1
|
Moens U, Passerini S, Falquet M, Sveinbjørnsson B, Pietropaolo V. Phosphorylation of Human Polyomavirus Large and Small T Antigens: An Ignored Research Field. Viruses 2023; 15:2235. [PMID: 38005912 PMCID: PMC10674619 DOI: 10.3390/v15112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are the most common post-translational modifications mediated by protein kinases and protein phosphatases, respectively. These reversible processes can modulate the function of the target protein, such as its activity, subcellular localization, stability, and interaction with other proteins. Phosphorylation of viral proteins plays an important role in the life cycle of a virus. In this review, we highlight biological implications of the phosphorylation of the monkey polyomavirus SV40 large T and small t antigens, summarize our current knowledge of the phosphorylation of these proteins of human polyomaviruses, and conclude with gaps in the knowledge and a proposal for future research directions.
Collapse
Affiliation(s)
- Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Mar Falquet
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Baldur Sveinbjørnsson
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway; (M.F.); (B.S.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| |
Collapse
|
2
|
Butic AB, Spencer SA, Shaheen SK, Lukacher AE. Polyomavirus Wakes Up and Chooses Neurovirulence. Viruses 2023; 15:2112. [PMID: 37896889 PMCID: PMC10612099 DOI: 10.3390/v15102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
JC polyomavirus (JCPyV) is a human-specific polyomavirus that establishes a silent lifelong infection in multiple peripheral organs, predominantly those of the urinary tract, of immunocompetent individuals. In immunocompromised settings, however, JCPyV can infiltrate the central nervous system (CNS), where it causes several encephalopathies of high morbidity and mortality. JCPyV-induced progressive multifocal leukoencephalopathy (PML), a devastating demyelinating brain disease, was an AIDS-defining illness before antiretroviral therapy that has "reemerged" as a complication of immunomodulating and chemotherapeutic agents. No effective anti-polyomavirus therapeutics are currently available. How depressed immune status sets the stage for JCPyV resurgence in the urinary tract, how the virus evades pre-existing antiviral antibodies to become viremic, and where/how it enters the CNS are incompletely understood. Addressing these questions requires a tractable animal model of JCPyV CNS infection. Although no animal model can replicate all aspects of any human disease, mouse polyomavirus (MuPyV) in mice and JCPyV in humans share key features of peripheral and CNS infection and antiviral immunity. In this review, we discuss the evidence suggesting how JCPyV migrates from the periphery to the CNS, innate and adaptive immune responses to polyomavirus infection, and how the MuPyV-mouse model provides insights into the pathogenesis of JCPyV CNS disease.
Collapse
Affiliation(s)
| | | | | | - Aron E. Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA; (A.B.B.); (S.A.S.); (S.K.S.)
| |
Collapse
|
3
|
Marongiu L, Allgayer H. Viruses in colorectal cancer. Mol Oncol 2021; 16:1423-1450. [PMID: 34514694 PMCID: PMC8978519 DOI: 10.1002/1878-0261.13100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that microorganisms might represent at least highly interesting cofactors in colorectal cancer (CRC) oncogenesis and progression. Still, associated mechanisms, specifically in colonocytes and their microenvironmental interactions, are still poorly understood. Although, currently, at least seven viruses are being recognized as human carcinogens, only three of these – Epstein–Barr virus (EBV), human papillomavirus (HPV) and John Cunningham virus (JCV) – have been described, with varying levels of evidence, in CRC. In addition, cytomegalovirus (CMV) has been associated with CRC in some publications, albeit not being a fully acknowledged oncovirus. Moreover, recent microbiome studies set increasing grounds for new hypotheses on bacteriophages as interesting additional modulators in CRC carcinogenesis and progression. The present Review summarizes how particular groups of viruses, including bacteriophages, affect cells and the cellular and microbial microenvironment, thereby putatively contributing to foster CRC. This could be achieved, for example, by promoting several processes – such as DNA damage, chromosomal instability, or molecular aspects of cell proliferation, CRC progression and metastasis – not necessarily by direct infection of epithelial cells only, but also by interaction with the microenvironment of infected cells. In this context, there are striking common features of EBV, CMV, HPV and JCV that are able to promote oncogenesis, in terms of establishing latent infections and affecting p53‐/pRb‐driven, epithelial–mesenchymal transition (EMT)‐/EGFR‐associated and especially Wnt/β‐catenin‐driven pathways. We speculate that, at least in part, such viral impacts on particular pathways might be reflected in lasting (e.g. mutational or further genomic) fingerprints of viruses in cells. Also, the complex interplay between several species within the intestinal microbiome, involving a direct or indirect impact on colorectal and microenvironmental cells but also between, for example, phages and bacterial and viral pathogens, and further novel species certainly might, in part, explain ongoing difficulties to establish unequivocal monocausal links between specific viral infections and CRC.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| |
Collapse
|
4
|
A Comprehensive Proteomics Analysis of the JC Virus (JCV) Large and Small Tumor Antigen Interacting Proteins: Large T Primarily Targets the Host Protein Complexes with V-ATPase and Ubiquitin Ligase Activities While Small t Mostly Associates with Those Having Phosphatase and Chromatin-Remodeling Functions. Viruses 2020; 12:v12101192. [PMID: 33092197 PMCID: PMC7594058 DOI: 10.3390/v12101192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The oncogenic potential of both the polyomavirus large (LT-Ag) and small (Sm t-Ag) tumor antigens has been previously demonstrated in both tissue culture and animal models. Even the contribution of the MCPyV tumor antigens to the development of an aggressive human skin cancer, Merkel cell carcinoma, has been recently established. To date, the known primary targets of these tumor antigens include several tumor suppressors such as pRb, p53, and PP2A. However, a comprehensive list of the host proteins targeted by these proteins remains largely unknown. Here, we report the first interactome of JCV LT-Ag and Sm t-Ag by employing two independent “affinity purification/mass spectroscopy” (AP/MS) assays. The proteomics data identified novel targets for both tumor antigens while confirming some of the previously reported interactions. LT-Ag was found to primarily target the protein complexes with ATPase (v-ATPase and Smc5/6 complex), phosphatase (PP4 and PP1), and ligase (E3-ubiquitin) activities. In contrast, the major targets of Sm t-Ag were identified as Smarca1/6, AIFM1, SdhA/B, PP2A, and p53. The interactions between “LT-Ag and SdhB”, “Sm t-Ag and Smarca5”, and “Sm t-Ag and SDH” were further validated by biochemical assays. Interestingly, perturbations in some of the LT-Ag and Sm t-Ag targets identified in this study were previously shown to be associated with oncogenesis, suggesting new roles for both tumor antigens in novel oncogenic pathways. This comprehensive data establishes new foundations to further unravel the new roles for JCV tumor antigens in oncogenesis and the viral life cycle.
Collapse
|
5
|
Fifty Years of JC Polyomavirus: A Brief Overview and Remaining Questions. Viruses 2020; 12:v12090969. [PMID: 32882975 PMCID: PMC7552028 DOI: 10.3390/v12090969] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
In the fifty years since the discovery of JC polyomavirus (JCPyV), the body of research representing our collective knowledge on this virus has grown substantially. As the causative agent of progressive multifocal leukoencephalopathy (PML), an often fatal central nervous system disease, JCPyV remains enigmatic in its ability to live a dual lifestyle. In most individuals, JCPyV reproduces benignly in renal tissues, but in a subset of immunocompromised individuals, JCPyV undergoes rearrangement and begins lytic infection of the central nervous system, subsequently becoming highly debilitating-and in many cases, deadly. Understanding the mechanisms allowing this process to occur is vital to the development of new and more effective diagnosis and treatment options for those at risk of developing PML. Here, we discuss the current state of affairs with regards to JCPyV and PML; first summarizing the history of PML as a disease and then discussing current treatment options and the viral biology of JCPyV as we understand it. We highlight the foundational research published in recent years on PML and JCPyV and attempt to outline which next steps are most necessary to reduce the disease burden of PML in populations at risk.
Collapse
|
6
|
Ahye N, Bellizzi A, May D, Wollebo HS. The Role of the JC Virus in Central Nervous System Tumorigenesis. Int J Mol Sci 2020; 21:ijms21176236. [PMID: 32872288 PMCID: PMC7503523 DOI: 10.3390/ijms21176236] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. The study of DNA tumor-inducing viruses and their oncoproteins as a causative agent in cancer initiation and tumor progression has greatly enhanced our understanding of cancer cell biology. The initiation of oncogenesis is a complex process. Specific gene mutations cause functional changes in the cell that ultimately result in the inability to regulate cell differentiation and proliferation effectively. The human neurotropic Polyomavirus JC (JCV) belongs to the family Polyomaviridae and it is the causative agent of progressive multifocal leukoencephalopathy (PML), which is a fatal neurodegenerative disease in an immunosuppressed state. Sero-epidemiological studies have indicated JCV infection is prevalent in the population (85%) and that initial infection usually occurs during childhood. The JC virus has small circular, double-stranded DNA that includes coding sequences for viral early and late proteins. Persistence of the virus in the brain and other tissues, as well as its potential to transform cells, has made it a subject of study for its role in brain tumor development. Earlier observation of malignant astrocytes and oligodendrocytes in PML, as well as glioblastoma formation in non-human primates inoculated with JCV, led to the hypothesis that JCV plays a role in central nervous system (CNS) tumorigenesis. Some studies have reported the presence of both JC viral DNA and its proteins in several primary brain tumor specimens. The discovery of new Polyomaviruses such as the Merkel cell Polyomavirus, which is associated with Merkel cell carcinomas in humans, ignited our interest in the role of the JC virus in CNS tumors. The current evidence known about JCV and its effects, which are sufficient to produce tumors in animal models, suggest it can be a causative factor in central nervous system tumorigenesis. However, there is no clear association between JCV presence in CNS and its ability to initiate CNS cancer and tumor formation in humans. In this review, we will discuss the correlation between JCV and tumorigenesis of CNS in animal models, and we will give an overview of the current evidence for the JC virus’s role in brain tumor formation.
Collapse
|
7
|
Del Valle L, Piña-Oviedo S. Human Polyomavirus JCPyV and Its Role in Progressive Multifocal Leukoencephalopathy and Oncogenesis. Front Oncol 2019; 9:711. [PMID: 31440465 PMCID: PMC6694743 DOI: 10.3389/fonc.2019.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
The human neurotropic virus JCPyV, a member of the Polyomaviridiae family, is the opportunistic infectious agent of Progressive Multifocal Leukoencephalopathy (PML), a fatal disease seen in severe immunosuppressive conditions and, during the last decade, in patients undergoing immunotherapy. JCPyV is a ubiquitous pathogen with up to 85% of the adult population word-wide exhibiting antibodies against it. Early experiments demonstrated that direct inoculation of JCPyV into the brain of different species resulted in the development of brain tumors and other neuroectodermal-derived neoplasias. Later, several reports showed the detection of viral sequences in medulloblastomas and glial tumors, as well as expression of the viral protein T-Antigen. Few oncogenic viruses, however, have caused so much controversy regarding their role in the pathogenesis of brain tumors, but the discovery of new Polyomaviruses that cause Merkel cell carcinomas in humans and brain tumors in racoons, in addition to the role of JCPyV in colon cancer and multiple mechanistic studies have shed much needed light on the role of JCPyV in cancer. The pathways affected by the viral protein T-Antigen include cell cycle regulators, like p53 and pRb, and transcription factors that activate pro-proliferative genes, like c-Myc. In addition, infection with JCPyV causes chromosomal damage and T-Antigen inhibits homologous recombination, and activates anti-apoptotic proteins, such as Survivin. Here we review the different aspects of the biology and physiopathology of JCPyV.
Collapse
Affiliation(s)
- Luis Del Valle
- Department of Pathology and Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, United States
| | - Sergio Piña-Oviedo
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
8
|
Saribas AS, Coric P, Bouaziz S, Safak M. Expression of novel proteins by polyomaviruses and recent advances in the structural and functional features of agnoprotein of JC virus, BK virus, and simian virus 40. J Cell Physiol 2018; 234:8295-8315. [PMID: 30390301 DOI: 10.1002/jcp.27715] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022]
Abstract
Polyomavirus family consists of a highly diverse group of small DNA viruses. The founding family member (MPyV) was first discovered in the newborn mouse in the late 1950s, which induces solid tumors in a wide variety of tissue types that are the epithelial and mesenchymal origin. Later, other family members were also isolated from a number of mammalian, avian and fish species. Some of these viruses significantly contributed to our current understanding of the fundamentals of modern biology such as transcription, replication, splicing, RNA editing, and cell transformation. After the discovery of first two human polyomaviruses (JC virus [JCV] and BK virus [BKV]) in the early 1970s, there has been a rapid expansion in the number of human polyomaviruses in recent years due to the availability of the new technologies and brought the present number to 14. Some of the human polyomaviruses cause considerably serious human diseases, including progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy, Merkel cell carcinoma, and trichodysplasia spinulosa. Emerging evidence suggests that the expression of the polyomavirus genome is more complex than previously thought. In addition to encoding universally expressed regulatory and structural proteins (LT-Ag, Sm t-Ag, VP1, VP2, and VP3), some polyomaviruses express additional virus-specific regulatory proteins and microRNAs. This review summarizes the recent advances in polyomavirus genome expression with respect to the new viral proteins and microRNAs other than the universally expressed ones. In addition, a special emphasis is devoted to the recent structural and functional discoveries in the field of polyomavirus agnoprotein which is expressed only by JCV, BKV, and simian virus 40 genomes.
Collapse
Affiliation(s)
- A Sami Saribas
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Pascale Coric
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Sorbonne Paris Cité, UMR 8015 CNRS, Paris, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Sorbonne Paris Cité, UMR 8015 CNRS, Paris, France
| | - Mahmut Safak
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Bononi I, Mazzoni E, Pietrobon S, Manfrini M, Torreggiani E, Rossini M, Lotito F, Guerra G, Rizzo P, Martini F, Tognon M. Serum IgG antibodies from healthy subjects up to 100 years old react to JC polyomavirus. J Cell Physiol 2018; 233:5513-5522. [PMID: 29323725 DOI: 10.1002/jcp.26457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022]
Abstract
JC polyomavirus (JCPyV) was identified in 1971 in the brain tissue of a patient (J.C.) affected by the progressive multifocal leukoencephalopathy (PML). JCPyV encodes for the oncoproteins large T antigen (Tag) and small t-antigen (tag). These oncoproteins are responsible of the cell transformation and tumorigenesis in experimental animals. JCPyV is ubiquitous in human populations. After the primary infection, which is usually asymptomatic, JCPyV remains lifelong in the host in a latent phase. Its reactivation may occur in heathy subjects and immunocompromised patients. Upon reactivation, JCPyV could reach (i) the CNS inducing the PML, (ii) the kidney of transplant patients causing the organ rejection. Association between JCPyV, which is a small DNA tumor virus, and gliomas and colorectal carcinomas has been published. In the present investigation, we report on a new indirect ELISA with two specific synthetic peptides mimicking JCPyV VP1 immunogenic epitopes to detect specific serum IgG antibodies against JCPyV. Serum samples of healthy subjects (n = 355) ranging 2-100 years old, were analyzed by this new indirect ELISA. The linear peptides VP1 K and VP1 N resemble the natural JCPyV VP1 capsidic epitopes constituting a docking site for serum antibodies. Data from this innovative immunologic assay indicate that the overall prevalence of JCPyV-VP1 antibodies in healthy subjects is at 39%. The innovative indirect ELISA with JCPyV VP1 mimotopes seems to be a useful method to detect specific IgG antibodies against this virus, without cross-reactivity with the closely related SV40 and BKPyV polyomaviruses.
Collapse
Affiliation(s)
- Ilaria Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Silvia Pietrobon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Manfrini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Torreggiani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Marika Rossini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Lotito
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Giovanni Guerra
- Clinical Laboratory Analysis, University Hospital of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Baez CF, Brandão Varella R, Villani S, Delbue S. Human Polyomaviruses: The Battle of Large and Small Tumor Antigens. Virology (Auckl) 2017; 8:1178122X17744785. [PMID: 29238174 PMCID: PMC5721967 DOI: 10.1177/1178122x17744785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
About 40 years ago, the large and small tumor antigens (LT-Ag and sT-Ag) of the polyomavirus (PyVs) simian vacuolating virus 40 have been identified and characterized. To date, it is well known that all the discovered human PyVs (HPyVs) encode these 2 multifunctional and tumorigenic proteins, expressed at viral replication early stage. The 2 T-Ags are able to transform cells both in vitro and in vivo and seem to play a distinct role in the pathogenesis of some tumors in humans. In addition, they are involved in viral DNA replication, transcription, and virion assembly. This short review focuses on the structural and functional features of the HPyVs’ LT-Ag and sT-Ag, with special attention to their transforming properties.
Collapse
Affiliation(s)
- Camila Freze Baez
- Department of Preventive Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sonia Villani
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| |
Collapse
|
11
|
Saribas AS, Coric P, Hamazaspyan A, Davis W, Axman R, White MK, Abou-Gharbia M, Childers W, Condra JH, Bouaziz S, Safak M. Emerging From the Unknown: Structural and Functional Features of Agnoprotein of Polyomaviruses. J Cell Physiol 2016; 231:2115-27. [PMID: 26831433 DOI: 10.1002/jcp.25329] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Agnoprotein is an important regulatory protein of polyomaviruses, including JCV, BKV, and SV40. In the absence of its expression, these viruses are unable to sustain their productive life cycle. It is a highly basic phosphoprotein that localizes mostly to the perinuclear area of infected cells, although a small amount of the protein is also found in nucleus. Much has been learned about the structure and function of this important regulatory protein in recent years. It forms highly stable dimers/oligomers in vitro and in vivo through its Leu/Ile/Phe-rich domain. Structural NMR studies revealed that this domain adopts an alpha-helix conformation and plays a critical role in the stability of the protein. It associates with cellular proteins, including YB-1, p53, Ku70, FEZ1, HP1α, PP2A, AP-3, PCNA, and α-SNAP; and viral proteins, including small t antigen, large T antigen, HIV-1 Tat, and JCV VP1; and significantly contributes the viral transcription and replication. This review summarizes the recent advances in the structural and functional properties of this important regulatory protein. J. Cell. Physiol. 231: 2115-2127, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Pascale Coric
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, 4 av. de l'Observatoire, Paris, France
| | - Anahit Hamazaspyan
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - William Davis
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Rachel Axman
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Martyn K White
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Magid Abou-Gharbia
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Wayne Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Jon H Condra
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Serge Bouaziz
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, 4 av. de l'Observatoire, Paris, France
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
The Oncogenic Small Tumor Antigen of Merkel Cell Polyomavirus Is an Iron-Sulfur Cluster Protein That Enhances Viral DNA Replication. J Virol 2015; 90:1544-56. [PMID: 26608318 DOI: 10.1128/jvi.02121-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Merkel cell polyomavirus (MCPyV) plays an important role in Merkel cell carcinoma (MCC). MCPyV small T (sT) antigen has emerged as the key oncogenic driver in MCC carcinogenesis. It has also been shown to promote MCPyV LT-mediated replication by stabilizing LT. The importance of MCPyV sT led us to investigate sT functions and to identify potential ways to target this protein. We discovered that MCPyV sT purified from bacteria contains iron-sulfur (Fe/S) clusters. Electron paramagnetic resonance analysis showed that MCPyV sT coordinates a [2Fe-2S] and a [4Fe-4S] cluster. We also observed phenotypic conservation of Fe/S coordination in the sTs of other polyomaviruses. Since Fe/S clusters are critical cofactors in many nucleic acid processing enzymes involved in DNA unwinding and polymerization, our results suggested the hypothesis that MCPyV sT might be directly involved in viral replication. Indeed, we demonstrated that MCPyV sT enhances LT-mediated replication in a manner that is independent of its previously reported ability to stabilize LT. MCPyV sT translocates to nuclear foci containing actively replicating viral DNA, supporting a direct role for sT in promoting viral replication. Mutations of Fe/S cluster-coordinating cysteines in MCPyV sT abolish its ability to stimulate viral replication. Moreover, treatment with cidofovir, a potent antiviral agent, robustly inhibits the sT-mediated enhancement of MCPyV replication but has little effect on the basal viral replication driven by LT alone. This finding further indicates that MCPyV sT plays a direct role in stimulating viral DNA replication and introduces cidofovir as a possible drug for controlling MCPyV infection. IMPORTANCE MCPyV is associated with a highly aggressive form of skin cancer in humans. Epidemiological surveys for MCPyV seropositivity and sequencing analyses of healthy human skin suggest that MCPyV may represent a common component of the human skin microbial flora. However, much of the biology of the virus and its oncogenic ability remain to be investigated. In this report, we identify MCPyV sT as a novel Fe/S cluster protein and show that conserved cysteine clusters are important for sT's ability to enhance viral replication. Moreover, we show that sT sensitizes MCPyV replication to cidofovir inhibition. The discovery of Fe/S clusters in MCPyV sT opens new avenues to the study of the structure and functionality of this protein. Moreover, this study supports the notion that sT is a potential drug target for dampening MCPyV infection.
Collapse
|
13
|
Theiss JM, Günther T, Alawi M, Neumann F, Tessmer U, Fischer N, Grundhoff A. A Comprehensive Analysis of Replicating Merkel Cell Polyomavirus Genomes Delineates the Viral Transcription Program and Suggests a Role for mcv-miR-M1 in Episomal Persistence. PLoS Pathog 2015. [PMID: 26218535 PMCID: PMC4517807 DOI: 10.1371/journal.ppat.1004974] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is considered the etiological agent of Merkel cell carcinoma and persists asymptomatically in the majority of its healthy hosts. Largely due to the lack of appropriate model systems, the mechanisms of viral replication and MCPyV persistence remain poorly understood. Using a semi-permissive replication system, we here report a comprehensive analysis of the role of the MCPyV-encoded microRNA (miRNA) mcv-miR-M1 during short and long-term replication of authentic MCPyV episomes. We demonstrate that cells harboring intact episomes express high levels of the viral miRNA, and that expression of mcv-miR-M1 limits DNA replication. Furthermore, we present RACE, RNA-seq and ChIP-seq studies which allow insight in the viral transcription program and mechanisms of miRNA expression. While our data suggest that mcv-miR-M1 can be expressed from canonical late strand transcripts, we also present evidence for the existence of an independent miRNA promoter that is embedded within early strand coding sequences. We also report that MCPyV genomes can establish episomal persistence in a small number of cells for several months, a time period during which viral DNA as well as LT-Ag and viral miRNA expression can be detected via western blotting, FISH, qPCR and southern blot analyses. Strikingly, despite enhanced replication in short term DNA replication assays, a mutant unable to express the viral miRNA was severely limited in its ability to establish long-term persistence. Our data suggest that MCPyV may have evolved strategies to enter a non- or low level vegetative stage of infection which could aid the virus in establishing and maintaining a lifelong persistence.
Collapse
Affiliation(s)
- Juliane Marie Theiss
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Günther
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Malik Alawi
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Neumann
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Tessmer
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (NF); (AG)
| | - Adam Grundhoff
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail: (NF); (AG)
| |
Collapse
|
14
|
JC virus quasispecies analysis reveals a complex viral population underlying progressive multifocal leukoencephalopathy and supports viral dissemination via the hematogenous route. J Virol 2014; 89:1340-7. [PMID: 25392214 DOI: 10.1128/jvi.02565-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Opportunistic infection of oligodendrocytes by human JC polyomavirus may result in the development of progressive multifocal encephalopathy in immunocompromised individuals. Neurotropic JC virus generally harbors reorganized noncoding control region (NCCR) DNA interspersed on the viral genome between early and late coding genes. By applying 454 sequencing on NCCR DNA amplified from body fluid samples (urine, plasma, and cerebrospinal fluid [CSF]) from 19 progressive multifocal leukoencephalopathy (PML) patients, we attempted to reveal the composition of the JC polyomavirus population (the quasispecies, i.e., the whole of the consensus population and minor viral variants) contained in different body compartments and to better understand intrapatient viral dissemination. Our data demonstrate that in the CSF of PML patients, the JC viral population is often a complex mixture composed of multiple viral variants that contribute to the quasispecies. In contrast, urinary JC virus highly resembled the archetype virus, and urine most often did not contain minor viral variants. It also appeared that archetype JC virus could sporadically be identified in PML patient brain, although selection of rearranged JC virus DNA was favored. Comparison of the quasispecies from different body compartments within a given patient suggested a strong correlation between the viral population in plasma and CSF, whereas the viral population shed in urine appeared to be unrelated. In conclusion, it is shown that the representation of viral DNA in the CSF following the high-level DNA replication in the brain underlying PML has hitherto been much underestimated. Our data also underscore that the hematogenous route might play a pivotal role in viral dissemination from or toward the brain. IMPORTANCE For the first time, the JC polyomavirus population contained in different body compartments of patients diagnosed with progressive multifocal encephalopathy has been studied by deep sequencing. Two main findings came out of this work. First, it became apparent that the complexity of the viral population associated with PML has been highly underestimated so far, suggestive of a highly dynamic process of reorganization of the noncoding control region of JC polyomavirus in vivo, mainly in CSF and blood. Second, evidence showing viral dissemination from and/or toward the brain via the hematogenous route was provided, confirming a hypothesis that was recently put forward in the field.
Collapse
|
15
|
Shin J, Phelan PJ, Chhum P, Bashkenova N, Yim S, Parker R, Gagnon D, Gjoerup O, Archambault J, Bullock PA. Analysis of JC virus DNA replication using a quantitative and high-throughput assay. Virology 2014; 468-470:113-125. [PMID: 25155200 DOI: 10.1016/j.virol.2014.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication.
Collapse
Affiliation(s)
- Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Paul J Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Panharith Chhum
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nazym Bashkenova
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sung Yim
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Robert Parker
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David Gagnon
- Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Ole Gjoerup
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Jacques Archambault
- Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
16
|
Removal of a small C-terminal region of JCV and SV40 large T antigens has differential effects on transformation. Virology 2014; 468-470:47-56. [PMID: 25129438 DOI: 10.1016/j.virol.2014.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 01/12/2023]
Abstract
The large T antigen (LT) protein of JCV and SV40 polyomaviruses is required to induce tumors in rodents and transform cells in culture. When both LTs are compared side-by-side in cell culture assays, SV40 shows a more robust transformation phenotype even though the LT sequences are highly conserved. A complete understanding of SV40׳s enhanced transforming capabilities relative to JCV is lacking. When the least conserved region of the LT proteins, the variable linker and host range region (VHR), was removed, changes in T antigen expression and cellular p53 post-translational modifications occurred, but interaction with the pRB pathway was unaffected. Transformation assessed by growth in low serum was reduced after VHR truncation of the SV40, but not the JCV, T antigen. Conversely, anchorage independent transformation was enhanced only by truncation of the JCV VHR. This is the first report to link the SV40 or JCV VHR region to transformation potential.
Collapse
|
17
|
Kwun HJ, Shuda M, Feng H, Camacho CJ, Moore PS, Chang Y. Merkel cell polyomavirus small T antigen controls viral replication and oncoprotein expression by targeting the cellular ubiquitin ligase SCFFbw7. Cell Host Microbe 2014; 14:125-35. [PMID: 23954152 DOI: 10.1016/j.chom.2013.06.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/09/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Merkel cell polyomavirus (MCV) causes an aggressive human skin cancer, Merkel cell carcinoma, through expression of small T (sT) and large T (LT) viral oncoproteins. MCV sT is also required for efficient MCV DNA replication by the multifunctional MCV LT helicase protein. We find that LT is targeted for proteasomal degradation by the cellular SCF(Fbw7) E3 ligase, which can be inhibited by sT through its LT-stabilization domain (LSD). Consequently, sT also stabilizes cellular SCF(Fbw7) targets, including the cell-cycle regulators c-Myc and cyclin E. Mutating the sT LSD decreases LT protein levels and eliminates synergism in MCV DNA replication as well as sT-induced cell transformation. SCF(Fbw7) knockdown mimics sT-mediated stabilization of LT, but this knockdown is insufficient to fully reconstitute the transforming activity of a mutant LSD sT protein. Thus, MCV has evolved a regulatory system involving SCF(Fbw7) that controls viral replication but also contributes to host cell transformation.
Collapse
Affiliation(s)
- Hyun Jin Kwun
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
18
|
Saribas AS, Mun S, Johnson J, El-Hajmoussa M, White MK, Safak M. Human polyoma JC virus minor capsid proteins, VP2 and VP3, enhance large T antigen binding to the origin of viral DNA replication: evidence for their involvement in regulation of the viral DNA replication. Virology 2013; 449:1-16. [PMID: 24418532 DOI: 10.1016/j.virol.2013.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 07/08/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
JC virus (JCV) lytically infects the oligodendrocytes in the central nervous system in a subset of immunocompromized patients and causes the demyelinating disease, progressive multifocal leukoencephalopathy. JCV replicates and assembles into infectious virions in the nucleus. However, understanding the molecular mechanisms of its virion biogenesis remains elusive. In this report, we have attempted to shed more light on this process by investigating molecular interactions between large T antigen (LT-Ag), Hsp70 and minor capsid proteins, VP2/VP3. We demonstrated that Hsp70 interacts with VP2/VP3 and LT-Ag; and accumulates heavily in the nucleus of the infected cells. We also showed that VP2/VP3 associates with LT-Ag through their DNA binding domains resulting in enhancement in LT-Ag DNA binding to Ori and induction in viral DNA replication. Altogether, our results suggest that VP2/VP3 and Hsp70 actively participate in JCV DNA replication and may play critical roles in coupling of viral DNA replication to virion encapsidation.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, United States
| | - Sarah Mun
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, United States
| | - Jaslyn Johnson
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, United States
| | - Mohammad El-Hajmoussa
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, United States
| | - Martyn K White
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, United States
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, United States.
| |
Collapse
|
19
|
Quasispecies analysis of JC virus DNA present in urine of healthy subjects. PLoS One 2013; 8:e70950. [PMID: 23967139 PMCID: PMC3744523 DOI: 10.1371/journal.pone.0070950] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/28/2013] [Indexed: 12/17/2022] Open
Abstract
JC virus is a human polyomavirus that infects the majority of people without apparent symptoms in healthy subjects and it is the causative agent of progressive multifocal leucoencephalopathy (PML), a disorder following lytic infection of oligodendrocytes that mainly manifests itself under immunosuppressive conditions. A hallmark for JC virus isolated from PML-brain is the presence of rearrangements in the non-coding control region (NCCR) interspersed between the early and late genes on the viral genome. Such rearrangements are believed to originate from the archetype JC virus which is shed in urine by healthy subjects and PML patients. We applied next generation sequencing to explore the non-coding control region variability in urine of healthy subjects in search for JC virus quasispecies and rearrangements reminiscent of PML. For 61 viral shedders (out of a total of 254 healthy subjects) non-coding control region DNA and VP1 (major capsid protein) coding sequences were initially obtained by Sanger sequencing. Deletions between 1 and 28 nucleotides long appeared in ∼24.5% of the NCCR sequences while insertions were only detected in ∼3.3% of the samples. 454 pyrosequencing was applied on a subset of 54 urine samples demonstrating the existence of JC virus quasispecies in four subjects (∼7.4%). Hence, our results indicate that JC virus DNA in urine is not always restricted to one unique virus variant, but can be a mixture of naturally occurring variants (quasispecies) reflecting the susceptibility of the non-coding control region for genomic rearrangements in healthy individuals. Our findings pave the way to explore the presence of viral quasispecies and the altered viral tropism that might go along with it as a potential risk factor for opportunistic secondary infections such as PML.
Collapse
|
20
|
JC polyomavirus (JCV) and monoclonal antibodies: friends or potential foes? Clin Dev Immunol 2013; 2013:967581. [PMID: 23878587 PMCID: PMC3708391 DOI: 10.1155/2013/967581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/13/2013] [Indexed: 12/13/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS), observed in immunodeficient patients and caused by JC virus ((JCV), also called JC polyomavirus (JCPyV)). After the HIV pandemic and the introduction of immunomodulatory therapy, the PML incidence significantly increased. The correlation between the use of natalizumab, a drug used in multiple sclerosis (MS), and the PML development of particular relevance. The high incidence of PML in natalizumab-treated patients has highlighted the importance of two factors: the need of PML risk stratification among natalizumab-treated patients and the need of effective therapeutic options. In this review, we discuss these two needs under the light of the major viral models of PML etiopathogenesis.
Collapse
|
21
|
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25:471-506. [PMID: 22763635 DOI: 10.1128/cmr.05031-11] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Collapse
|
22
|
Bayliss J, Karasoulos T, McLean CA. Frequency and large T (LT) sequence of JC polyomavirus DNA in oligodendrocytes, astrocytes and granular cells in non-PML brain. Brain Pathol 2011; 22:329-36. [PMID: 21951346 DOI: 10.1111/j.1750-3639.2011.00538.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) and JCV granular cell neuronopathy occur secondary to JCV polyomavirus (JCV) infection of oligodendrocytes and cerebellar granular cell neurons (CGNs) during immunosuppression. Pure populations of astrocytes, oligodendrocytes, CGNs and microglia from frontal cortex and cerebellum of 17 non-PML patients (9 immunocompetent; 8 immunosuppressed) were isolated by laser capture microdissection (LCM). JCV large T (LT) antigen DNA was detected by triple nested polymerase chain reaction (PCR). Sequence analysis was performed to assess LT gene variation. JCV DNA was detected in oligodendrocytes, astrocytes and CGNs of non-PML brains. The most common site for viral latency was cortical oligodendrocytes (65% of samples analyzed). Immunosuppressed patients were significantly more likely to harbor JCV DNA in CGN populations than immunocompetent patients (P = 0.01). Sequence analysis of the LT region revealed eight novel single nucleotide polymorphisms (SNPs) in four immunosuppressed patients. Of the eight novel SNPs detected, six were silent and two resulted in amino acid changes. JCV DNA is present within cells of the non-PML brain, known to be infected during PML and granular cell neuronopathy. This supports the argument for a brain only reservoir of JCV and supports the hypothesis that reactivation of latent brain JCV may be central to disease pathogenesis.
Collapse
Affiliation(s)
- Julianne Bayliss
- Department of Medicine, Monash University, Level Seven, Alfred Centre, Alfred Hospital, Commercial Road, Melbourne, Vic. 3004, Australia.
| | | | | |
Collapse
|
23
|
Feng H, Kwun HJ, Liu X, Gjoerup O, Stolz DB, Chang Y, Moore PS. Cellular and viral factors regulating Merkel cell polyomavirus replication. PLoS One 2011; 6:e22468. [PMID: 21799863 PMCID: PMC3142164 DOI: 10.1371/journal.pone.0022468] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/22/2011] [Indexed: 12/13/2022] Open
Abstract
Merkel cell polyomavirus (MCV), a previously unrecognized component of the human viral skin flora, was discovered as a mutated and clonally-integrated virus inserted into Merkel cell carcinoma (MCC) genomes. We reconstructed a replicating MCV clone (MCV-HF), and then mutated viral sites required for replication or interaction with cellular proteins to examine replication efficiency and viral gene expression. Three days after MCV-HF transfection into 293 cells, although replication is not robust, encapsidated viral DNA and protein can be readily isolated by density gradient centrifugation and typical ∼40 nm diameter polyomavirus virions are identified by electron microscopy. The virus has an orderly gene expression cascade during replication in which large T (LT) and 57kT proteins are first expressed by day 2, followed by expression of small T (sT) and VP1 proteins. VP1 and sT proteins are not detected, and spliced 57kT is markedly diminished, in the replication-defective virus suggesting that early gene splicing and late gene transcription may be dependent on viral DNA replication. MCV replication and encapsidation is increased by overexpression of MCV sT, consistent with sT being a limiting factor during virus replication. Mutation of the MCV LT vacuolar sorting protein hVam6p (Vps39) binding site also enhances MCV replication while exogenous hVam6p overexpression reduces MCV virion production by >90%. Although MCV-HF generates encapsidated wild-type MCV virions, we did not find conditions for persistent transmission to recipient cell lines suggesting that MCV has a highly restricted tropism. These studies identify and highlight the role of polyomavirus DNA replication in viral gene expression and show that viral sT and cellular hVam6p are important factors regulating MCV replication. MCV-HF is a molecular clone that can be readily manipulated to investigate factors affecting MCV replication.
Collapse
Affiliation(s)
- Huichen Feng
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hyun Jin Kwun
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xi Liu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ole Gjoerup
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Patrick S. Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
24
|
Bollag B, Hofstetter CA, Reviriego-Mendoza MM, Frisque RJ. JC virus small T antigen binds phosphatase PP2A and Rb family proteins and is required for efficient viral DNA replication activity. PLoS One 2010; 5:e10606. [PMID: 20485545 PMCID: PMC2868895 DOI: 10.1371/journal.pone.0010606] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/19/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The human polyomavirus, JC virus (JCV) produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg) and three T' proteins, but little is known about small tumor antigen (tAg) functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses. METHODOLOGY AND FINDINGS We investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A), and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector. CONCLUSIONS JCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions.
Collapse
Affiliation(s)
- Brigitte Bollag
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Catherine A. Hofstetter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Marta M. Reviriego-Mendoza
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Richard J. Frisque
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
The minimum replication origin of merkel cell polyomavirus has a unique large T-antigen loading architecture and requires small T-antigen expression for optimal replication. J Virol 2009; 83:12118-28. [PMID: 19759150 DOI: 10.1128/jvi.01336-09] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merkel cell polyomavirus (MCV) is a recently discovered human polyomavirus causing the majority of human Merkel cell carcinomas. We mapped a 71-bp minimal MCV replication core origin sufficient for initiating eukaryotic DNA replication in the presence of wild-type MCV large T protein (LT). The origin includes a poly(T)-rich tract and eight variably oriented, GAGGC-like pentanucleotide sequences (PS) that serve as LT recognition sites. Mutation analysis shows that only four of the eight PS are required for origin replication. A single point mutation in one origin PS from a naturally occurring, tumor-derived virus reduces LT assembly on the origin and eliminates viral DNA replication. Tumor-derived LT having mutations truncating either the origin-binding domain or the helicase domain also prevent LT-origin assembly. Optimal MCV replication requires coexpression of MCV small T protein (sT), together with LT. An intact DnaJ domain on the LT is required for replication but is dispensable on the sT. In contrast, PP2A targeting by sT is required for enhanced replication. The MCV origin provides a novel model for eukaryotic replication from a defined DNA element and illustrates the selective pressure within tumors to abrogate independent MCV replication.
Collapse
|
26
|
Abstract
Polyomaviruses are a growing family of small DNA viruses with a narrow tropism for both the host species and the cell type in which they productively replicate. Species host range may be constrained by requirements for precise molecular interactions between the viral T antigen, host replication proteins, including DNA polymerase, and the viral origin of replication, which are required for viral DNA replication. Cell type specificity involves, at least in part, transcription factors that are necessary for viral gene expression and restricted in their tissue distribution. In the case of the human polyomaviruses, BK virus (BKV) replication occurs in the tubular epithelial cells of the kidney, causing nephropathy in kidney allograft recipients, while JC virus (JCV) replication occurs in the glial cells of the central nervous system, where it causes progressive multifocal leukoencephalopathy. Three new human polyomaviruses have recently been discovered: MCV was found in Merkel cell carcinoma samples, while Karolinska Institute Virus and Washington University Virus were isolated from the respiratory tract. We discuss control mechanisms for gene expression in primate polyomaviruses, including simian vacuolating virus 40, BKV, and JCV. These mechanisms include not only modulation of promoter activities by transcription factor binding but also enhancer rearrangements, restriction of DNA methylation, alternate early mRNA splicing, cis-acting elements in the late mRNA leader sequence, and the production of viral microRNA.
Collapse
|
27
|
Tan CS, Dezube BJ, Bhargava P, Autissier P, Wüthrich C, Miller J, Koralnik IJ. Detection of JC virus DNA and proteins in the bone marrow of HIV-positive and HIV-negative patients: implications for viral latency and neurotropic transformation. J Infect Dis 2009; 199:881-8. [PMID: 19434914 DOI: 10.1086/597117] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND We sought to determine the prevalence of JC virus (JCV) in bone marrow samples from human immunodeficiency virus (HIV)-positive and HIV-negative patients and to determine whether bone marrow is a site of latency and neurotropic transformation of JCV, the agent of progressive multifocal leukoencephalopathy (PML). METHODS We collected bone marrow aspirates, archival bone marrow samples, and blood and urine samples from 75 HIV-negative and 47 HIV-positive patients without PML as well as bone marrow and urine or kidney samples from 8 HIV-negative and 15 HIV-positive patients with PML. Samples were tested for JCV DNA by quantitative polymerase chain reaction and for JCV protein expression by immunohistochemical analysis. JCV regulatory regions (RRs) were characterized by sequencing. RESULTS JCV DNA was detected in bone marrow samples from 10 (13%) of 75 and 22 (47%) of 47 of the HIV-negative and HIV-positive patients without PML, respectively, compared with 3 (38%) of 8 and 4 (27%) of 15 of the HIV-negative and HIV-positive patients with PML. JCV DNA (range, 2-1081 copies/microg of cellular DNA) was detected in multiple leukocyte subpopulations of blood and bone marrow samples. JCV large T antigen, but not VP1 capsid protein, was expressed in bone marrow plasma cells. Bone marrow JCV RR sequences were similar to those usually found in the brains of patients with PML. CONCLUSIONS Bone marrow is an important reservoir and a possible site of neurotropic transformation for JCV.
Collapse
Affiliation(s)
- Chen S Tan
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abend JR, Joseph AE, Das D, Campbell-Cecen DB, Imperiale MJ. A truncated T antigen expressed from an alternatively spliced BK virus early mRNA. J Gen Virol 2009; 90:1238-1245. [PMID: 19264611 DOI: 10.1099/vir.0.009159-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The early region of BK virus (BKV) is known to encode two well-characterized tumour (T) antigens, large T antigen (TAg) and small T antigen (tAg). In this study, we provide evidence of a third early BKV mRNA that codes for an additional early region product with an apparent molecular mass of 17-20 kDa. This truncated form of TAg (truncTAg) is expressed from an alternatively spliced mRNA that is derived from the excision of a second intron from the mRNA encoding TAg. The first 133 aa of truncTAg are identical to those of TAg but the additional splice results in translation from a different reading frame, adding three new amino acids before reaching a stop codon. TruncTAg is expressed in both BKV-transformed and lytically infected cells and it is found to be primarily localized to the nucleus. The function of BKV truncTAg is likely to be relevant to transformation, similar to the additional T antigens of simian virus 40, JC virus and mouse polyomavirus.
Collapse
Affiliation(s)
- Johanna R Abend
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5942, USA
| | - Amy E Joseph
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5942, USA
| | - Dweepanita Das
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5942, USA
| | - Deniz B Campbell-Cecen
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5942, USA
| | - Michael J Imperiale
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5942, USA
| |
Collapse
|
29
|
Maginnis MS, Atwood WJ. JC virus: an oncogenic virus in animals and humans? Semin Cancer Biol 2009; 19:261-9. [PMID: 19505654 DOI: 10.1016/j.semcancer.2009.02.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 12/12/2022]
Abstract
JC virus (JCV) is a human polyomavirus of the Polyomaviridae family, which also includes BK virus and simian vacuolating virus 40 (SV40). JC virus was first isolated in 1971 from the brain of a patient with Progressive Multifocal Leukoencephalopathy (PML). Like other polyomaviruses, JCV has a restricted host range. The virus infects the majority of the human population with seroconversion occurring during adolescence. JCV has a limited and specific tissue tropism infecting the kidney and oligodendrocytes and astrocytes in the central nervous system (CNS). Initial JCV infection is generally asymptomatic in immunocompetent hosts, and it establishes a persistent infection in the kidney and possibly bone marrow. In immunocompromised individuals JCV can cause a lytic infection in the CNS and lead to development of the fatal, demyelinating disease PML. The name polyoma is derived from the Greek terms: poly, meaning many, and oma, meaning tumors, owing to the capacity of this group of viruses to cause tumors. JCV inoculation of small animal models and non-human primates, which are not permissive to a productive JCV infection, leads to tumor formation. Given the ubiquitous nature of the virus and its strong association with cancer in animal models, it is hypothesized that JCV plays a role in human cancers. However, the role for JCV in human cancers and tumor formation is not clear. Some researchers have reported an association of JCV with human cancers including brain tumors, colorectal cancers, and cancers of the gastrointestinal tract, while other groups report no correlation. Here, we review the role of JCV in cancers in animal models and present the findings on JCV in human cancers.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
30
|
Frisque RJ, Hofstetter C, Tyagarajan SK. Transforming Activities of JC Virus Early Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 577:288-309. [PMID: 16626044 DOI: 10.1007/0-387-32957-9_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyomaviruses, as their name indicates, are viruses capable of inducing a variety of tumors in vivo. Members of this family, including the human JC and BK viruses (JCV, BKV), and the better characterized mouse polyomavirus and simian virus 40 (SV40), are small DNA viruses that commandeer a cell's molecular machinery to reproduce themselves. Studies of these virus-host interactions have greatly enhanced our understanding of a wide range of phenomena from cellular processes (e.g., DNA replication and transcription) to viral oncogenesis. The current chapter will focus upon the five known JCV early proteins and the contributions each makes to the oncogenic process (transformation) when expressed in cultured cells. Where appropriate, gaps in our understanding of JCV protein function will be supplanted with information obtained from the study of SV40 and BKV.
Collapse
|
31
|
Bollag B, Kilpatrick LH, Tyagarajan SK, Tevethia MJ, Frisque RJ. JC virus T'135, T'136 and T'165 proteins interact with cellular p107 and p130 in vivo and influence viral transformation potential. J Neurovirol 2006; 12:428-42. [PMID: 17162659 DOI: 10.1080/13550280601009553] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The JC virus (JCV) regulatory proteins, large T antigen, small t antigen, T'135, T'136, and T'165, are encoded by five transcripts alternatively spliced from the viral early precursor mRNA. T antigen and the T' proteins share N-terminal amino acid sequences that include the L x CxE and J domains, motifs in SV40 T antigen known to mediate binding to the retinoblastoma (Rb) proteins and Hsc70, respectively. In this study, G418-resistant cell lines were created that express wild-type or mutant JCV T antigen and T' proteins individually or in combination. These cell lines were used to evaluate the ability of each viral protein to bind p107 and p130 in vivo, and to influence cellular growth characteristics. Differences were observed in the abilities of individual T' proteins to bind p107 and p130 and to alter their phosphorylation status. The T' proteins were also found to localize to the cell's nucleus and to be phosphorylated in a cell cycle-dependent manner. JCV T antigen and T' proteins expressed from a cytomegalovirus promoter failed to induce dense focus formation in Rat2 cells, but they did cooperate with a mutant Ras protein to overcome cellular senescence and immortalize rat embryo fibroblasts. These data indicate that, despite their sequence similarities, JCV early proteins exhibit unique activities that, in combination, effect the inactivation of cell cycle regulators, a requirement for polyomavirus-induced transformation.
Collapse
Affiliation(s)
- Brigitte Bollag
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
32
|
White MK, Khalili K. Interaction of retinoblastoma protein family members with large T-antigen of primate polyomaviruses. Oncogene 2006; 25:5286-93. [PMID: 16936749 DOI: 10.1038/sj.onc.1209618] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The retinoblastoma gene product pRb and other members of the Rb family of pocket proteins have a central role in the regulation of cell cycle progression. Soon after its discovery, pRb was found to interact with the transforming oncoproteins of DNA tumor viruses and this led to rapid advances in our understanding of the mechanisms of viral transformation and cell cycle progression. DNA viruses of the polyomavirus family have small, circular, double-stranded DNA genomes contained within non-enveloped icosahedral capsids and are highly tumorigenic in experimental animals. At least three types of polyomavirus infect humans: JC virus (JCV), BK virus (BKV) and Simian Vacuolating virus-40. The early region of these viruses encodes the transforming proteins large T-antigen and small t-antigen, which are involved in viral replication and also promote transformation of cells in culture and oncogenesis in vivo. Binding of T-antigen to pRb promotes the activation of the E2F family of transcription factors, which induce the expression of cellular genes required for S phase. In the context of lytic infection, this cell cycle progression is necessary for viral replication because polyomaviruses rely on S phase-specific host factors for their DNA synthesis. In the context of cellular transformation and tumorigenesis, T-antigen/pRB interaction is an indispensable event.
Collapse
Affiliation(s)
- M K White
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | | |
Collapse
|
33
|
Muñoz-Mármol AM, Mola G, Ruiz-Larroya T, Fernández-Vasalo A, Vela E, Mate JL, Ariza A. Rarity of JC virus DNA sequences and early proteins in human gliomas and medulloblastomas: the controversial role of JC virus in human neurooncogenesis. Neuropathol Appl Neurobiol 2006; 32:131-40. [PMID: 16599942 DOI: 10.1111/j.1365-2990.2006.00711.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
JC virus (JCV), the agent of progressive multifocal leucoencephalopathy (PML), exerts an oncogenic effect in several laboratory animal models. Moreover, JCV genomic DNA and early viral protein T-antigen have been detected in various types of human central nervous system (CNS) neoplasms. To further explore this association we have studied paraffin-embedded brain biopsy tissue from 60 neoplasms (55 gliomas and five medulloblastomas) and 15 reactive gliosis cases for the presence of JCV DNA sequences and proteins. Four post mortem cases of HIV-associated PML were used as positive controls. Samples were assessed by polymerase chain reaction (PCR) amplification of early (large T antigen) and late (virion protein 3) sequences and immunohistochemistry (IHC) with both PAb 2024 and anti-SV40 large T antigen monoclonal antibodies. Five cases (three neoplasms and two reactive gliosis instances) showed low viral DNA levels when PCR-tested for VP3 or large T, while no case was immunoreactive for any of the two antibodies used. The four PML cases yielded positive results with both PCR and IHC. Additionally, IHC with both antibodies was applied to a tissue micro-array including 109 CNS tumours and 21 reactive gliosis samples. No immunoreactivity was detected in any of these tissue micro-array samples. The rarity of JCV DNA sequences and early proteins in our brain tumours enriches the controversy over the role of JCV in human neurooncogenesis, whose clarification is in need of further molecular and epidemiologic studies.
Collapse
Affiliation(s)
- A M Muñoz-Mármol
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Tyagarajan SK, Frisque RJ. Stability and function of JC virus large T antigen and T' proteins are altered by mutation of their phosphorylated threonine 125 residues. J Virol 2006; 80:2083-91. [PMID: 16474116 PMCID: PMC1395387 DOI: 10.1128/jvi.80.5.2083-2091.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 12/06/2005] [Indexed: 12/29/2022] Open
Abstract
JC virus (JCV), a human polyomavirus, exhibits oncogenic activity in rodents and primates. The large tumor antigens (TAgs) of the polyomaviruses play key roles in viral replication and oncogenic transformation. Analyses of JCV TAg phosphorylation mutants indicated that the amino-terminal phosphorylation site at threonine 125 (T125) is critical to TAg replication function. This site is also conserved in the TAg splice variants T'(135), T'(136), and T'(165). By constructing stable cell lines expressing JCV T125A and T125D mutants, we show that mutation of this phosphorylation site to alanine generates an unstable TAg; however, the stability of the three T' proteins is unaffected. JCV T125A mutant proteins bind the retinoblastoma protein (RB) family members p107 and p130 with slightly reduced efficiencies and fail to induce the release of transcriptionally active E2F from RB-E2F complexes. On the other hand, cell lines expressing JCV T125D mutant proteins produce stable TAg and T' proteins which bind p107 and p130 more efficiently than do the wild-type proteins. In addition, T125D mutant proteins efficiently induce the release of E2F from RB-E2F complexes. T125D mutant cell lines, unlike the T125A mutant lines, continue to grow under conditions of low serum concentration and anchorage independence. Finally, both T125A and T125D mutant viruses are replication defective. Phosphorylation of the T125 site is likely mediated by a cyclin-cyclin-dependent kinase, suggesting that JCV TAg and T' protein functions that mediate viral replication and oncogenic transformation events are regulated in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Shiva K Tyagarajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | | |
Collapse
|
35
|
White MK, Khalili K. Expression of JC virus regulatory proteins in human cancer: potential mechanisms for tumourigenesis. Eur J Cancer 2005; 41:2537-48. [PMID: 16219459 DOI: 10.1016/j.ejca.2005.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
JC virus (JCV) is a human polyomavirus that is the etiologic agent of the fatal demyelinating disease of the central nervous system known as progressive multifocal leukoencephalopathy (PML). JCV is also linked to some tumours of the brain and other organs as evidenced by the presence of JCV DNA sequences and the expression of viral proteins in clinical samples. Since JCV is highly oncogenic in experimental animals and transforms cells in culture, it is possible that JCV contributes to the malignant phenotype of human tumours with which it is associated. JCV encodes three non-capsid regulatory proteins: large T-antigen, small t-antigen and agnoprotein that interact with a number of cellular target proteins and interfere with certain normal cellular functions. In this review, we discuss how JCV proteins deregulate signalling pathways especially ones pertaining to transcriptional regulation and cell cycle control. These effects may be involved in the progression of JCV-associated tumours and may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, 1900 North 12th Street, MS 015-96, Room 203, Philadelphia, PA 19122, USA
| | | |
Collapse
|
36
|
White MK, Gordon J, Reiss K, Del Valle L, Croul S, Giordano A, Darbinyan A, Khalili K. Human polyomaviruses and brain tumors. ACTA ACUST UNITED AC 2005; 50:69-85. [PMID: 15982744 DOI: 10.1016/j.brainresrev.2005.04.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/12/2005] [Accepted: 04/21/2005] [Indexed: 12/25/2022]
Abstract
Polyomaviruses are DNA tumor viruses with small circular genomes. Three polyomaviruses have captured attention with regard to their potential role in the development of human brain tumors: JC virus (JCV), BK virus (BKV), and simian vacuolating virus 40 (SV40). JCV is a neurotropic polyomavirus that is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system occurring mainly in AIDS patients. BKV is the causative agent of polyomavirus-associated nephropathy (PVN) which occurs after renal transplantation when BKV reactivates from a latent state during immunosuppressive therapy to cause allograft failure. SV40, originating in rhesus monkeys, gained notoriety when it entered the human population via contaminated polio vaccines. All three viruses are highly oncogenic when injected into the brain of experimental animals. Reports indicate that these viruses, especially JCV, are associated with brain tumors and other cancers in humans as evidenced from the analysis of clinical samples for the presence of viral DNA sequences and expression of viral proteins. Human polyomaviruses encode three non-capsid regulatory proteins: large T-antigen, small t-antigen, and agnoprotein. These proteins interact with a number of cellular target proteins to exert effects that dysregulate pathways involved in the control of various host cell functions including the cell cycle, DNA repair, and others. In this review, we describe the three polyomaviruses, their abilities to cause brain and other tumors in experimental animals, the evidence for an association with human brain tumors, and the latest findings on the molecular mechanisms of their actions.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Muñoz-Mármol AM, Mola G, Fernández-Vasalo A, Vela E, Mate JL, Ariza A. JC virus early protein detection by immunohistochemistry in progressive multifocal leukoencephalopathy: a comparative study with in situ hybridization and polymerase chain reaction. J Neuropathol Exp Neurol 2004; 63:1124-30. [PMID: 15581180 DOI: 10.1093/jnen/63.11.1124] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In situ hybridization (ISH) for JC virus (JCV) is generally applied for the diagnosis of progressive multifocal leukoencephalopathy (PML). To explore the usefulness of immunohistochemistry (IHC) for JCV early proteins, 14 paraffin-embedded postmortem brain specimens with histologic features compatible with PML were tested for the presence of JCV by means of DNA-DNA ISH with a biotinylated probe corresponding to the entire JCV genome, for JCV early proteins IHC with both PAb 2003 and anti-SV40 large T antigen monoclonal antibodies, and polymerase chain reaction (PCR) amplification of JCV virion protein 3 (VP3) and transcriptional control region (TCR) sequences. ISH was positive in 13 cases and IHC in all 14 cases, the number of IHC-positive cells generally being far in excess of ISH-positive cells. Of the 2 monoclonal antibodies used, PAb 2003 proved to be more sensitive than anti-SV40 large T antigen. Occasional neuronal nuclei were positive for JCV early proteins in 5 cases. As for PCR, VP3 was amplified in all 14 cases and TCR in 9 cases. Consequently, PAb 2003 IHC for JCV early proteins seems to be a powerful tool for viral demonstration in PML and may well become the diagnostic recourse of choice in this setting.
Collapse
Affiliation(s)
- Ana M Muñoz-Mármol
- Department of Pathology, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Khalili K, White MK, Sawa H, Nagashima K, Safak M. The agnoprotein of polyomaviruses: a multifunctional auxiliary protein. J Cell Physiol 2004; 204:1-7. [PMID: 15573377 DOI: 10.1002/jcp.20266] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The late region of the three primate polyomaviruses (JCV, BKV, and SV40) encodes a small, highly basic protein known as agnoprotein. While much attention during the last two decades has focused on the transforming proteins encoded by the early region (small and large T-antigens), it has become increasingly evident that agnoprotein has a critical role in the regulation of viral gene expression and replication, and in the modulation of certain important host cell functions including cell cycle progression and DNA repair. The importance of agnoprotein is underscored by its expression during lytic infection of glial cells by JCV that occurs in progressive multifocal leukoencephalopathy (PML), and also in some JCV-associated human neural tumors particularly medulloblastoma. In this review, we will discuss the structure and function of agnoprotein in the viral life cycle during the course of lytic infection and the consequences of agnoprotein expression for the host cell.
Collapse
Affiliation(s)
- Kamel Khalili
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
The possible role of eucaryotic viruses in the development of cancer has been the subject of intense investigation during the past 50 years. Thus far, a strong link between some RNA and DNA viruses and various cancers in humans has been established and the transforming activity of several of the viruses in cell culture and their oncogenecity in experimental animals has been well documented. Perhaps, one of the most common themes among the oncogenic viruses rests in the ability of one or more of the viral proteins to deregulate pathways involved in the control of cell proliferation. For example, inactivation of tumor suppressors through their association with viral transforming proteins, and/or impairment of signal transduction pathways upon viral infection and expression of viral proteins are among the key biological events that can either trigger and/or contribute to the process of cancer. In recent years, more attention has been paid to human polyomaviruses, particularly JC virus (JCV), which infects greater than 80% of the human population, due to the ability of this virus to induce a fatal demyelinating disease in the brain, its presence in various tumors of central nervous system (CNS) and non-CNS origin, and the oncogenic potential of this virus in several laboratory animal models. Here, we will focus our attention on JCV and describe several pathways employed by the virus to contribute to and/or accelerate cancer development.
Collapse
Affiliation(s)
- Krzysztof Reiss
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
40
|
Smith RWP, Nasheuer HP. Initiation of JC virus DNA replication in vitro by human and mouse DNA polymerase alpha-primase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2030-7. [PMID: 12709063 DOI: 10.1046/j.1432-1033.2003.03579.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Host species specificity of the polyomaviruses simian virus 40 (SV40) and mouse polyomavirus (PyV) has been shown to be determined by the host DNA polymerase alpha-primase complex involved in the initiation of both viral and host DNA replication. Here we demonstrate that DNA replication of the related human pathogenic polyomavirus JC virus (JCV) can be supported in vitro by DNA polymerase alpha-primase of either human or murine origin indicating that the mechanism of its strict species specificity differs from that of SV40 and PyV. Our results indicate that this may be due to differences in the interaction of JCV and SV40 large T antigens with the DNA replication initiation complex.
Collapse
Affiliation(s)
- Richard W P Smith
- Abteilung Biochemie, Institut für Molekulare Biotechnologie, Jena, Germany
| | | |
Collapse
|
41
|
Affiliation(s)
- R J Frisque
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|