.1052233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Neuropsychiatric symptoms (NPS) affect people with dementia (PwD) almost universally across all stages of the disease, and regardless of its exact etiology. NPS lead to disability and reduced quality of life of PwD and their caregivers. NPS include hyperactivity (agitation and irritability), affective problems (anxiety and depression), psychosis (delusions and hallucinations), apathy, and sleep disturbances. Preclinical studies have shown that the orexin neuropeptide system modulates arousal and a wide range of behaviors via a network of axons projecting from the hypothalamus throughout almost the entire brain to multiple, even distant, regions. Orexin neurons integrate different types of incoming information (e.g., metabolic, circadian, sensory, emotional) and convert them into the required behavioral output coupled to the necessary arousal status. Here we present an overview of the behavioral domains influenced by the orexin system that may be relevant for the expression of some critical NPS in PwD. We also hypothesize on the potential effects of pharmacological interference with the orexin system in the context of NPS in PwD.
Collapse
Affiliation(s)
- Giorgio Bergamini
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Preciosa Coloma
- Clinical Science, Global Clinical Development, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Helene Massinet
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | |
Collapse
|
18
|
Runfola M, Perni M, Yang X, Marchese M, Bacci A, Mero S, Santorelli FM, Polini B, Chiellini G, Giuliani D, Vilella A, Bodria M, Daini E, Vandini E, Rudge S, Gul S, Wakelam MOJ, Vendruscolo M, Rapposelli S. Identification of a Thyroid Hormone Derivative as a Pleiotropic Agent for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:1330. [PMID: 34959730 PMCID: PMC8704018 DOI: 10.3390/ph14121330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/24/2023] Open
Abstract
The identification of effective pharmacological tools for Alzheimer's disease (AD) represents one of the main challenges for therapeutic discovery. Due to the variety of pathological processes associated with AD, a promising route for pharmacological intervention involves the development of new chemical entities that can restore cellular homeostasis. To investigate this strategy, we designed and synthetized SG2, a compound related to the thyroid hormone thyroxine, that shares a pleiotropic activity with its endogenous parent compound, including autophagic flux promotion, neuroprotection, and metabolic reprogramming. We demonstrate herein that SG2 acts in a pleiotropic manner to induce recovery in a C. elegans model of AD based on the overexpression of Aβ42 and improves learning abilities in the 5XFAD mouse model of AD. Further, in vitro ADME-Tox profiling and toxicological studies in zebrafish confirmed the low toxicity of this compound, which represents a chemical starting point for AD drug development.
Collapse
Affiliation(s)
- Massimiliano Runfola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (M.R.); (A.B.)
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (M.P.); (X.Y.)
| | - Xiaoting Yang
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (M.P.); (X.Y.)
| | - Maria Marchese
- Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Via dei Giacinti 2, 56128 Calambrone, Italy; (M.M.); (S.M.); (F.M.S.)
| | - Andrea Bacci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (M.R.); (A.B.)
| | - Serena Mero
- Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Via dei Giacinti 2, 56128 Calambrone, Italy; (M.M.); (S.M.); (F.M.S.)
| | - Filippo M. Santorelli
- Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Via dei Giacinti 2, 56128 Calambrone, Italy; (M.M.); (S.M.); (F.M.S.)
| | - Beatrice Polini
- Department of Pathology, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (B.P.); (G.C.)
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (B.P.); (G.C.)
| | - Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (D.G.); (A.V.); (M.B.); (E.D.); (E.V.)
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (D.G.); (A.V.); (M.B.); (E.D.); (E.V.)
| | - Martina Bodria
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (D.G.); (A.V.); (M.B.); (E.D.); (E.V.)
| | - Eleonora Daini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (D.G.); (A.V.); (M.B.); (E.D.); (E.V.)
| | - Eleonora Vandini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (D.G.); (A.V.); (M.B.); (E.D.); (E.V.)
| | - Simon Rudge
- Ibabraham Research Campus, The Babraham Institute, Cambridge CB22 3AT, UK; (S.R.); (M.O.J.W.)
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany;
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Michale O. J. Wakelam
- Ibabraham Research Campus, The Babraham Institute, Cambridge CB22 3AT, UK; (S.R.); (M.O.J.W.)
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (M.P.); (X.Y.)
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (M.R.); (A.B.)
- CISUP, Center for Instrument Sharing, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
19
|
Phytochemicals as Regulators of Genes Involved in Synucleinopathies. Biomolecules 2021; 11:biom11050624. [PMID: 33922207 PMCID: PMC8145209 DOI: 10.3390/biom11050624] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein aggregates in neurons, nerve fibers or glial cells. Three main types of diseases belong to the synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. All of them develop as a result of an interplay of genetic and environmental factors. Emerging evidence suggests that epigenetic mechanisms play an essential role in the development of synucleinopathies. Since there is no disease-modifying treatment for these disorders at this time, interest is growing in plant-derived chemicals as a potential treatment option. Phytochemicals are substances of plant origin that possess biological activity, which might have effects on human health. Phytochemicals with neuroprotective activity target different elements in pathogenic pathways due to their antioxidants, anti-inflammatory, and antiapoptotic properties, and ability to reduce cellular stress. Multiple recent studies demonstrate that the beneficial effects of phytochemicals may be explained by their ability to modulate the expression of genes implicated in synucleinopathies and other diseases. These substances may regulate transcription directly via transcription factors (TFs) or play the role of epigenetic regulators through their effect on histone modification, DNA methylation, and RNA-based mechanisms. Here, we summarize new data about the impact of phytochemicals on the pathogenesis of synucleinopathies through regulation of gene expression.
Collapse
|
20
|
Ribaudo G, Memo M, Gianoncelli A. A Perspective on Natural and Nature-Inspired Small Molecules Targeting Phosphodiesterase 9 (PDE9): Chances and Challenges against Neurodegeneration. Pharmaceuticals (Basel) 2021; 14:ph14010058. [PMID: 33451065 PMCID: PMC7828511 DOI: 10.3390/ph14010058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022] Open
Abstract
As life expectancy increases, dementia affects a growing number of people worldwide. Besides current treatments, phosphodiesterase 9 (PDE9) represents an alternative target for developing innovative small molecules to contrast neurodegeneration. PDE inhibition promotes neurotransmitter release, amelioration of microvascular dysfunction, and neuronal plasticity. This review will provide an update on natural and nature-inspired PDE9 inhibitors, with a focus on the structural features of PDE9 that encourage the development of isoform-selective ligands. The expression in the brain, the presence within its structure of a peculiar accessory pocket, the asymmetry between the two subunits composing the protein dimer, and the selectivity towards chiral species make PDE9 a suitable target to develop specific inhibitors. Additionally, the world of natural compounds is an ideal source for identifying novel, possibly asymmetric, scaffolds, and xanthines, flavonoids, neolignans, and their derivatives are currently being studied. In this review, the available literature data were interpreted and clarified, from a structural point of view, taking advantage of molecular modeling: 3D structures of ligand-target complexes were retrieved, or built, and discussed.
Collapse
|
21
|
Staats R, Michaels TCT, Flagmeier P, Chia S, Horne RI, Habchi J, Linse S, Knowles TPJ, Dobson CM, Vendruscolo M. Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter. Commun Chem 2020; 3:191. [PMID: 36703335 PMCID: PMC9814678 DOI: 10.1038/s42004-020-00412-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
The aggregation of α-synuclein is a central event in Parkinsons's disease and related synucleinopathies. Since pharmacologically targeting this process, however, has not yet resulted in approved disease-modifying treatments, there is an unmet need of developing novel methods of drug discovery. In this context, the use of chemical kinetics has recently enabled accurate quantifications of the microscopic steps leading to the proliferation of protein misfolded oligomers. As these species are highly neurotoxic, effective therapeutic strategies may be aimed at reducing their numbers. Here, we exploit this quantitative approach to develop a screening strategy that uses the reactive flux toward α-synuclein oligomers as a selection parameter. Using this approach, we evaluate the efficacy of a library of flavone derivatives, identifying apigenin as a compound that simultaneously delays and reduces the formation of α-synuclein oligomers. These results demonstrate a compound selection strategy based on the inhibition of the formation of α-synuclein oligomers, which may be key in identifying small molecules in drug discovery pipelines for diseases associated with α-synuclein aggregation.
Collapse
Affiliation(s)
- Roxine Staats
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Patrick Flagmeier
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Robert I Horne
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Johnny Habchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sara Linse
- Department of Chemistry, Division for Biochemistry and Structural Biology, Lund University, 221 00, Lund, Sweden
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
22
|
Goldman JG, Forsberg LK, Boeve BF, Armstrong MJ, Irwin DJ, Ferman TJ, Galasko D, Galvin JE, Kaufer D, Leverenz J, Lippa CF, Marder K, Abler V, Biglan K, Irizarry M, Keller B, Munsie L, Nakagawa M, Taylor A, Graham T. Challenges and opportunities for improving the landscape for Lewy body dementia clinical trials. Alzheimers Res Ther 2020; 12:137. [PMID: 33121510 PMCID: PMC7597002 DOI: 10.1186/s13195-020-00703-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023]
Abstract
Lewy body dementia (LBD), including dementia with Lewy bodies and Parkinson's disease dementia, affects over a million people in the USA and has a substantial impact on patients, caregivers, and society. Symptomatic treatments for LBD, which can include cognitive, neuropsychiatric, autonomic, sleep, and motor features, are limited with only two drugs (cholinesterase inhibitors) currently approved by regulatory agencies for dementia in LBD. Clinical trials represent a top research priority, but there are many challenges in the development and implementation of trials in LBD. To address these issues and advance the field of clinical trials in the LBDs, the Lewy Body Dementia Association formed an Industry Advisory Council (LBDA IAC), in addition to its Research Center of Excellence program. The LBDA IAC comprises a diverse and collaborative group of experts from academic medical centers, pharmaceutical industries, and the patient advocacy foundation. The inaugural LBDA IAC meeting, held in June 2019, aimed to bring together this group, along with representatives from regulatory agencies, to address the topic of optimizing the landscape of LBD clinical trials. This review highlights the formation of the LBDA IAC, current state of LBD clinical trials, and challenges and opportunities in the field regarding trial design, study populations, diagnostic criteria, and biomarker utilization. Current gaps include a lack of standardized clinical assessment tools and evidence-based management strategies for LBD as well as difficulty and controversy in diagnosing LBD. Challenges in LBD clinical trials include the heterogeneity of LBD pathology and symptomatology, limited understanding of the trajectory of LBD cognitive and core features, absence of LBD-specific outcome measures, and lack of established standardized biologic, imaging, or genetic biomarkers that may inform study design. Demands of study participation (e.g., travel, duration, and frequency of study visits) may also pose challenges and impact trial enrollment, retention, and outcomes. There are opportunities to improve the landscape of LBD clinical trials by harmonizing clinical assessments and biomarkers across cohorts and research studies, developing and validating outcome measures in LBD, engaging the patient community to assess research needs and priorities, and incorporating biomarker and genotype profiling in study design.
Collapse
Affiliation(s)
- Jennifer G Goldman
- Parkinson's Disease and Movement Disorders Program, Shirley Ryan AbilityLab and Departments of Physical Medicine and Rehabilitation and Neurology, Northwestern University Feinberg School of Medicine, 355 E. Erie Street, Chicago, IL, 60611, USA.
| | | | | | - Melissa J Armstrong
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - David J Irwin
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Doug Galasko
- Department of Neurosciences, UC San Diego, San Diego, CA, USA
| | - James E Galvin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Kaufer
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - James Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carol F Lippa
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen Marder
- Department of Neurology, Taub Institute, Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Kevin Biglan
- Neuroscience Research, Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Leanne Munsie
- Neuroscience Research, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Angela Taylor
- Lewy Body Dementia Association, S.W., Lilburn, GA, USA
| | - Todd Graham
- Lewy Body Dementia Association, S.W., Lilburn, GA, USA
| |
Collapse
|
23
|
Pharmacological management of dementia with Lewy bodies with a focus on zonisamide for treating parkinsonism. Expert Opin Pharmacother 2020; 22:325-337. [PMID: 33021110 DOI: 10.1080/14656566.2020.1828350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Dementia with Lewy bodies (DLB) has no approved symptomatic or disease-modifying treatments in the US and Europe, despite being the second most common cause of neurodegenerative dementia. AREAS COVERED Herein, the authors briefly review the DLB drug development pipeline, providing a summary of the current pharmacological intervention studies. They then focus on the anticonvulsant zonisamide, a benzisoxazole derivative with a sulfonamide group and look at its value for treating parkinsonism in DLB. EXPERT OPINION Several new compounds are being tested in DLB, the most innovative being those aimed at decreasing brain accumulation of α-synuclein. Unfortunately, new drug testing is challenging in terms of consistent diagnostic criteria and lack of reliable biomarkers. Few randomized controlled trials (RCTs) are well-designed, with enough power to detect significant drug effects. Levodopa monotherapy can treat the parkinsonism in DLB, but it can cause agitation or visual hallucination worsening. Two Phase II/III RCTs of DLB patients recently reported a statistically significant improvement in motor function in those receiving zonisamide as an adjunctive treatment to levodopa. New biomarker strategies and validated outcome measures for DLB or prodromal DLB may enhance clinical trial design for the development of specific disease-modifying treatments.
Collapse
|
24
|
Thomas AJ, Hamilton CA, Donaghy PC, Martin-Ruiz C, Morris CM, Barnett N, Olsen K, Taylor JP, O'Brien JT. Prospective longitudinal evaluation of cytokines in mild cognitive impairment due to AD and Lewy body disease. Int J Geriatr Psychiatry 2020; 35:1250-1259. [PMID: 32557792 DOI: 10.1002/gps.5365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We conducted a prospective longitudinal study of plasma cytokines during the Mild Cognitive Impairment (MCI) stage of Lewy body disease and Alzheimer's disease, hypothesizing that cytokine levels would decrease over time and that this would be correlated with decline in cognition. METHODS Older (≥60) people with MCI were recruited from memory services in healthcare trusts in North East England, UK. MCI was diagnosed as due to Alzheimer's disease (MCI-AD) or Lewy body disease (MCI-LB). Baseline and repeat annual clinical and cognitive assessments were undertaken and plasma samples were obtained at the same time. Cytokine assays were performed on all samples using the Meso Scale Discovery V-Plex Plus Proinflammatory Panel 1, which included IFNγ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13 and TNFα. RESULTS Fifty-six patients (21 MCI-AD, 35 MCI-LB) completed prospective evaluations and provided samples up to 3 years after baseline. Six cytokines (IFNγ, IL-1β, IL-2, IL-4, IL-6 and IL-10) showed highly significant (P < .002) decreases over time. AD and LB did not differ in rate of decrease nor were there any effects related to age or general morbidity. Decrease in five of these cytokines (IFNγ, IL-1β, IL-2, IL-4, and IL-10) was highly correlated with decrease in cognition (P < .003). CONCLUSIONS Peripheral inflammation decreased in both disease groups during MCI suggesting this may be a therapeutic window for future anti-inflammatory agents.
Collapse
Affiliation(s)
- Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Carmen Martin-Ruiz
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris M Morris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nicola Barnett
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsty Olsen
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Germann UA, Alam JJ. P38α MAPK Signaling-A Robust Therapeutic Target for Rab5-Mediated Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5485. [PMID: 32751991 PMCID: PMC7432772 DOI: 10.3390/ijms21155485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Multifactorial pathologies, involving one or more aggregated protein(s) and neuroinflammation are common in major neurodegenerative diseases, such as Alzheimer's disease and dementia with Lewy bodies. This complexity of multiple pathogenic drivers is one potential explanation for the lack of success or, at best, the partial therapeutic effects, respectively, with approaches that have targeted one specific driver, e.g., amyloid-beta, in Alzheimer's disease. Since the endosome-associated protein Rab5 appears to be a convergence point for many, if not all the most prominent pathogenic drivers, it has emerged as a major therapeutic target for neurodegenerative disease. Further, since the alpha isoform of p38 mitogen-activated protein kinase (p38α) is a major regulator of Rab5 activity and its effectors, a biology that is distinct from the classical nuclear targets of p38 signaling, brain-penetrant selective p38α kinase inhibitors provide the opportunity for significant therapeutic advances in neurogenerative disease through normalizing dysregulated Rab5 activity. In this review, we provide a brief summary of the role of Rab5 in the cell and its association with neurodegenerative disease pathogenesis. We then discuss the connection between Rab5 and p38α and summarize the evidence that through modulating Rab5 activity there are therapeutic opportunities in neurodegenerative diseases for p38α kinase inhibitors.
Collapse
|
26
|
Epigenetics in Lewy Body Diseases: Impact on Gene Expression, Utility as a Biomarker, and Possibilities for Therapy. Int J Mol Sci 2020; 21:ijms21134718. [PMID: 32630630 PMCID: PMC7369933 DOI: 10.3390/ijms21134718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Lewy body disorders (LBD) include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). They are synucleinopathies with a heterogeneous clinical manifestation. As a cause of neuropathological overlap with other neurodegenerative diseases, the establishment of a correct clinical diagnosis is still challenging, and clinical management may be difficult. The combination of genetic variation and epigenetic changes comprising gene expression-modulating DNA methylation and histone alterations modifies the phenotype, disease course, and susceptibility to disease. In this review, we summarize the results achieved in the deciphering of the LBD epigenome. To provide an appropriate context, first LBD genetics is briefly outlined. Afterwards, a detailed review of epigenetic modifications identified for LBD in human cells, postmortem, and peripheral tissues is provided. We also focus on the difficulty of identifying epigenome-related biomarker candidates and discuss the results obtained so far. Additionally, epigenetic changes as therapeutic targets, as well as different epigenome-based treatments, are revised. The number of studies focusing on PD is relatively limited and practically inexistent for DLB. There is a lack of replication studies, and some results are even contradictory, probably due to differences in sample collection and analytical techniques. In summary, we show the current achievements and directions for future research.
Collapse
|
27
|
O'Carroll A, Coyle J, Gambin Y. Prions and Prion-like assemblies in neurodegeneration and immunity: The emergence of universal mechanisms across health and disease. Semin Cell Dev Biol 2019; 99:115-130. [PMID: 31818518 DOI: 10.1016/j.semcdb.2019.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Prion-like behaviour is an abrupt process, an "all-or-nothing" transition between a monomeric species and an "infinite" fibrillated form. Once a nucleation point is formed, the process is unstoppable as fibrils self-propagate by recruiting and converting all monomers into the amyloid fold. After the "mad cow" episode, prion diseases have made the headlines, but more and more prion-like behaviours have emerged in neurodegenerative diseases, where formation of fibrils and large conglomerates of proteins deeply disrupt the cell homeostasis. More interestingly, in the last decade, examples emerged to suggest that prion-like conversion can be used as a positive gain of function, for memory storage or structural scaffolding. More recent experiments show that we are only seeing the tip of the iceberg and that, for example, prion-like amplification is found in many pathways of the immune response. In innate immunity, receptors on the cellular surface or within the cells 'sense' danger and propagate this information as signal, through protein-protein interactions (PPIs) between 'receptor', 'adaptor' and 'effector' proteins. In innate immunity, the smallest signal of a foreign element or pathogen needs to trigger a macroscopic signal output, and it was found that adaptor polymerize to create an extreme signal amplification. Interestingly, our body uses multiple structural motifs to create large signalling platform; a few innate proteins use amyloid scaffolds but most of the polymers discovered are composed by self-assembly in helical filaments. Some of these helical assemblies even have intercellular "contamination" in a "true" prion action, as demonstrated for ASC specks and MyD88 filaments. Here, we will describe the current knowledge in neurodegenerative diseases and innate immunity and show how these two very different fields can cross-seed discoveries.
Collapse
Affiliation(s)
- Ailis O'Carroll
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Joanne Coyle
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|