1
|
Sullivan MN, Brill SA, Mangus LM, Jeong YJ, Solis CV, Knight AC, Colantuoni C, Keceli G, Paolocci N, Queen SE, Mankowski JL. Upregulation of Superoxide Dismutase 2 by Astrocytes in the SIV/Macaque Model of HIV-Associated Neurologic Disease. J Neuropathol Exp Neurol 2021; 79:986-997. [PMID: 32783052 DOI: 10.1093/jnen/nlaa084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain prevalent despite implementation of antiretroviral therapy (ART). Development of HAND is linked to mitochondrial dysfunction and oxidative stress in the brain; therefore, upregulation of antioxidant defenses is critical to curtail neuronal damage. Superoxide dismutase 2 (SOD2) is a mitochondrial antioxidant enzyme essential for maintaining cellular viability. We hypothesized that SOD2 was upregulated during retroviral infection. Using a simian immunodeficiency virus (SIV)-infected macaque model of HIV, quantitative PCR showed elevated SOD2 mRNA in cortical gray ([GM], 7.6-fold for SIV vs uninfected) and white matter ([WM], 77-fold for SIV vs uninfected) during SIV infection. Further, SOD2 immunostaining was enhanced in GM and WM from SIV-infected animals. Double immunofluorescence labeling illustrated that SOD2 primarily colocalized with astrocyte marker glial fibrillary acidic protein (GFAP) in SIV-infected animals. Interestingly, in ART-treated SIV-infected animals, brain SOD2 RNA levels were similar to uninfected animals. Additionally, using principal component analysis in a transcriptomic approach, SOD2 and GFAP expression separated SIV-infected from uninfected brain tissue. Projection of these data into a HIV dataset revealed similar expression changes, thereby validating the clinical relevance. Together, our findings suggest that novel SOD2-enhancing therapies may reduce neuroinflammation in ART-treated HIV-infected patients.
Collapse
Affiliation(s)
- Michelle N Sullivan
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samuel A Brill
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yea Ji Jeong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Clarisse V Solis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Audrey C Knight
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlo Colantuoni
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gizem Keceli
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Axonal chronic injury in treatment-naïve HIV+ adults with asymptomatic neurocognitive impairment and its relationship with clinical variables and cognitive status. BMC Neurol 2018; 18:66. [PMID: 29747571 PMCID: PMC5943991 DOI: 10.1186/s12883-018-1069-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Background HIV is a neurotropic virus, and it can bring about neurodegeneration and may even result in cognitive impairments. The precise mechanism of HIV-associated white matter (WM) injury is unknown. The effects of multiple clinical contributors on WM impairments and the relationship between the WM alterations and cognitive performance merit further investigation. Methods Diffusion tensor imaging (DTI) was performed in 20 antiretroviral-naïve HIV-positive asymptomatic neurocognitive impairment (ANI) adults and 20 healthy volunteers. Whole-brain analysis of DTI metrics between groups was conducted by employing tract-based spatial statistics (TBSS), including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). DTI parameters were correlated with clinical variables (age, CD4+ cell count, CD4+/CD8+ ratio, plasma viral load and duration of HIV infection) and multiple cognitive tests by using multilinear regression analyses. Results DTI quantified diffusion alterations in the corpus callosum and corona radiata (MD increased significantly, P < 0.05) and chronic axonal injury in the corpus callosum, corona radiata, internal capsule, external capsule, posterior thalamic radiation, sagittal stratum, and superior longitudinal fasciculus (AD increased significantly, P < 0.05). The impairments in the corona radiata had significant correlations with the current CD4+/CD8+ ratios. Increased MD or AD values in multiple white matter structures showed significant associations with many cognitive domain tests. Conclusions WM impairments are present in neurologically asymptomatic HIV+ adults, periventricular WM (corpus callosum and corona radiata) are preferential occult injuries, which is associated with axonal chronic damage rather than demyelination. Axonopathy may exist before myelin injury. DTI-TBSS is helpful to explore the WM microstructure abnormalities and provide a new perspective for the investigation of the pathomechanism of HIV-associated WM injury.
Collapse
|
3
|
Neural response to working memory demand predicts neurocognitive deficits in HIV. J Neurovirol 2017; 24:291-304. [PMID: 29280107 DOI: 10.1007/s13365-017-0607-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/31/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023]
Abstract
Human immunodeficiency virus (HIV) continues to have adverse effects on cognition and the brain in many infected people, despite a reduced incidence of HIV-associated dementia with combined antiretroviral therapy (cART). Working memory is often affected, along with attention, executive control, and cognitive processing speed. Verbal working memory (VWM) requires the interaction of each of the cognitive component processes along with a phonological loop for verbal repetition and rehearsal. HIV-related functional brain response abnormalities during VWM are evident in functional MRI (fMRI), though the neural substrate underlying these neurocognitive deficits is not well understood. The current study addressed this by comparing 24 HIV+ to 27 demographically matched HIV-seronegative (HIV-) adults with respect to fMRI activation on a VWM paradigm (n-back) relative to performance on two standardized tests of executive control, attention and processing speed (Stroop and Trail Making A-B). As expected, the HIV+ group had deficits on these neurocognitive tests compared to HIV- controls, and also differed in neural response on fMRI relative to neuropsychological performance. Reduced activation in VWM task-related brain regions on the 2-back was associated with Stroop interference deficits in HIV+ but not with either Trail Making A or B performance. Activation of the posterior cingulate cortex (PCC) of the default mode network during rest was associated with Hopkins Verbal Learning Test-2 (HVLT-2) learning in HIV+. These effects were not observed in the HIV- controls. Reduced dynamic range of neural response was also evident in HIV+ adults when activation on the 2-back condition was compared to the extent of activation of the default mode network during periods of rest. Neural dynamic range was associated with both Stroop and HVLT-2 performance. These findings provide evidence that HIV-associated alterations in neural activation induced by VWM demands and during rest differentially predict executive-attention and verbal learning deficits. That the Stroop, but not Trail Making was associated with VWM activation suggests that attentional regulation difficulties in suppressing interference and/or conflict regulation are a component of working memory deficits in HIV+ adults. Alterations in neural dynamic range may be a useful index of the impact of HIV on functional brain response and as a fMRI metric in predicting cognitive outcomes.
Collapse
|
4
|
Corrêa DG, Zimmermann N, Ventura N, Tukamoto G, Doring T, Leite SC, Fonseca RP, Bahia PR, Lopes FC, Gasparetto EL. Longitudinal evaluation of resting-state connectivity, white matter integrity and cortical thickness in stable HIV infection: Preliminary results. Neuroradiol J 2017; 30:535-545. [PMID: 29068256 DOI: 10.1177/1971400917739273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose The objectives of this study were to determine if HIV-infected patients treated with highly active antiretroviral therapy (HAART), without dementia, suffer from longitudinal gray matter (GM) volume loss, changes in white matter (WM) integrity and deterioration in functional connectivity at rest, in an average interval of 30 months. Methods Clinically stable HIV-positive patients (on HAART, CD4 + T lymphocyte > 200 cells/μl, and viral loads <50 copies/μl) were recruited. None of them had HIV-associated dementia. Each patient underwent two scans, performed in a 1.5-T magnetic resonance imaging (MRI) scanner. FreeSurfer was used to perform cortical volumetric reconstruction and segmentation of GM structures. WM integrity was assessed using tract-based spatial statistics to post-process diffusion tensor imaging data, and FMRIB's Software Library tools were used to post-process resting-state functional magnetic resonance imaging (RS-fMRI). Results There were no significant differences in cortical thickness, deep GM volumes, or diffusivity parameters between the scans at the two time points. Five resting-state networks were identified in our patients. In the second MRI, HIV-positive patients presented increased areas of functional connectivity in visual pathways, frontoparietal and cerebellar networks, compared with the first MRI (considering p < 0.05). Conclusions RS-fMRI revealed potentially compensatory longitudinal alterations in the brains of HIV-positive patients, attempting to compensate for brain damage related to the infection.
Collapse
Affiliation(s)
- Diogo G Corrêa
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
- 2 499470 Clínica de Diagnóstico por Imagem (CDPI) , Brazil
| | - Nicolle Zimmermann
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
- 3 Department of Psychology, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Nina Ventura
- 2 499470 Clínica de Diagnóstico por Imagem (CDPI) , Brazil
- 4 Department of Radiology, Hospital Universitário Antônio Pedro, Federal Fluminense University, Brazil
| | | | - Thomas Doring
- 2 499470 Clínica de Diagnóstico por Imagem (CDPI) , Brazil
| | - Sarah Cb Leite
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
| | - Rochele P Fonseca
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
- 3 Department of Psychology, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Paulo Rv Bahia
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
| | - Fernanda Cr Lopes
- 2 499470 Clínica de Diagnóstico por Imagem (CDPI) , Brazil
- 4 Department of Radiology, Hospital Universitário Antônio Pedro, Federal Fluminense University, Brazil
| | - Emerson L Gasparetto
- 1 Department of Radiology, Hospital Universitário Clementino Fraga Filho, 28125 Federal University of Rio de Janeiro , Brazil
- 2 499470 Clínica de Diagnóstico por Imagem (CDPI) , Brazil
| |
Collapse
|
5
|
O'Connor EE, Jaillard A, Renard F, Zeffiro TA. Reliability of White Matter Microstructural Changes in HIV Infection: Meta-Analysis and Confirmation. AJNR Am J Neuroradiol 2017; 38:1510-1519. [PMID: 28596189 DOI: 10.3174/ajnr.a5229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/18/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Diffusion tensor imaging has been widely used to measure HIV effects on white matter microarchitecture. While many authors have reported reduced fractional anisotropy and increased mean diffusivity in HIV, quantitative inconsistencies across studies are numerous. PURPOSE Our aim was to evaluate the consistency across studies of HIV effects on DTI measures and then examine the DTI reliability in a longitudinal seropositive cohort. DATA SOURCES Published studies and investigators. STUDY SELECTION The meta-analysis included 16 cross-sectional studies reporting fractional anisotropy and 12 studies reporting mean diffusivity in the corpus callosum. DATA ANALYSIS Random-effects meta-analysis was used to estimate study standardized mean differences and heterogeneity. DTI longitudinal reliability was estimated in seropositive participants studied before and 3 and 6 months after beginning treatment. DATA SYNTHESIS Meta-analysis revealed lower fractional anisotropy (standardized mean difference, -0.43; P < .001) and higher mean diffusivity (standardized mean difference, 0.44; P < .003) in seropositive participants. Nevertheless, between-study heterogeneity accounted for 58% and 66% of the observed variance (P < .01). In contrast, the longitudinal cohort fractional anisotropy was higher and mean diffusivity was lower in seropositive participants (both, P < .001), and fractional anisotropy and mean diffusivity measures were very stable during 6 months, with intraclass correlation coefficients all >0.96. LIMITATIONS Many studies pooled participants with varying treatments, ages, and disease durations. CONCLUSIONS HIV effects on WM microstructure had substantial variations that could result from acquisition, processing, or cohort-selection differences. When acquisition parameters and processing were carefully controlled, the resulting DTI measures did not show high temporal variation. HIV effects on WM microstructure may be age-dependent. The high longitudinal reliability of DTI WM microstructure measures makes them promising disease-activity markers.
Collapse
Affiliation(s)
- E E O'Connor
- From the Department of Radiology and Nuclear Medicine (E.E.O.), University of Maryland Medical System, Baltimore, Maryland
| | - A Jaillard
- Unité IRM 3T-Recherche-IRMaGe-Inserm US 17/CNRS UMS 3552 (A.J., F.R.).,Laboratoire MATICE-Pôle Recherche (A.J., F.R.), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - F Renard
- Unité IRM 3T-Recherche-IRMaGe-Inserm US 17/CNRS UMS 3552 (A.J., F.R.).,Laboratoire MATICE-Pôle Recherche (A.J., F.R.), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - T A Zeffiro
- Neurometrika (T.A.Z.), Potomac, Maryland.,Department of Human Development (T.A.Z.), University of Maryland College Park, Maryland
| |
Collapse
|
6
|
Ekins S, Mathews P, Saito EK, Diaz N, Naylor D, Chung J, McMurtray AM. α7-Nicotinic acetylcholine receptor inhibition by indinavir: implications for cognitive dysfunction in treated HIV disease. AIDS 2017; 31:1083-1089. [PMID: 28358738 DOI: 10.1097/qad.0000000000001488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The study set out to determine if the HIV protease inhibitor, indinavir, alters responsiveness of α7-nicotinic acetylcholine receptors to acetylcholine. DESIGN Treatment with HAART has dramatically reduced development of HIV-associated dementia and more severe forms of cognitive impairment. However, many individuals continue to experience cognitive decline of uncertain cause. Previous studies have failed to demonstrate significant alterations of functional brain connectivity, structural brain changes, or changes in cerebral blood flow sufficient to explain cognitive decline in virally suppressed individuals. This suggests that the mechanisms underlying development and progression of cognitive problems likely occurs at a micro rather than macro level, such as disruptions in neurotransmitter system signaling. MATERIALS AND METHODS Indinavir's effects on α7-nicotinic acetylcholine receptor activity was tested using a ScreenPatch IonWorks Barracuda-based assay in a mammalian cell model. RESULTS At low concentrations (0.0003-10 μmol/l) indinavir acts as a positive allosteric modulator (EC50 = 0.021 μmol/l), whereas at concentrations greater than 10 μmol/l (30-100 μmol/l) indinavir acts as an inhibitor of the α7-nicotinic acetylcholine receptor. CONCLUSION At concentrations greater than 10 μmol/l indinavir reduces synaptic transmission in the acetylcholine neurotransmitter system, which could possibly contribute to cognitive dysfunction. These results suggest that further experiments should be considered to assess whether patients might benefit from treatment with cholinesterase inhibitors that counteract the effects of indinavir.
Collapse
|
7
|
Hakkers CS, Arends JE, Barth RE, Du Plessis S, Hoepelman AIM, Vink M. Review of functional MRI in HIV: effects of aging and medication. J Neurovirol 2016; 23:20-32. [PMID: 27718211 PMCID: PMC5329077 DOI: 10.1007/s13365-016-0483-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/12/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is a frequently occurring comorbidity of HIV infection. Evidence suggests this condition starts subclinical before a progression to a symptomatic stage. Blood oxygenated level dependent (BOLD) fMRI has shown to be a sensitive tool to detect abnormal brain function in an early stage and might therefore be useful to evaluate the effect of HIV infection on brain function. An extensive literature search was performed in June 2015. Eligibility criteria for included studies were as follows: (1) conducting with HIV-positive patients, (2) using BOLD fMRI, and (3) including a HIV-negative control group. A total of 19 studies were included in the review including 931 participants. Differences in activation between HIV-positive and -negative participants were found when testing multiple domains, i.e., attention, (working) memory, and especially executive functioning. Overall, HIV-positive patients showed hyperactivation in task-related brain regions despite equal performances as controls. Task performance was degraded only for the most complex tasks. A few studies investigated the effect of aging on fMRI, and most of them found no interaction with HIV infection. Only three studies evaluated the effect of combination antiretroviral therapy (cART) on functional data suggesting an increase in activation with the use of cART. fMRI is a sensitive instrument to detect subtle cognitive changes in HIV patients. Open questions remain regarding the effects of cART on fMRI and the effects of aging on fMRI.
Collapse
Affiliation(s)
- C S Hakkers
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| | - J E Arends
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - R E Barth
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - S Du Plessis
- Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa
| | - A I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - M Vink
- Department of Psychiatry, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
8
|
Meade CS, Cordero DM, Hobkirk AL, Metra BM, Chen NK, Huettel SA. Compensatory activation in fronto-parietal cortices among HIV-infected persons during a monetary decision-making task. Hum Brain Mapp 2016; 37:2455-67. [PMID: 27004729 DOI: 10.1002/hbm.23185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/27/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022] Open
Abstract
HIV infection can cause direct and indirect damage to the brain and is consistently associated with neurocognitive disorders, including impairments in decision-making capacities. The tendency to devalue rewards that are delayed (temporal discounting) is relevant to a range of health risk behaviors. Making choices about delayed rewards engages the executive control network of the brain, which has been found to be affected by HIV. In this case-control study of 18 HIV-positive and 17 HIV-negative adults, we examined the effects of HIV on brain activation during a temporal discounting task. Functional MRI (fMRI) data were collected while participants made choices between smaller, sooner rewards and larger, delayed rewards. Choices were individualized based on participants' unique discount functions, so each participant experienced hard (similarly valued), easy (disparately valued), and control choices. fMRI data were analyzed using a mixed-effects model to identify group-related differences associated with choice difficulty. While there was no difference between groups in behavioral performance, the HIV-positive group demonstrated significantly larger increases in activation within left parietal regions and bilateral prefrontal regions during easy trials and within the right prefrontal cortex and anterior cingulate during hard trials. Increasing activation within the prefrontal regions was associated with lower nadir CD4 cell count and risk-taking propensity. These results support the hypothesis that HIV infection can alter brain functioning in regions that support decision making, providing further evidence for HIV-associated compensatory activation within fronto-parietal cortices. A history of immunosuppression may contribute to these brain changes. Hum Brain Mapp 37:2455-2467, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christina S Meade
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina.,Duke Global Health Institute, Durham, North Carolina.,Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| | | | - Andrea L Hobkirk
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina.,Duke Global Health Institute, Durham, North Carolina
| | | | - Nan-Kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.,Department of Radiology, Duke University School of Medicine, Durham, North Carolina
| | - Scott A Huettel
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina.,Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| |
Collapse
|
9
|
Østergaard L, Engedal TS, Moreton F, Hansen MB, Wardlaw JM, Dalkara T, Markus HS, Muir KW. Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab 2016; 36:302-25. [PMID: 26661176 PMCID: PMC4759673 DOI: 10.1177/0271678x15606723] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/30/2015] [Indexed: 01/18/2023]
Abstract
Cerebral small vessel disease (SVD) gives rise to one in five strokes worldwide and constitutes a major source of cognitive decline in the elderly. SVD is known to occur in relation to hypertension, diabetes, smoking, radiation therapy and in a range of inherited and genetic disorders, autoimmune disorders, connective tissue disorders, and infections. Until recently, changes in capillary patency and blood viscosity have received little attention in the aetiopathogenesis of SVD and the high risk of subsequent stroke and cognitive decline. Capillary flow patterns were, however, recently shown to limit the extraction efficacy of oxygen in tissue and capillary dysfunction therefore proposed as a source of stroke-like symptoms and neurodegeneration, even in the absence of physical flow-limiting vascular pathology. In this review, we examine whether capillary flow disturbances may be a shared feature of conditions that represent risk factors for SVD. We then discuss aspects of capillary dysfunction that could be prevented or alleviated and therefore might be of general benefit to patients at risk of SVD, stroke or cognitive decline.
Collapse
Affiliation(s)
- Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Thorbjørn S Engedal
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fiona Moreton
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Mikkel B Hansen
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry and Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hugh S Markus
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Wade BS, Valcour VG, Wendelken-Riegelhaupt L, Esmaeili-Firidouni P, Joshi SH, Gutman BA, Thompson PM. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort. NEUROIMAGE-CLINICAL 2015; 9:564-73. [PMID: 26640768 PMCID: PMC4625216 DOI: 10.1016/j.nicl.2015.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022]
Abstract
Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%. We model subcortical morphometry of elderly HIV + participants. We explore classifying HIV status based on shape and volume of brain regions. Morphometry of brain regions was associated with infection status and duration. HIV status was classifiable with 72% accuracy in morphometry-based classifiers.
Collapse
Affiliation(s)
- Benjamin S.C. Wade
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
| | - Victor G. Valcour
- Memory and Aging Center, Dept. of Neurology, University of California, San Francisco, CA, USA
| | | | | | - Shantanu H. Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Boris A. Gutman
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
| | - Paul M. Thompson
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA, USA
- Corresponding author at: Imaging Genetics Center, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA 90292, USA.Imaging Genetics CenterUniversity of Southern California4676 Admiralty WayMarina del ReyCA90292USA
| |
Collapse
|
11
|
HIV Infection Is Associated with Impaired Striatal Function during Inhibition with Normal Cortical Functioning on Functional MRI. J Int Neuropsychol Soc 2015; 21:722-31. [PMID: 26435417 DOI: 10.1017/s1355617715000971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to investigate the effect of HIV infection on cortical and subcortical regions of the frontal-striatal system involved in the inhibition of voluntary movement. Functional MRI (fMRI) studies suggest that human immunodeficiency virus (HIV) infection is associated with frontostriatal dysfunction. While frontostriatal systems play a key role in behavioral inhibition, there are to our knowledge no fMRI studies investigating the potential impact of HIV on systems involved during the inhibition of voluntary movement. A total of 17 combined antiretroviral therapy (cART) naïve HIV+ participants as well as 18 age, gender, ethnic, education matched healthy controls performed a modified version of the stop-signal paradigm. This paradigm assessed behavior as well as functional brain activity associated with motor execution, reactive inhibition (outright stopping) and proactive inhibition (anticipatory response slowing before stopping). HIV+ participants showed significantly slower responses during motor execution compared to healthy controls, whereas they had normal proactive response slowing. Putamen hypoactivation was evident in the HIV+ participants based on successful stopping, indicating subcortical dysfunction during reactive inhibition. HIV+ participants showed normal cortical functioning during proactive inhibition. Our data provide evidence that HIV infection is associated with subcortical dysfunction during reactive inhibition, accompanied by relatively normal higher cortical functioning during proactive inhibition. This suggests that HIV infection may primarily involve basic striatal-mediated control processes in cART naïve participants.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW HIV enters the brain after initial infection, and with time can lead to HIV-associated neurocognitive disorders (HAND). Although the introduction of combination antiretroviral therapy has reduced the more severe forms of HAND, milder forms are still highly prevalent. The 'gold standard' for HAND diagnosis remains detailed neuropsychological performance testing but additional biomarkers (including neuroimaging) may assist in early detection of HAND. RECENT FINDINGS We review the application of recently developed noninvasive MRI and PET techniques in HIV+ individuals. In particular, magnetic resonance spectroscopy may be more sensitive than conventional MRI alone in detecting HIV associated changes. Diffusion tensor imaging has become increasingly popular for assessing changes in white matter structural integrity due to HIV. Both functional MRI and PET have been limitedly performed but could provide keys for characterizing neuropathophysiologic changes due to HIV. SUMMARY It is hoped that continued progress will allow novel neuroimaging methods to be included in future HAND management guidelines.
Collapse
|
13
|
Abstract
The introduction of combined antiretroviral therapy (cART) has dramatically reduced the risk of central nervous system opportunistic infection and severe dementia secondary to HIV infection in the last two decades. However, a milder form of HIV-associated neurocognitive disorder (HAND) remains prevalent in the cART era and has a significant impact on patients' quality of life. In this review, we outline updated research findings on investigating and monitoring cognitive impairment in HAND patients. The outcomes of recent research on the pathogenesis of HAND and how it overlaps with neurodegenerative diseases are discussed. Lastly, there is a brief discussion of the results of clinical trials using a brain-penetrating cART regimen.
Collapse
|
14
|
Could antiretroviral neurotoxicity play a role in the pathogenesis of cognitive impairment in treated HIV disease? AIDS 2015; 29:253-61. [PMID: 25426811 DOI: 10.1097/qad.0000000000000538] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whilst effective antiretroviral therapy is protective against the more severe forms of HIV-associated brain disease, there remains a large burden of clinically symptomatic cognitive impairment in the modern era. Although several potential pathogenic mechanisms have been proposed, the underlying pathology remains elusive. In this review, we summarize the evidence describing neuronal toxicity of antiretroviral agents themselves in both preclinical and clinical situations, as well as the potential pathological mechanisms underlying this toxicity. We also consider the implications for future practice and clinical research in which case determining optimal antiretroviral combinations that effectively suppress HIV replication whilst minimizing neurotoxic effects on the central nervous system may become paramount.
Collapse
|
15
|
Antiretroviral therapy effects on sources of cortical rhythms in HIV subjects: Responders vs. Mild Responders. Clin Neurophysiol 2015; 126:68-81. [DOI: 10.1016/j.clinph.2014.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/10/2014] [Accepted: 03/31/2014] [Indexed: 11/17/2022]
|
16
|
Liu C, Wang C, Leclair M, Young M, Jiang X. Reduced neural specificity in middle-aged HIV+ women in the absence of behavioral deficits. NEUROIMAGE-CLINICAL 2014; 8:667-75. [PMID: 26288750 PMCID: PMC4536469 DOI: 10.1016/j.nicl.2014.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
In the post combination antiretroviral therapy (cART) era, the prevalence of mild forms of HIV-associated neurocognitive disorders (HAND) in individuals with HIV-infection remains high. There is a pressing need to find biomarkers that can aid clinical assessment of HAND, especially in those with mild or no neurocognitive symptoms. Here we hypothesized that a reduction in neural specificity, or the specificity of neuronal tuning, could serve as a potential biomarker of asymptomatic HAND. To directly test this hypothesis, we applied two advanced fMRI techniques to examine the difference in neural specificity between middle-aged HIV+ women and age-matched negative controls, with a focus on the fusiform face area (FFA), a critical region in face processing. Face discrimination performance was assessed outside of the scanner. While the behavioral performance of face discrimination was comparable between the two groups, a reduced neural specificity in the FFA of HIV-positive women was revealed by a novel fMRI analysis technique, local regional heterogeneity analysis, or Hcorr, as well as an established technique, fMRI-rapid adaptation. In contrast, conventional fMRI techniques were insensitive to these early changes. These results suggest that, prior to the onset of detectable behavioral deficits, significant neuronal dysfunctions are already present in HIV+ individuals, and these early neuronal dysfunctions can be detected and assessed via neural specificity, which, in combining with the novel Hcorr technique, has a strong potential to serve as a biomarker of asymptomatic HAND and other neurodegenerative diseases. We investigate early neuronal dysfunctions in cognitively normal HIV+ women. Conventional fMRI technique reveals normal neural activity in the FFA of HIV+ women. fMRI-adaptation reveals a decrease in neural specificity in the FFA of HIV+ women. Hcorr, a novel fMRI technique, confirms the fMRI-adaptation results Hcorr-estimated neural specificity might serve as a biomarker of asymptomatic HAND
Collapse
Affiliation(s)
- Chenglong Liu
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Cuiwei Wang
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Matthew Leclair
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Mary Young
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Xiong Jiang
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
17
|
Babiloni C, Buffo P, Vecchio F, Onorati P, Muratori C, Ferracuti S, Roma P, Battuello M, Donato N, Noce G, Di Campli F, Gianserra L, Teti E, Aceti A, Soricelli A, Viscione M, Andreoni M, Rossini PM, Pennica A. Cortical sources of resting-state EEG rhythms in “experienced” HIV subjects under antiretroviral therapy. Clin Neurophysiol 2014; 125:1792-802. [DOI: 10.1016/j.clinph.2014.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/30/2013] [Accepted: 01/20/2014] [Indexed: 11/26/2022]
|
18
|
HIV Associated Neurocognitive Disorders in the Modern Antiviral Treatment Era: Prevalence, Characteristics, Biomarkers, and Effects of Treatment. Curr HIV/AIDS Rep 2014; 11:317-24. [DOI: 10.1007/s11904-014-0221-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Neural dysregulation during a working memory task in human immunodeficiency virus-seropositive and hepatitis C coinfected individuals. J Neurovirol 2014; 20:398-411. [PMID: 24867610 DOI: 10.1007/s13365-014-0257-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/21/2014] [Accepted: 05/09/2014] [Indexed: 01/27/2023]
Abstract
Cognitive and functional neural correlates of human immunodeficiency virus (HIV) are only partially understood at present. Variability in neural response, which has been noted in the literature, may relate to clinical factors associated with HIV, including time since HIV diagnosis, CD4 count and nadir, HIV viral load, and comorbid infectious processes, especially hepatitis C. The present investigation evaluated working memory-related functional neural activation in 26 HIV+ participants, 28 demographically matched HIV-seronegative individuals, and 8 HIV+ individuals with hepatitis C coinfection. Analyses examined impact of HIV infection duration, CD4 count and nadir, HIV viral load, and hepatitis C serostatus. Results showed that HIV-seronegative participants had fastest reaction times, and during the working memory task, HIV+ participants with hepatitis C coinfection showed strongest bias toward commission errors; however, signal detection (i.e., overall task performance) was equivalent across groups. Functional magnetic resonance imaging (fMRI) results showed HIV-related greater activation to an easier vigilance task and HIV-related lower activation to a more difficult working memory task, consistent with reduced cognitive reserve. Hepatitis C coinfection related to diffuse neural dysregulation. Correlational analyses suggested relationships of increasingly severe disease with poorer functioning in brain regions linked to error monitoring and attention regulation.
Collapse
|
20
|
Masters MC, Ances BM. Role of neuroimaging in HIV-associated neurocognitive disorders. Semin Neurol 2014; 34:89-102. [PMID: 24715492 DOI: 10.1055/s-0034-1372346] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) enters the brain soon after seroconversion and can cause HIV-associated neurocognitive disorders (HAND). Although the more severe and progressive forms of HAND are less prevalent due to combination antiretroviral therapy (cART), ∼ 40% of HIV-infected (HIV+) patients continue to have cognitive impairment. Some HIV+ individuals who have effective plasma HIV-1 RNA suppression with cART still develop HAND. It is often difficult to diagnose HAND in the outpatient setting as detailed neuropsychological performance testing is required. Additional biomarkers that are relatively easy to obtain and clinically relevant are needed for assessing HIV-associated neuropathologic changes. Recently developed noninvasive magnetic resonance imaging (MRI) techniques have great potential to serve as biomarkers. The authors review the application of some of these neuroimaging techniques, magnetic resonance spectroscopy (MRS), volumetric MRI, diffusion tensor imaging (DTI), functional MRI (fMRI), in HIV+ individuals. Each of the neuroimaging methods offers unique insight into mechanisms underlying neuroHIV, could monitor disease progression, and may assist in evaluating the efficacy of particular cART regimens. It is hoped that considerable progress will continue to occur such that some of these neuroimaging methods will be incorporated across multiple sites and included in future HAND guidelines.
Collapse
Affiliation(s)
- Mary C Masters
- Department of Neurology, School of Medicine, Washington University in St Louis, St Louis, Missouri
| | - Beau M Ances
- Department of Neurology, School of Medicine, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
21
|
HIV infection and the fronto-striatal system: a systematic review and meta-analysis of fMRI studies. AIDS 2014; 28:803-11. [PMID: 24300546 DOI: 10.1097/qad.0000000000000151] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional MRI studies investigating the impact of HIV on the brain have implicated the involvement of fronto-striatal circuitry. However, to date there is no review and meta-analysis of this work. We systematically reviewed the literature and performed a meta-analysis of functional magnetic resonance imaging (fMRI) studies in HIV-infected individuals using a well validated tool recently developed for use in fMRI, 'GingerALE'. Twenty-one studies (468 HIV+, 270 HIV- controls) were qualitatively reviewed, of which six (105 HIV+, 102 controls) utilized fMRI paradigms engaging the fronto-striatal-parietal network, making a quantitative analysis possible. Our meta-analysis revealed consistent functional differences in the left inferior frontal gyrus and caudate nucleus between infected participants and controls across these studies. This fronto-striatal dysfunction was qualitatively related to cognitive impairment, disease progression and treatment effects. Although further work needs to be done to further delineate the potentially confounding influence of substance abuse and HIV-related comorbidities, as well as HIV's effect on functional haemodynamic vascular coupling, these findings indicate that further investigation of the fronto-striatal sub-networks in HIV-infected patients is warranted.
Collapse
|
22
|
Akay C, Cooper M, Odeleye A, Jensen BK, White MG, Vassoler F, Gannon PJ, Mankowski J, Dorsey JL, Buch AM, Cross SA, Cook DR, Peña MM, Andersen ES, Christofidou-Solomidou M, Lindl KA, Zink MC, Clements J, Pierce RC, Kolson DL, Jordan-Sciutto KL. Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J Neurovirol 2014; 20:39-53. [PMID: 24420448 PMCID: PMC3928514 DOI: 10.1007/s13365-013-0227-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 01/09/2023]
Abstract
HIV-associated neurocognitive disorder (HAND), characterized by a wide spectrum of behavioral, cognitive, and motor dysfunctions, continues to affect approximately 50 % of HIV(+) patients despite the success of combination antiretroviral drug therapy (cART) in the periphery. Of note, potential toxicity of antiretroviral drugs in the central nervous system (CNS) remains remarkably underexplored and may contribute to the persistence of HAND in the cART era. Previous studies have shown antiretrovirals (ARVs) to be neurotoxic in the peripheral nervous system in vivo and in peripheral neurons in vitro. Alterations in lipid and protein metabolism, mitochondrial damage, and oxidative stress all play a role in peripheral ARV neurotoxicity. We hypothesized that ARVs also induce cellular stresses in the CNS, ultimately leading to neuronal damage and contributing to the changing clinical and pathological picture seen in HIV-positive patients in the cART era. In this report, we show that ARVs are neurotoxic in the CNS in both pigtail macaques and rats in vivo. Furthermore, in vitro, ARVs lead to accumulation of reactive oxygen species (ROS), and ultimately induction of neuronal damage and death. Whereas ARVs alone caused some activation of the endogenous antioxidant response in vitro, augmentation of this response by a fumaric acid ester, monomethyl fumarate (MMF), blocked ARV-induced ROS generation, and neuronal damage/death. These findings implicate oxidative stress as a contributor to the underlying mechanisms of ARV-induced neurotoxicity and will provide an access point for adjunctive therapies to complement ARV therapy and reduce neurotoxicity in this patient population.
Collapse
Affiliation(s)
- Cagla Akay
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy Bldg, Philadelphia, PA 19104-6030 USA
| | - Michael Cooper
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy Bldg, Philadelphia, PA 19104-6030 USA
| | - Akinleye Odeleye
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy Bldg, Philadelphia, PA 19104-6030 USA
| | - Brigid K. Jensen
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy Bldg, Philadelphia, PA 19104-6030 USA
| | - Michael G. White
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy Bldg, Philadelphia, PA 19104-6030 USA
| | - Fair Vassoler
- Department of Psychiatry, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Patrick J. Gannon
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy Bldg, Philadelphia, PA 19104-6030 USA
| | - Joseph Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jamie L. Dorsey
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Alison M. Buch
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy Bldg, Philadelphia, PA 19104-6030 USA
| | - Stephanie A. Cross
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Denise R. Cook
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Michelle-Marie Peña
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy Bldg, Philadelphia, PA 19104-6030 USA
| | - Emily S. Andersen
- Department of Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | | | - Kathryn A. Lindl
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy Bldg, Philadelphia, PA 19104-6030 USA
| | - M. Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Janice Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - R. Christopher Pierce
- Department of Psychiatry, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Dennis L. Kolson
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Kelly L. Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy Bldg, Philadelphia, PA 19104-6030 USA
| |
Collapse
|
23
|
|
24
|
Spudich S, González-Scarano F. HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb Perspect Med 2012; 2:a007120. [PMID: 22675662 PMCID: PMC3367536 DOI: 10.1101/cshperspect.a007120] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HIV-associated central nervous system (CNS) injury continues to be clinically significant in the modern era of HIV infection and therapy. A substantial proportion of patients with suppressed HIV infection on optimal antiretroviral therapy have impaired performance on neuropsychological testing, suggesting persistence of neurological abnormalities despite treatment and projected long-term survival. In the underresourced setting, limited accessibility to antiretroviral medications means that CNS complications of later-stage HIV infection continue to be a major concern. This article reviews key recent advances in our understanding of the neuropathogenesis of HIV, focusing on basic and clinical studies that reveal viral and host features associated with viral neuroinvasion, persistence, and immunopathogenesis in the CNS, as well as issues related to monitoring and treatment of HIV-associated CNS injury in the current era.
Collapse
Affiliation(s)
- Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
25
|
Ances BM, Vaida F, Cherner M, Yeh MJ, Liang CL, Gardner C, Grant I, Ellis RJ, Buxton RB. HIV and chronic methamphetamine dependence affect cerebral blood flow. J Neuroimmune Pharmacol 2011; 6:409-19. [PMID: 21431471 PMCID: PMC3251315 DOI: 10.1007/s11481-011-9270-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/25/2011] [Indexed: 01/20/2023]
Abstract
Human immunodeficiency virus (HIV) and methamphetamine (METH) dependence are independently associated with neuronal dysfunction. The coupling between cerebral blood flow (CBF) and neuronal activity is the basis of many task-based functional neuroimaging techniques. We examined the interaction between HIV infection and a previous history of METH dependence on CBF within the lenticular nuclei (LN). Twenty-four HIV-/METH-, eight HIV-/METH+, 24 HIV+/METH-, and 15 HIV+/METH+ participants performed a finger tapping paradigm. A multiple regression analysis of covariance assessed associations and two-way interactions between CBF and HIV serostatus and/or previous history of METH dependence. HIV+ individuals had a trend towards a lower baseline CBF (-10%, p = 0.07) and greater CBF changes for the functional task (+32%, p = 0.01) than HIV- subjects. Individuals with a previous history of METH dependence had a lower baseline CBF (-16%, p = 0.007) and greater CBF changes for a functional task (+33%, p = 0.02). However, no interaction existed between HIV serostatus and previous history of METH dependence for either baseline CBF (p = 0.53) or CBF changes for a functional task (p = 0.10). In addition, CBF and volume in the LN were not correlated. A possible additive relationship could exist between HIV infection and a history of METH dependence on CBF with a previous history of METH dependence having a larger contribution. Abnormalities in CBF could serve as a surrogate measure for assessing the chronic effects of HIV and previous METH dependence on brain function.
Collapse
Affiliation(s)
- Beau M Ances
- Department of Neurology, Washington University in St. Louis, 660 South Euclid Ave, Box 08111, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
HIV can infect the brain and impair central nervous system (CNS) function. Combination antiretroviral therapy (cART) has not eradicated CNS complications. HIV-associated neurocognitive disorders (HAND) remain common despite cART, although attenuated in severity. This may result from a combination of factors including inadequate treatment of HIV reservoirs such as circulating monocytes and glia, decreased effectiveness of cART in CNS, concurrent illnesses, stimulant use, and factors associated with prescribed drugs, including antiretrovirals. This review highlights recent investigations of HIV-related CNS injury with emphasis on cART-era neuropathological mechanisms in the context of both US and international settings.
Collapse
|
27
|
Simioni S, Cavassini M, Annoni JM, Hirschel B, Du Pasquier RA. HIV-associated neurocognitive disorders: a changing pattern. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.10.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Combination antiretroviral therapy has dramatically decreased the incidence of HIV-related mortality and serious opportunistic diseases, among which is HIV-associated dementia. However, minor forms of cognitive dysfunction have not disappeared and may even have increased in frequency. Aging of HIV+ patients, insufficient penetration of antiretroviral drugs into the brain with continuous low-grade viral production and inflammation may play a role. A putative neurotoxicity of combination antiretroviral therapy is controversial. In this article, we will discuss these aspects, as well as clinical and pathophysiological features shared by HIV-associated neurocognitive disorders and other neurodegenerative diseases, especially Alzheimer’s disease. This article will briefly summarize the current clinical trials on neuroprotective agents, and the management of patients with neurocognitive disorders will be discussed.
Collapse
Affiliation(s)
- Samanta Simioni
- Division of Neurology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Jean-Marie Annoni
- Division of Neurology, Geneva University Hospital, Rue Gabrielle–Perret–Gentil 4, 1211 Geneva 14, Switzerland
| | - Bernard Hirschel
- Division of Infectious Diseases, HIV/AIDS Unit, Geneva University Hospital, Rue Gabrielle–Perret–Gentil 4, 1211 Geneva 14, Switzerland
| | - Renaud A Du Pasquier
- Department of Immunology, Centre Hospitalier Universitaire Vaudois, rue du Bugnon 46, 1011 Lausanne, Switzerland
| |
Collapse
|
28
|
HIV-1 associated dementia: update on pathological mechanisms and therapeutic approaches. Curr Opin Neurol 2009; 22:315-20. [PMID: 19300249 DOI: 10.1097/wco.0b013e328329cf3c] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Infection with HIV-1 can induce dementia despite successful administration of life-prolonging highly active antiretroviral therapy. This review will discuss recent progress toward a better understanding of the pathogenesis and an improved design of therapies for HIV-associated neurocognitive disorders. RECENT FINDINGS Highly active antiretroviral therapy prolongs the lives of HIV patients, but the incidence of HIV-associated dementia as an AIDS-defining illness has increased and the brain is now recognized as a viral sanctuary that requires additional therapeutic effort. The neuropathology of HIV infection also has changed due to improved therapy, and while more similarities with other neurodegenerative diseases are being reported, predictive biomarkers remain elusive. However, improvements of in-vivo imaging technology and progress in uncovering the molecular mechanisms of HIV disease keep providing new insights. As such it appears that a prolonged activation of the immune system by HIV eventually leads to AIDS, and several lines of evidence indicate that simultaneously neurotoxic processes and impairment of neurogenesis both contribute to the development of HIV-associated neurocognitive disorders. SUMMARY The improved understanding of the interaction between HIV and its human host provides hope that adjunctive therapies to antiretroviral treatment can be developed for HIV-associated neurocognitive disorders.
Collapse
|
29
|
Ances BM, Clifford DB. HIV-associated neurocognitive disorders and the impact of combination antiretroviral therapies. Curr Neurol Neurosci Rep 2008; 8:455-61. [PMID: 18957181 DOI: 10.1007/s11910-008-0073-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) are the most common preventable and treatable cause of dementia. While the incidence of the most severe form of HAND, HIV-associated dementia, has decreased since the introduction of combination antiretroviral therapy (cART), the prevalence of less severe forms of HAND has continued to rise. HAND leads to a subcortical dementia consisting of a triad of cognitive, behavior, and motor dysfunction. No single laboratory test can establish HAND, but ancillary studies including neuropsychological testing, neuroimaging studies, and cerebrospinal fluid (CSF) analysis are useful for supporting or refuting the diagnosis. More recent evidence has suggested that higher central nervous system-penetrating cART may lead to greater suppression of CSF HIV viral loads and improved cognition. Because viral control generally has been successful without eliminating cognitive dysfunction, further clinical studies that assess adjunctive neuroprotective drugs are likely to be required.
Collapse
Affiliation(s)
- Beau M Ances
- Department of Neurology, University of Washington, St. Louis, MO 63130, USA
| | | |
Collapse
|