1
|
Aznar E, Strazielle N, Costa L, Poyart C, Tazi A, Ghersi-Egea JF, Guignot J. The hypervirulent Group B Streptococcus HvgA adhesin promotes central nervous system invasion through transcellular crossing of the choroid plexus. Fluids Barriers CNS 2024; 21:66. [PMID: 39152442 PMCID: PMC11330020 DOI: 10.1186/s12987-024-00564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is the leading cause of neonatal meningitis responsible for a substantial cause of death and disability worldwide. The vast majority of GBS neonatal meningitis cases are due to the CC17 hypervirulent clone. However, the cellular and molecular pathways involved in brain invasion by GBS CC17 isolates remain largely elusive. Here, we studied the specific interaction of the CC17 clone with the choroid plexus, the main component of the blood-cerebrospinal fluid (CSF) barrier. METHODS The interaction of GBS CC17 or non-CC17 strains with choroid plexus cells was studied using an in vivo mouse model of meningitis and in vitro models of primary and transformed rodent choroid plexus epithelial cells (CPEC and Z310). In vivo interaction of GBS with the choroid plexus was assessed by microscopy. Bacterial invasion and cell barrier penetration were examined in vitro, as well as chemokines and cytokines in response to infection. RESULTS GBS CC17 was found associated with the choroid plexus of the lateral, 3rd and 4th ventricles. Infection of choroid plexus epithelial cells revealed an efficient internalization of the bacteria into the cells with GBS CC17 displaying a greater ability to invade these cells than a non-CC17 strain. Internalization of the GBS CC17 strain involved the CC17-specific HvgA adhesin and occurred via a clathrin-dependent mechanism leading to transcellular transcytosis across the choroid plexus epithelial monolayer. CPEC infection resulted in the secretion of several chemokines, including CCL2, CCL3, CCL20, CX3CL1, and the matrix metalloproteinase MMP3, as well as immune cell infiltration. CONCLUSION Our findings reveal a GBS strain-specific ability to infect the blood-CSF barrier, which appears to be an important site of bacterial entry and an active site of immune cell trafficking in response to infection.
Collapse
Affiliation(s)
- Eva Aznar
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
| | - Nathalie Strazielle
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
- Lyon Neurosciences Research Center, BIP Facility, Bron, France
| | - Lionel Costa
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
| | - Claire Poyart
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
- Service de Bactériologie, Centre National de Référence des Streptocoques, AP-HP, Hôpital Cochin, Paris, F-75014, France
- Fédération Hospitalo-Universitaire Préma, Paris, F-75014, France
| | - Asmaa Tazi
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
- Service de Bactériologie, Centre National de Référence des Streptocoques, AP-HP, Hôpital Cochin, Paris, F-75014, France
- Fédération Hospitalo-Universitaire Préma, Paris, F-75014, France
| | - Jean-François Ghersi-Egea
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
- Lyon Neurosciences Research Center, BIP Facility, Bron, France
| | - Julie Guignot
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France.
- Fédération Hospitalo-Universitaire Préma, Paris, F-75014, France.
| |
Collapse
|
2
|
Wan Y, Fu X, Zhang T, Hua Y, Keep RF, Xi G. Choroid plexus immune cell response in murine hydrocephalus induced by intraventricular hemorrhage. Fluids Barriers CNS 2024; 21:37. [PMID: 38654318 PMCID: PMC11036653 DOI: 10.1186/s12987-024-00538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Intraventricular hemorrhage (IVH) and associated hydrocephalus are significant complications of intracerebral and subarachnoid hemorrhage. Despite proximity to IVH, the immune cell response at the choroid plexus (ChP) has been relatively understudied. This study employs CX3CR-1GFP mice, which marks multiple immune cell populations, and immunohistochemistry to outline that response. METHODS This study had four parts all examining male adult CX3CR-1GFP mice. Part 1 examined naïve mice. In part 2, mice received an injection 30 µl of autologous blood into right ventricle and were euthanized at 24 h. In part 3, mice underwent intraventricular injection of saline, iron or peroxiredoxin 2 (Prx-2) and were euthanized at 24 h. In part 4, mice received intraventricular iron injection and were treated with either control or clodronate liposomes and were euthanized at 24 h. All mice underwent magnetic resonance imaging to quantify ventricular volume. The ChP immune cell response was examined by combining analysis of GFP(+) immune cells and immunofluorescence staining. RESULTS IVH and intraventricular iron or Prx-2 injection in CX3CR-1GFP mice all induced ventriculomegaly and activation of ChP immune cells. There were very marked increases in the numbers of ChP epiplexus macrophages, T lymphocytes and neutrophils. Co-injection of clodronate liposomes with iron reduced the ventriculomegaly which was associated with fewer epiplexus and stromal macrophages but not reduced T lymphocytes and neutrophils. CONCLUSION There is a marked immune cell response at the ChP in IVH involving epiplexus cells, T lymphocytes and neutrophils. The blood components iron and Prx-2 may play a role in eliciting that response. Reduction of ChP macrophages with clodronate liposomes reduced iron-induced ventriculomegaly suggesting that ChP macrophages may be a promising therapeutic target for managing IVH-induced hydrocephalus.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
- R5018 Biomedical Science Research Building, University of Michigan, 109 Zina Pitcher Place, 48109-2200, Ann Arbor, MI, USA.
| | - Xiongjie Fu
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Tianjie Zhang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
The Kitty Microbiome Project: Defining the Healthy Fecal "Core Microbiome" in Pet Domestic Cats. Vet Sci 2022; 9:vetsci9110635. [PMID: 36423084 PMCID: PMC9698023 DOI: 10.3390/vetsci9110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Here, we present a taxonomically defined fecal microbiome dataset for healthy domestic cats (Felis catus) fed a range of commercial diets. We used this healthy reference dataset to explore how age, diet, and living environment correlate with fecal microbiome composition. Thirty core bacterial genera were identified. Prevotella, Bacteroides, Collinsella, Blautia, and Megasphaera were the most abundant, and Bacteroides, Blautia, Lachnoclostridium, Sutterella, and Ruminococcus gnavus were the most prevalent. While community composition remained relatively stable across different age classes, the number of core taxa present decreased significantly with age. Fecal microbiome composition varied with host diet type. Cats fed kibble had a slightly, but significantly greater number of core taxa compared to cats not fed any kibble. The core microbiomes of cats fed some raw food contained taxa not as highly prevalent or abundant as cats fed diets that included kibble. Living environment also had a large effect on fecal microbiome composition. Cats living in homes differed significantly from those in shelters and had a greater portion of their microbiomes represented by core taxa. Collectively our work reinforces the findings that age, diet, and living environment are important factors to consider when defining a core microbiome in a population.
Collapse
|
4
|
Ryser-Degiorgis MP, Marti I, Pisano SRR, Pewsner M, Wehrle M, Breitenmoser-Würsten C, Origgi FC, Kübber-Heiss A, Knauer F, Posautz A, Eberspächer-Schweda M, Huder JB, Böni J, Kubacki J, Bachofen C, Riond B, Hofmann-Lehmann R, Meli ML. Management of Suspected Cases of Feline Immunodeficiency Virus Infection in Eurasian Lynx ( Lynx lynx) During an International Translocation Program. Front Vet Sci 2021; 8:730874. [PMID: 34760956 PMCID: PMC8573149 DOI: 10.3389/fvets.2021.730874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
The Eurasian lynx (Lynx lynx) population in Switzerland serves as a source for reintroductions in neighboring countries. In 2016–2017, three lynx from the same geographical area were found seropositive for feline immunodeficiency virus (FIV) in the framework of an international translocation program. This novel finding raised questions about the virus origin and pathogenicity to lynx, the emerging character of the infection, and the interpretation of serological results in other lynx caught for translocation. Archived serum samples from 84 lynx captured in 2001–2016 were retrospectively tested for FIV antibodies by Western blot. All archived samples were FIV-negative. The three seropositive lynx were monitored in quarantine enclosures prior to euthanasia and necropsy. They showed disease signs, pathological findings, and occurrence of co-infections reminding of those described in FIV-infected domestic cats. All attempts to isolate and characterize the virus failed but serological data and spatiotemporal proximity of the cases suggested emergence of a lentivirus with antigenic and pathogenic similarities to FIV in the Swiss lynx population. A decision scheme was developed to minimize potential health risks posed by FIV infection, both in the recipient and source lynx populations, considering conservation goals, animal welfare, and the limited action range resulting from local human conflicts. Development and implementation of a cautious decision scheme was particularly challenging because FIV pathogenic potential in lynx was unclear, negative FIV serological results obtained within the first weeks after infection are unpredictable, and neither euthanasia nor repatriation of multiple lynx was acceptable options. The proposed scheme distinguished between three scenarios: release at the capture site, translocation, or euthanasia. Until April 2021, none of the 40 lynx newly captured in Switzerland tested FIV-seropositive. Altogether, seropositivity to FIV was documented in none of 124 lynx tested at their first capture, but three of them seroconverted in 2016–2017. Diagnosis of FIV infection in the three seropositive lynx remains uncertain, but clinical observations and pathological findings confirmed that euthanasia was appropriate. Our experiences underline the necessity to include FIV in pathogen screenings of free-ranging European wild felids, the importance of lynx health monitoring, and the usefulness of health protocols in wildlife translocation.
Collapse
Affiliation(s)
| | - Iris Marti
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Simone R R Pisano
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mirjam Pewsner
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Francesco C Origgi
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Kübber-Heiss
- Research Institute of Wildlife Ecology, University of Vienna, Vienna, Austria
| | - Felix Knauer
- Research Institute of Wildlife Ecology, University of Vienna, Vienna, Austria
| | - Annika Posautz
- Research Institute of Wildlife Ecology, University of Vienna, Vienna, Austria
| | - Matthias Eberspächer-Schweda
- Dentistry and Oral Surgery Service, Department/Hospital for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jon B Huder
- Swiss National Center for Retroviruses, Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jürg Böni
- Swiss National Center for Retroviruses, Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Claudia Bachofen
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Riond
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Kokkinaki KG, Saridomichelakis MN, Leontides L, Mylonakis ME, Konstantinidis AO, Steiner JM, Suchodolski JS, Xenoulis PG. A prospective epidemiological, clinical, and clinicopathologic study of feline leukemia virus and feline immunodeficiency virus infection in 435 cats from Greece. Comp Immunol Microbiol Infect Dis 2021; 78:101687. [PMID: 34225228 DOI: 10.1016/j.cimid.2021.101687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/29/2023]
Abstract
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses causing significant morbidity and mortality in cats. The aim of this study was to describe the epidemiological, clinical and clinicopathologic aspects of FeLV and FIV infections in different populations of cats in Greece, including client-owned cats, stray cats and cats who live in catteries. A total of 435 cats were prospectively enrolled. Serological detection of FeLV antigen and FIV antibody was performed using a commercial in-house ELISA test kit. The results showed that 17 (3.9 %) and 40 (9.2 %) of the 435 cats were positive for FeLV antigen and FIV antibody, respectively, whereas 5 (1.1 %) had concurrent infection with FeLV and FIV. Factors that were associated with FeLV antigenemia, based on multivariate analysis, included vomiting, rhinitis, infection with FIV, neutropenia, decreased blood urea nitrogen and increased serum cholesterol and triglyceride concentrations. Factors associated with FIV seropositivity included male gender, older age, outdoor access, weight loss, fever, gingivostomatitis, skin lesions and/or pruritus and hyperglobulinemia. Various clinical signs and laboratory abnormalities were found to be significantly associated with retroviral infections, suggesting that current guidelines to test all sick cats should be followed, taking into particular consideration the high-risk groups of cats found in this study.
Collapse
Affiliation(s)
- K G Kokkinaki
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132, Karditsa, Greece.
| | - M N Saridomichelakis
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132, Karditsa, Greece
| | - L Leontides
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132, Karditsa, Greece
| | - M E Mylonakis
- Companion Animal Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., GR-54627, Thessaloniki, Greece
| | - A O Konstantinidis
- Companion Animal Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., GR-54627, Thessaloniki, Greece
| | - J M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary and Biomedical Sciences, Texas A & M University, 4474-77843 TAMU, College Station, TX, USA
| | - J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary and Biomedical Sciences, Texas A & M University, 4474-77843 TAMU, College Station, TX, USA
| | - P G Xenoulis
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132, Karditsa, Greece; Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary and Biomedical Sciences, Texas A & M University, 4474-77843 TAMU, College Station, TX, USA
| |
Collapse
|
6
|
Eckstrand CD, Sparger EE, Murphy BG. Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review. J Gen Virol 2017; 98:1985-1996. [DOI: 10.1099/jgv.0.000866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chrissy D. Eckstrand
- Veterinary Microbiology and Pathology, College of Veterinary Medicine, 4003 Animal Disease Biotechnology Facility, Washington State University, Pullman, WA 99163, USA
| | - Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 3115 Tupper Hall, Davis, CA 95616, USA
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Feline Immunodeficiency Virus Neuropathogenesis: A Model for HIV-Induced CNS Inflammation and Neurodegeneration. Vet Sci 2017; 4:vetsci4010014. [PMID: 29056673 PMCID: PMC5606611 DOI: 10.3390/vetsci4010014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
Feline Immunodeficiency virus (FIV), similar to its human analog human immunodeficiency virus (HIV), enters the central nervous system (CNS) soon after infection and establishes a protected viral reservoir. The ensuing inflammation and damage give rise to varying degrees of cognitive decline collectively known as HIV-associated neurocognitive disorders (HAND). Because of the similarities to HIV infection and disease, FIV has provided a useful model for both in vitro and in vivo studies of CNS infection, inflammation and pathology. This mini review summarizes insights gained from studies of early infection, immune cell trafficking, inflammation and the mechanisms of neuropathogenesis. Advances in our understanding of these processes have contributed to the development of therapeutic interventions designed to protect neurons and regulate inflammatory activity.
Collapse
|
8
|
Kaye S, Wang W, Miller C, McLuckie A, Beatty JA, Grant CK, VandeWoude S, Bielefeldt-Ohmann H. Role of Feline Immunodeficiency Virus in Lymphomagenesis--Going Alone or Colluding? ILAR J 2017; 57:24-33. [PMID: 27034392 DOI: 10.1093/ilar/ilv047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic and nondomestic feline species. Infection in domestic cats leads to immune dysfunction via mechanisms similar to those caused by human immunodeficiency virus (HIV) and, as such, is a valuable natural animal model for acquired immunodeficiency syndrome (AIDS) in humans. An association between FIV and an increased incidence of neoplasia has long been recognized, with frequencies of up to 20% in FIV-positive cats recorded in some studies. This is similar to the rate of neoplasia seen in HIV-positive individuals, and in both species neoplasia typically requires several years to arise. The most frequently reported type of neoplasia associated with FIV infection is lymphoma. Here we review the possible mechanisms involved in FIV lymphomagenesis, including the possible involvement of coinfections, notably those with gamma-herpesviruses.
Collapse
Affiliation(s)
- Sarah Kaye
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Wenqi Wang
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Craig Miller
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Alicia McLuckie
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Julia A Beatty
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Chris K Grant
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Sue VandeWoude
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Helle Bielefeldt-Ohmann
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| |
Collapse
|
9
|
Prolonged Morphine Exposure Induces Increased Firm Adhesion in an in Vitro Model of the Blood-Brain Barrier. Int J Mol Sci 2016; 17:ijms17060916. [PMID: 27294916 PMCID: PMC4926449 DOI: 10.3390/ijms17060916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 11/17/2022] Open
Abstract
The blood-brain barrier (BBB) has been defined as a critically important protective barrier that is involved in providing essential biologic, physiologic, and immunologic separation between the central nervous system (CNS) and the periphery. Insults to the BBB can cause overall barrier damage or deregulation of the careful homeostasis maintained between the periphery and the CNS. These insults can, therefore, yield numerous phenotypes including increased overall permeability, interendothelial gap formation, alterations in cytokine and chemokine secretion, and accelerated cellular passage. The current studies expose the human brain microvascular endothelial cell line, hCMEC/D3, to prolonged morphine exposure and aim to uncover the mechanisms underlying alterations in barrier function in vitro. These studies show alterations in the mRNA and protein levels of the cellular adhesion molecules (CAMs) intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and activated leukocyte cell adhesion molecule that correlate with an increased firm adhesion of the CD3⁺ subpopulation of peripheral blood mononuclear cells (PBMCs). Overall, these studies suggest that prolonged morphine exposure may result in increased cell migration into the CNS, which may accelerate pathological processes in many diseases that involve the BBB.
Collapse
|
10
|
Strazza M, Maubert ME, Pirrone V, Wigdahl B, Nonnemacher MR. Co-culture model consisting of human brain microvascular endothelial and peripheral blood mononuclear cells. J Neurosci Methods 2016; 269:39-45. [PMID: 27216631 DOI: 10.1016/j.jneumeth.2016.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/29/2016] [Accepted: 05/17/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Numerous systems exist to model the blood-brain barrier (BBB) with the goal of understanding the regulation of passage into the central nervous system (CNS) and the potential impact of selected insults on BBB function. These models typically focus on the intrinsic cellular properties of the BBB, yet studies of peripheral cell migration are often excluded due to technical restraints. NEW METHOD This method allows for the study of in vitro cellular transmigration following exposure to any treatment of interest through optimization of co-culture conditions for the human brain microvascular endothelial cells (BMEC) cell line, hCMEC/D3, and primary human peripheral blood mononuclear cells (PBMCs). RESULTS hCMEC/D3 cells form functionally confluent monolayers on collagen coated polytetrafluoroethylene (PTFE) transwell inserts, as assessed by microscopy and tracer molecule (FITC-dextran (FITC-D)) exclusion. Two components of complete hCMEC/D3 media, EBM-2 base-media and hydrocortisone (HC), were determined to be cytotoxic to PBMCs. By combining the remaining components of complete hCMEC/D3 media with complete PBMC media a resulting co-culture media was established for use in hCMEC/D3-PBMC co-culture functional assays. COMPARISON WITH EXISTING METHODS Through this method, issues of extensive differences in culture media conditions are resolved allowing for treatments and functional assays to be conducted on the two cell populations co-cultured simultaneously. CONCLUSION Described here is an in vitro co-culture model of the BBB, consisting of the hCMEC/D3 cell line and primary human PBMCs. The co-culture media will now allow for the study of exposure to potential insults to BBB function over prolonged time courses.
Collapse
Affiliation(s)
- Marianne Strazza
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| | - Monique E Maubert
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street Suite 1050, Philadelphia, PA 19107, USA.
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| |
Collapse
|
11
|
Teixeira BM, Logan N, Cruz JCM, Reis JKP, Brandão PE, Richtzenhain LJ, Hagiwara MK, Willett BJ, Hosie MJ. Genetic diversity of Brazilian isolates of feline immunodeficiency virus. Arch Virol 2015; 155:379-84. [PMID: 20084530 DOI: 10.1007/s00705-009-0587-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bruno Marques Teixeira
- Department of Medical Clinics, College of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
OBJECTIVES HIV reservoir in the brain represents a major barrier for curing HIV infection. As the most abundant, long-lived cell type, astrocytes play a critical role in maintaining the reservoir; however, the mechanism of infection remains unknown. Here, we determine how viral transmission occurs from HIV-infected lymphocytes to astrocytes by cell-to-cell contact. DESIGN AND METHODS Human astrocytes were exposed to HIV-infected lymphocytes and monitored by live-imaging, confocal microscopy, transmission and three-dimensional electron microscopy. A panel of receptor antagonists was used to determine the mechanism of viral entry. RESULTS We found that cell-to-cell contact resulted in efficient transmission of X4 or X4R5-using viruses from T lymphocytes to astrocytes. In co-cultures of astrocytes with HIV-infected lymphocytes, the interaction occurred through a dynamic process of attachment and detachment of the two cell types. Infected lymphocytes invaginated into astrocytes or the contacts occurred via filopodial extensions from either cell type, leading to the formation of virological synapses. In the synapses, budding of immature or incomplete HIV particles from lymphocytes occurred directly onto the membranes of astrocytes. This cell-to-cell transmission could be almost completely blocked by anti-CXCR4 antibody and its antagonist, but only partially inhibited by anti-CD4, ICAM1 antibodies. CONCLUSION Cell-to-cell transmission was mediated by a unique mechanism by which immature viral particles initiated a fusion process in a CXCR4-dependent, CD4-independent manner. These observations have important implications for developing approaches to prevent formation of HIV reservoirs in the brain.
Collapse
|
13
|
Schwerk C, Tenenbaum T, Kim KS, Schroten H. The choroid plexus-a multi-role player during infectious diseases of the CNS. Front Cell Neurosci 2015; 9:80. [PMID: 25814932 PMCID: PMC4357259 DOI: 10.3389/fncel.2015.00080] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022] Open
Abstract
The choroid plexus (CP) is the source of cerebrospinal fluid (CSF) production and location of the blood-CSF barrier (BCSFB), which is constituted by the epithelial cells of the CP. Several infectious pathogens including viruses, bacteria, fungi and parasites cross the BCSFB to enter the central nervous system (CNS), ultimately leading to inflammatory infectious diseases like meningitis and meningoencephalitis. The CP responds to this challenge by the production of chemokines and cytokines as well as alterations of the barrier function of the BCSFB. During the course of CNS infectious disease host immune cells enter the CNS, eventually contributing to the cellular damage caused by the disease. Additional complications, which are in certain cases caused by choroid plexitis, can arise due to the response of the CP to the pathogens. In this review we will give an overview on the multiple functions of the CP during brain infections highlighting the CP as a multi-role player during infectious diseases of the CNS. In this context the importance of tools for investigation of these CP functions and a possible suitability of the CP as therapeutic target will be discussed.
Collapse
Affiliation(s)
- Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| |
Collapse
|
14
|
Chaves AJ, Vergara-Alert J, Busquets N, Valle R, Rivas R, Ramis A, Darji A, Majó N. Neuroinvasion of the highly pathogenic influenza virus H7N1 is caused by disruption of the blood brain barrier in an avian model. PLoS One 2014; 9:e115138. [PMID: 25506836 PMCID: PMC4266681 DOI: 10.1371/journal.pone.0115138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/18/2014] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus (IAV) causes central nervous system (CNS) lesions in avian and mammalian species, including humans. However, the mechanism used by IAV to invade the brain has not been determined. In the current work, we used chickens infected with a highly pathogenic avian influenza (HPAI) virus as a model to elucidate the mechanism of entry of IAV into the brain. The permeability of the BBB was evaluated in fifteen-day-old H7N1-infected and non-infected chickens using three different methods: (i) detecting Evans blue (EB) extravasation into the brain, (ii) determining the leakage of the serum protein immunoglobulin Y (IgY) into the brain and (iii) assessing the stability of the tight-junction (TJ) proteins zonula occludens-1 and claudin-1 in the chicken brain at 6, 12, 18, 24, 36 and 48 hours post-inoculation (hpi). The onset of the induced viremia was evaluated by quantitative real time RT-PCR (RT-qPCR) at the same time points. Viral RNA was detected from 18 hpi onward in blood samples, whereas IAV antigen was detected at 24 hpi in brain tissue samples. EB and IgY extravasation and loss of integrity of the TJs associated with the presence of viral antigen was first observed at 36 and 48 hpi in the telencephalic pallium and cerebellum. Our data suggest that the mechanism of entry of the H7N1 HPAI into the brain includes infection of the endothelial cells at early stages (24 hpi) with subsequent disruption of the TJs of the BBB and leakage of virus and serum proteins into the adjacent neuroparenchyma.
Collapse
Affiliation(s)
- Aida J. Chaves
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Júlia Vergara-Alert
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Busquets
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Valle
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Rivas
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Ramis
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ayub Darji
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Natàlia Majó
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
15
|
Grano FG, Melo GD, Belinchón-Lorenzo S, Gómez-Nieto LC, Machado GF. First detection of Leishmania infantum DNA within the brain of naturally infected dogs. Vet Parasitol 2014; 204:376-80. [DOI: 10.1016/j.vetpar.2014.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/20/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022]
|
16
|
O'Neill J, Kent M, Glass EN, Platt SR. Clinicopathologic and MRI Characteristics of Presumptive Hypertensive Encephalopathy in Two Cats and Two Dogs. J Am Anim Hosp Assoc 2013; 49:412-20. [DOI: 10.5326/jaaha-ms-5942] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two dogs and two cats were evaluated for the acute-onset of abnormal mentation, recumbency, and blindness. All cases had systemic hypertension, ranging from 180 mm Hg to 260 mm Hg. MRI of the brain disclosed noncontrast-enhancing, ill-defined, T2-weighted (T2W) hyperintensities in the white matter of the cerebrum in the areas of the frontal, parietal, temporal, and occipital lobes. Lesions were also observed in the caudate nuclei and thalamus (n = 1 in each). Intracranial hemorrhage was observed in one animal. Diffusion-weighted imaging (DWI) was consistent with vasogenic edema in two animals. Retinal lesions were observed in three animals. Hypertension was secondary to renal disease in three animals. A primary underlying disorder was not identified in one animal. Normalization of blood pressure was achieved with amlodipine either alone or in combination with enalapril. In one cat, hypertension spontaneously resolved. In three cases, neurologic improvement occurred within 24–48 hr of normalization of blood pressure. The presumptive diagnosis of hypertensive encephalopathy was supported by the MRI findings and neurologic dysfunction coincident with systemic hypertension in which the neurologic dysfunction improved with treatment of hypertension. The prognosis appears good for the resolution of neurologic deficits with normalization of blood pressure in animals with hypertensive encephalopathy.
Collapse
Affiliation(s)
- Jeremy O'Neill
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA (J.O., M.K., S.P.); and the Section of Neurology/Neurosurgery, Red Bank Veterinary Hospital, Tinton Falls, NJ (E.G.)
| | - Marc Kent
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA (J.O., M.K., S.P.); and the Section of Neurology/Neurosurgery, Red Bank Veterinary Hospital, Tinton Falls, NJ (E.G.)
| | - Eric N. Glass
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA (J.O., M.K., S.P.); and the Section of Neurology/Neurosurgery, Red Bank Veterinary Hospital, Tinton Falls, NJ (E.G.)
| | - Simon R. Platt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA (J.O., M.K., S.P.); and the Section of Neurology/Neurosurgery, Red Bank Veterinary Hospital, Tinton Falls, NJ (E.G.)
| |
Collapse
|
17
|
Meeker RB, Williams K, Killebrew DA, Hudson LC. Cell trafficking through the choroid plexus. Cell Adh Migr 2012; 6:390-6. [PMID: 22902764 DOI: 10.4161/cam.21054] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The choroid plexus is a multifunctional organ that sits at the interface between the blood and cerebrospinal fluid (CSF). It serves as a gateway for immune cell trafficking into the CSF and is in an excellent position to provide continuous immune surveillance by CD4 (+) T cells, macrophages and dendritic cells and to regulate immune cell trafficking in response to disease and trauma. However, little is known about the mechanisms that control trafficking through this structure. Three cell types within the choroid plexus, in particular, may play prominent roles in controlling the development of immune responses within the nervous system: the epithelial cells, which form the blood-CSF barrier, and resident macrophages and dendritic cells in the stromal matrix. Adhesion molecule and chemokine expression by the epithelial cells allows substantial control over the selection of cells that transmigrate. Macrophages and dendritic cells can present antigen within the choroid plexus and/or transmigrate into the cerebral ventricles to serve a variety of possible immune functions. Studies to better understand the diverse functions of these cells are likely to reveal new insights that foster the development of novel pharmacological and macrophage-based interventions for the control of CNS immune responses.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | |
Collapse
|
18
|
Miller F, Afonso PV, Gessain A, Ceccaldi PE. Blood-brain barrier and retroviral infections. Virulence 2012; 3:222-9. [PMID: 22460635 PMCID: PMC3396701 DOI: 10.4161/viru.19697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Homeostasis in the central nervous system (CNS) is maintained by active interfaces between the bloodstream and the brain parenchyma. The blood-brain barrier (BBB) constitutes a selective filter for exchange of water, solutes, nutrients, and controls toxic compounds or pathogens entry. Some parasites, bacteria, and viruses have however developed various CNS invasion strategies, and can bypass the brain barriers. Concerning viruses, these strategies include transport along neural pathways, transcytosis, infection of the brain endothelial cells, breaching of the BBB, and passage of infected-leukocytes. Moreover, neurotropic viruses can alter BBB functions, thus compromising CNS homeostasis. Retroviruses have been associated to human neurological diseases: HIV (human immunodeficiency virus 1) can induce HIV-associated dementia, and HTLV-1 (human T lymphotropic virus 1) is the etiological factor of tropical spastic paraparesis/HTLV-1 associated myelopathy (TSP/HAM). The present review focuses on how the different retroviruses interact with this structure, bypass it and alter its functions.
Collapse
Affiliation(s)
- Florence Miller
- School of Pharmaceutical Sciences, University of Geneva-University of Lausanne, Geneva, Switzerland
| | | | | | | |
Collapse
|
19
|
Meeker RB, Bragg DC, Poulton W, Hudson L. Transmigration of macrophages across the choroid plexus epithelium in response to the feline immunodeficiency virus. Cell Tissue Res 2012; 347:443-55. [PMID: 22281685 DOI: 10.1007/s00441-011-1301-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/08/2011] [Indexed: 12/23/2022]
Abstract
Although lentiviruses such as human, feline and simian immunodeficiency viruses (HIV, FIV, SIV) rapidly gain access to cerebrospinal fluid (CSF), the mechanisms that control this entry are not well understood. One possibility is that the virus may be carried into the brain by immune cells that traffic across the blood-CSF barrier in the choroid plexus. Since few studies have directly examined macrophage trafficking across the blood-CSF barrier, we established transwell and explant cultures of feline choroid plexus epithelium and measured trafficking in the presence or absence of FIV. Macrophages in co-culture with the epithelium showed significant proliferation and robust trafficking that was dependent on the presence of epithelium. Macrophage migration to the apical surface of the epithelium was particularly robust in the choroid plexus explants where 3-fold increases were seen over the first 24 h. Addition of FIV to the cultures greatly increased the number of surface macrophages without influencing replication. The epithelium in the transwell cultures was also permissive to PBMC trafficking, which increased from 17 to 26% of total cells after exposure to FIV. Thus, the choroid plexus epithelium supports trafficking of both macrophages and PBMCs. FIV significantly enhanced translocation of macrophages and T cells indicating that the choroid plexus epithelium is likely to be an active site of immune cell trafficking in response to infection.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology and Curriculum in Neurobiology, University of North Carolina, CB #7025, 6109F Neuroscience Research Building 103 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
20
|
Miller C, Bielefeldt-Ohmann H, MacMillan M, Huitron-Resendiz S, Henriksen S, Elder J, VandeWoude S. Strain-specific viral distribution and neuropathology of feline immunodeficiency virus. Vet Immunol Immunopathol 2011; 143:282-91. [PMID: 21715019 DOI: 10.1016/j.vetimm.2011.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic cats, and is the causative agent of feline AIDS. Similar to human immunodeficiency virus (HIV), the pathogenesis of FIV involves infection of lymphocytes and macrophages, and results in chronic progressive immune system collapse and death. Neuropathologic correlates of FIV infection have not yet been elucidated, and may be relevant to understanding HIV-associated neurologic disease (neuroAIDS). As in HIV, FIV strains have been shown to express differential tendencies towards development of clinical neuroAIDS. To interrogate viral genetic determinants that might contribute to neuropathogenicity, cats were exposed to two well-characterized FIV strains with divergent clinical phenotypes and a chimeric strain as follows: FIV(PPR) (PPR, relatively apathogenic but associated with neurologic manifestations), FIV(C36) (C36, immunopathogenic but without associated neurologic disease), and Pcenv (a chimeric virus consisting of a PPR backbone with substituted C36 env region). A sham inoculum control group was also included. Peripheral nerve conduction velocity, CNS imaging studies, viral loads and hematologic analysis were performed over a 12 month period. At termination of the study (350 days post-inoculation), brain sections were obtained from four anatomic locations known to be involved in human and primate lentiviral neuroAIDS. Histological and immunohistochemical evaluation with seven markers of inflammation revealed that Pcenv infection resulted in mild inflammation of the CNS, microglial activation, neuronal degeneration and apoptosis, while C36 and PPR strains induced minimal neuropathologic changes. Conduction velocity aberrations were noted peripherally in all three groups at 63 weeks post-infection. Pcenv viral load in this study was intermediate to the parental strains (C36 demonstrating the highest viral load and PPR the lowest). These results collectively suggest that (i) 3' C36 genomic elements contribute to viral replication characteristics, and (ii) 5' PPR genomic elements contribute to CNS manifestations. This study illustrates the potential for FIV to provide valuable information about neuroAIDS pathogenesis related to genotype and viral kinetics, as well as to identify strains useful to evaluation of therapeutic intervention.
Collapse
Affiliation(s)
- Craig Miller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1619, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Fletcher NF, Meeker RB, Hudson LC, Callanan JJ. The neuropathogenesis of feline immunodeficiency virus infection: barriers to overcome. Vet J 2010; 188:260-9. [PMID: 20418131 DOI: 10.1016/j.tvjl.2010.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 03/19/2010] [Accepted: 03/27/2010] [Indexed: 11/27/2022]
Abstract
Feline immunodeficiency virus (FIV), like human immunodeficiency virus (HIV)-1, is a neurotropic lentivirus, and both natural and experimental infections are associated with neuropathology. FIV enters the brain early following experimental infection, most likely via the blood-brain and blood-cerebrospinal fluid barriers. The exact mechanism of entry, and the factors that influence this entry, are not fully understood. As FIV is a recognised model of HIV-1 infection, understanding such mechanisms is important, particularly as HIV enters the brain early in infection. Furthermore, the development of strategies to combat this central nervous system (CNS) infection requires an understanding of the interactions between the virus and the CNS. In this review the results of both in vitro and in vivo FIV studies are assessed in an attempt to elucidate the mechanisms of viral entry into the brain.
Collapse
Affiliation(s)
- Nicola F Fletcher
- Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
22
|
Hosie MJ, Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hartmann K, Lloret A, Lutz H, Marsilio F, Pennisi MG, Radford AD, Thiry E, Truyen U, Horzinek MC. Feline immunodeficiency. ABCD guidelines on prevention and management. J Feline Med Surg 2009; 11:575-84. [PMID: 19481037 PMCID: PMC7129779 DOI: 10.1016/j.jfms.2009.05.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Overview Feline immunodeficiency virus (FIV) is a retrovirus closely related to human immunodeficiency virus. Most felids are susceptible to FIV, but humans are not. Feline immunodeficiency virus is endemic in domestic cat populations worldwide. The virus loses infectivity quickly outside the host and is susceptible to all disinfectants. Infection Feline immunodeficiency virus is transmitted via bites. The risk of transmission is low in households with socially well-adapted cats. Transmission from mother to kittens may occur, especially if the queen is undergoing an acute infection. Cats with FIV are persistently infected in spite of their ability to mount antibody and cell-mediated immune responses. Disease signs Infected cats generally remain free of clinical signs for several years, and some cats never develop disease, depending on the infecting isolate. Most clinical signs are the consequence of immunodeficiency and secondary infection. Typical manifestations are chronic gingivostomatitis, chronic rhinitis, lymphadenopathy, weight loss and immune-mediated glomerulonephritis. Diagnosis Positive in-practice ELISA results obtained in a low-prevalence or low-risk population should always be confirmed by a laboratory. Western blot is the ‘gold standard’ laboratory test for FIV serology. PCR-based assays vary in performance. Disease management Cats should never be euthanased solely on the basis of an FIV-positive test result. Cats infected with FIV may live as long as uninfected cats, with appropriate management. Asymptomatic FIV-infected cats should be neutered to avoid fighting and virus transmission. Infected cats should receive regular veterinary health checks. They can be housed in the same ward as other patients, but should be kept in individual cages. Vaccination recommendations At present, there is no FIV vaccine commercially available in Europe. Potential benefits and risks of vaccinating FIV-infected cats should be assessed on an individual cat basis. Needles and surgical instruments used on FIV-positive cats may transmit the virus to other cats, so strict hygiene is essential.
Collapse
|
23
|
Neurobehavioral performance in feline immunodeficiency virus infection: integrated analysis of viral burden, neuroinflammation, and neuronal injury in cortex. J Neurosci 2009; 29:8429-37. [PMID: 19571133 DOI: 10.1523/jneurosci.5818-08.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection causes motor and neurocognitive abnormalities affecting >50% of children and 20% of adults with HIV/AIDS (acquired immunodeficiency syndrome). The closely related lentivirus, feline immunodeficiency virus (FIV), also causes neurobehavioral deficits. Herein, we investigated the extent to which FIV infection affected specific motor and cognitive tasks in conjunction with viral burden and immune responses within the brain. Neonatal animals were infected with a neurovirulent FIV strain (FIV-Ch) and assessed in terms of systemic immune parameters, viral burden, neurobehavioral performance, and neuropathological features. FIV-infected animals displayed less weight gain and lower blood CD4(+) T-cell levels than mock-infected animals (p < 0.05). Gait analyses disclosed greater gait width with increased variation in FIV-infected animals (p < 0.05). Maze performance showed that FIV-infected animals were slower and made more navigational errors than mock-infected animals (p < 0.05). In the object memory test, the FIV-infected group exhibited fewer successful steps with more trajectory errors compared with the mock-infected group (p < 0.05). Performance on the gait, maze, and object memory tests was inversely correlated with F4/80 and CD3 epsilon expression (p < 0.05) and with viral burden in parietal cortex (p < 0.05). Amino acid analysis in cortex showed that D-serine levels were reduced in FIV-infected animals, which was accompanied by diminished kainate and AMPA receptor subunit expression (p < 0.05). The neurobehavioral findings in FIV-infected animals were associated with increased gliosis and reduced cortical neuronal counts (p < 0.05). The present studies indicated that specific motor and neurocognitive abilities were impaired in FIV infection and that these effects were closely coupled with viral burden, neuroinflammation, and neuronal loss.
Collapse
|
24
|
Leukocyte entry into the CNS of Leishmania chagasi naturally infected dogs. Vet Parasitol 2009; 162:248-56. [DOI: 10.1016/j.vetpar.2009.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 02/18/2009] [Accepted: 03/02/2009] [Indexed: 01/03/2023]
|
25
|
Fletcher NF, Bexiga MG, Brayden DJ, Brankin B, Willett BJ, Hosie MJ, Jacque JM, Callanan JJ. Lymphocyte migration through the blood-brain barrier (BBB) in feline immunodeficiency virus infection is significantly influenced by the pre-existence of virus and tumour necrosis factor (TNF)-alpha within the central nervous system (CNS): studies using an in vitro feline BBB model. Neuropathol Appl Neurobiol 2009; 35:592-602. [PMID: 19486302 DOI: 10.1111/j.1365-2990.2009.01031.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS In human immunodeficiency virus infection, macrophage-tropic and lymphotropic viruses exist in the host. Central nervous system (CNS) infection is an early and ongoing event, important to understand when developing strategies to treat infection. Some knowledge exists on macrophage-tropic virus interactions with the blood-brain barrier (BBB), and the aim of this study was to investigate lymphotropic lentivirus interactions with the BBB. METHODS Interactions of the lymphotropic feline immunodeficiency virus (FIV) with an in vitro model of the feline BBB were evaluated in scenarios to mimic in vivo infections. RESULTS Cell-free FIV crossed the BBB in very low quantities, and in the presence of tumour necrosis factor (TNF)-alpha, BBB integrity was unaffected. However, cell-associated FIV readily crossed the BBB, but BBB integrity was not significantly altered. Transmigration of uninfected and infected lymphocytes increased in response to TNF-alpha, accompanied by a moderate disruption of barrier integrity and an upregulation of vascular cell adhesion molecule-1 rather than intercellular adhesion molecule-1. Significant enhancement of migration and disruption of BBB tight junctions occurred when infected cells and TNF-alpha were added to the brain side of the BBB and this enhancement was not mediated through additional TNF-alpha production. CONCLUSIONS Small quantities of virus in the brain together with TNF-alpha have the potential to stimulate greater cell and viral entry into the CNS and this is likely to involve important factors other than further TNF-alpha production. Lymphotropic lentivirus entry to the CNS is governed by many factors similar to macrophage-tropic strains.
Collapse
|
26
|
Zhou L, Ng T, Yuksel A, Wang B, Dwyer DE, Saksena NK. Short communication: absence of HIV infection in the choroid plexus of two patients who died rapidly with HIV-associated dementia. AIDS Res Hum Retroviruses 2008; 24:839-43. [PMID: 18544025 DOI: 10.1089/aid.2007.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Absence of HIV infection of the choroid plexus (CPx) and macrophages in choroidal stroma was observed in two HIV-infected individuals who died 7 weeks and 12 months following the onset of HIV encephalitis. In contrast, the profound macrophage-related pathology associated with HIV infection presented in other neural tissue from 48 brain regions (seven CPx) was analyzed. These data suggest that HIV entry to the CNS may be independent of the CPx. It also emphasizes that the CPx is unlikely to harbor a significant reservoir of HIV in patients who rapidly progress to dementia.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead NSW 2145, Australia
| | - Thomas Ng
- Department of Anatomical Pathology, ICPMR, Westmead Hospital, Westmead NSW 2145, Australia
| | - Aysen Yuksel
- Histopathology Laboratory, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead NSW 2145, Australia
| | - Bin Wang
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead NSW 2145, Australia
| | - Dominic E. Dwyer
- Department of Virology, Center for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, Westmead NSW 2145, Australia
| | - Nitin K. Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead NSW 2145, Australia
| |
Collapse
|
27
|
Fletcher NF, Brayden DJ, Brankin B, Callanan JJ. Feline immunodeficiency virus infection: a valuable model to study HIV-1 associated encephalitis. Vet Immunol Immunopathol 2008; 123:134-7. [PMID: 18289700 DOI: 10.1016/j.vetimm.2008.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Feline immunodeficiency virus (FIV), like human immunodeficiency virus (HIV)-1, is a neurotropic lentivirus and is associated with neuropathology in natural and experimental infections. FIV enters the brain early following experimental infection, and virus has been proposed to enter the brain via the blood-brain barrier and blood-CSF barrier, within infected lymphocytes and monocytes/macrophages. However the entry of cell-free virus or the direct infection of brain endothelial cells and astrocytes of the blood-brain barrier may also contribute to CNS infection. This review explores the role played by the FIV model in the elucidation of mechanism of lentiviral entry to the brain and viral interactions with the CNS, particularly in relation to lymphotropic lentiviruses.
Collapse
Affiliation(s)
- Nicola F Fletcher
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
28
|
Gorantla S, Liu J, Sneller H, Dou H, Holguin A, Smith L, Ikezu T, Volsky DJ, Poluektova L, Gendelman HE. Copolymer-1 induces adaptive immune anti-inflammatory glial and neuroprotective responses in a murine model of HIV-1 encephalitis. THE JOURNAL OF IMMUNOLOGY 2007; 179:4345-56. [PMID: 17878329 DOI: 10.4049/jimmunol.179.7.4345] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Copolymer-1 (COP-1) elicits neuroprotective activities in a wide range of neurodegenerative disorders. This occurs, in part, by adaptive immune-mediated suppression of microglial inflammatory responses. Because HIV infection and immune activation of perivascular macrophages and microglia drive a metabolic encephalopathy, we reasoned that COP-1 could be developed as an adjunctive therapy for disease. To test this, we developed a novel animal model system that reflects HIV-1 encephalitis in rodents with both innate and adaptive arms of the immune system. Bone marrow-derived macrophages were infected with HIV-1/vesicular stomatitis-pseudotyped virus and stereotactically injected into the basal ganglia of syngeneic mice. HIV-1 pseudotyped with vesicular stomatitis virus envelope-infected bone marrow-derived macrophages induced significant neuroinflammation, including astrogliosis and microglial activation with subsequent neuronal damage. Importantly, COP-1 immunization reduced astro- and microgliosis while diminishing neurodegeneration. Hippocampal neurogenesis was, in part, restored. This paralleled reductions in proinflammatory cytokines, including TNF-alpha and IL-1beta, and inducible NO synthase, and increases in brain-derived neurotrophic factor. Ingress of Foxp3- and IL-4-expressing lymphocytes into brains of COP-1-immunized animals was observed. We conclude that COP-1 may warrant therapeutic consideration for HIV-1-associated cognitive impairments.
Collapse
Affiliation(s)
- Santhi Gorantla
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu P, Hudson LC, Tompkins MB, Vahlenkamp TW, Colby B, Rundle C, Meeker RB. Cerebrospinal fluid is an efficient route for establishing brain infection with feline immunodeficiency virus and transfering infectious virus to the periphery. J Neurovirol 2006; 12:294-306. [PMID: 16966220 PMCID: PMC3166823 DOI: 10.1080/13550280600889567] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Like human immunodeficiency virus (HIV), feline immunodeficiency virus (FIV) invades and infects the central nervous system (CNS) soon after peripheral infection. The appearance of viral RNA is particularly prominent in the cerebrospinal fluid (CSF), suggesting an efficient route of virus transfer across the blood-CSF barrier. This raises the concern whether this route can establish a stable viral reservoir and also be a source of virus capable of reseeding peripheral systems. To examine this possibility, 200 mul of cell-free NCSU1 FIV or FIV-infected choroid plexus macrophages (ChP-Mac) was directly injected into the right lateral ventricle of the brain. Negative controls were sham inoculated with uninfected ChP-Mac or virus-free culture supernatant and positive controls were infected systemically by intraperitoneal (i.p.) injection. Intracerebroventricular (i.c.v.) inoculation with cell-free FIV resulted in high levels of plasma FIV RNA detected as early as 1 to 2 weeks post inoculation in all cats. In each case, the plasma viremia preceded the detection of CSF viral RNA. Compared to i.p. cats, i.c.v. cats had 32-fold higher CSF viral loads, 8-fold higher ratios of CSF to plasma viral load, and a 23-fold greater content of FIV proviral DNA in the brain. No FIV RNA was detected in plasma or CSF from the cats inoculated with FIV-infected ChP-Mac but an acute inflammatory response and a slight suppression of the CD4+:CD8+ ratio were observed. These results indicate that free FIV circulating in the CSF promotes infection of the CNS and provides a highly efficient pathway for the transfer of infectious virus to the periphery.
Collapse
Affiliation(s)
- Pinghuang Liu
- Immunology Program, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Feline immunodeficiency virus neuropathogenesis: from cats to calcium. J Neuroimmune Pharmacol 2006; 2:154-70. [PMID: 18040840 DOI: 10.1007/s11481-006-9045-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
Invasion of human immunodeficiency virus (HIV) into the central and peripheral nervous system produces a wide range of neurological symptoms, which continue to persist even with adequate therapeutic suppression of the systemic viremia. The development of therapies designed to prevent the neurological complications of HIV require a detailed understanding of the mechanisms of virus penetration into the nervous system, infection, and subsequent neuropathogenesis. These processes, however, are difficult to study in humans. The identification of animal lentiviruses similar to HIV has provided useful models of HIV infection that have greatly facilitated these efforts. This review summarizes contributions made from in vitro and in vivo studies on the infectious and pathological interactions of feline immunodeficiency virus (FIV) with the nervous system. In vivo studies on FIV have provided insights into the natural progression of CNS disease as well as the contribution of various risk factors. In vitro studies have contributed to our understanding of immune cell trafficking, CNS infection and neuropathogenesis. Together, these studies have made unique contributions to our understanding of (1) lentiviral interactions at the blood-cerebrospinal fluid (CSF) barrier within the choroid plexus, (2) early FIV invasion and pathogenesis in the brain, and (3) lentiviral effects on intracellular calcium deregulation and neuronal dysfunction. The ability to combine in vitro and in vivo studies on FIV offers enormous potential to explore neuropathogenic mechanisms and generate information necessary for the development of effective therapeutic interventions.
Collapse
|
31
|
Rudd PA, Cattaneo R, von Messling V. Canine distemper virus uses both the anterograde and the hematogenous pathway for neuroinvasion. J Virol 2006; 80:9361-70. [PMID: 16973542 PMCID: PMC1617229 DOI: 10.1128/jvi.01034-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Canine distemper virus (CDV), a member of the Morbillivirus genus that also includes measles virus, frequently causes neurologic complications, but the routes and timing of CDV invasion of the central nervous system (CNS) are poorly understood. To characterize these events, we cloned and sequenced the genome of a neurovirulent CDV (strain A75/17) and produced an infectious cDNA that expresses the green fluorescent protein. This virus fully retained its virulence in ferrets: the course and signs of disease were equivalent to those of the parental isolate. We observed CNS invasion through two distinct pathways: anterogradely via the olfactory nerve and hematogenously through the choroid plexus and cerebral blood vessels. CNS invasion only occurred after massive infection of the lymphatic system and spread to the epithelial cells throughout the body. While at early time points, mostly immune and endothelial cells were infected, the virus later spread to glial cells and neurons. Together, the results suggest similarities in the timing, target cells, and CNS invasion routes of CDV, members of the Morbillivirus genus, and even other neurovirulent paramyxoviruses like Nipah and mumps viruses.
Collapse
Affiliation(s)
- Penny A Rudd
- INRS-Institut Armand-Frappier, University of Quebec, 531, Boul. des Prairies, Laval, Quebec H7V 1B7, Canada
| | | | | |
Collapse
|
32
|
Abstract
Human immunodeficiency virus-1 (HIV-1) neuroinvasion occurs early (during period of initial viremia), leading to infection of a limited amount of susceptible cells with low CD4 expression. Protective cellular and humoral immunity eliminate and suppress viral replication relatively quickly due to peripheral immune responses and the low level of initial central nervous system (CNS) infection. Upregulation of the brain protective mechanisms against lymphocyte entry and survival (related to immune privilege) helps reduce viral load in the brain. The local immune compartment dictates local viral evolution as well as selection of cytotoxic lymphocytes and immunoglobulin G specificity. Such status can be sustained until peripheral immune anti-viral responses fail. Activation of microglia and astrocytes, due to local or peripheral triggers, increases chemokine production, enhances traffic of infected cells into the CNS, upregulates viral replication in resident brain macrophages, and significantly augments the spread of viral species. The combination of these factors leads to the development of HIV-1 encephalitis-associated neurocognitive decline and patient death. Understanding the immune-privileged state created by virus, the brain microenvironment, and the ability to enhance anti-viral immunity offer new therapeutic strategies for treatment of HIV-1 CNS infection.
Collapse
Affiliation(s)
- Yuri Persidsky
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA.
| | | |
Collapse
|
33
|
Engelhardt B. Regulation of immune cell entry into the central nervous system. Results Probl Cell Differ 2006; 43:259-80. [PMID: 17068976 DOI: 10.1007/400_020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.
Collapse
|