1
|
Miranda-Páez A, Marichal-Cancino BA, Sánchez-Castillo H, Vázquez-León P. Acute taurine reduced alcohol intake and preference in alcohol-experienced, but not in alcohol-näive rats by central mechanisms. Behav Brain Res 2024; 463:114892. [PMID: 38309374 DOI: 10.1016/j.bbr.2024.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Taurine is a non-essential β sulfonated amino acid involved in a plethora of biological functions in the mammalian central nervous system. Taurine is easily accessible in energy drinks for human consumption. Previous preclinical and clinical reports suggest that acute systemic administration of taurine could inhibit some of the behavioral and metabolic effects of alcohol use disorder. Overall, both in rodent and human studies, acute taurine administration reduced voluntary alcohol intake. This study aimed to assess the pharmacological effects of taurine (intracerebroventricular; i.c.v.) on ethanol intake/preference of rats either control (i.e., alcohol naïve) or forced ethanol intake (since juvenile age with a chronic intermittent access model). In addition, to explore anxiety-like behavior (through defensive burying behavior test) as pharmacological control of taurine. We found that acute (i.c.v.) taurine reduced alcohol consumption, i.e., taurine significantly decreased both alcohol intake and preference in adult male Wistar rats. Moreover, taurine elicits an anxiolytic-like effect in all administered groups independently of previous alcohol exposure.
Collapse
Affiliation(s)
- Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo CP: 07738, México City, Mexico
| | - Bruno Antonio Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | - Hugo Sánchez-Castillo
- Laboratorio de Neuropsicofarmacología, Facultad de Psicología, Departamento de Psicobiología y Neurociencas, 1er Piso Edificio B. Universidad Nacional Autónoma de México, Avenida universidad 3004 colonia Copilco Universidad, C.P. 04510 Alcaldía de Coyoacán, CDMX, Mexico
| | - Priscila Vázquez-León
- Laboratorio de Neuropsicofarmacología, Facultad de Psicología, Departamento de Psicobiología y Neurociencas, 1er Piso Edificio B. Universidad Nacional Autónoma de México, Avenida universidad 3004 colonia Copilco Universidad, C.P. 04510 Alcaldía de Coyoacán, CDMX, Mexico.
| |
Collapse
|
2
|
Tarragon E. Alcohol and energy drinks: individual contribution of common ingredients on ethanol-induced behaviour. Front Behav Neurosci 2023; 17:1057262. [PMID: 36865774 PMCID: PMC9971501 DOI: 10.3389/fnbeh.2023.1057262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Since energy drinks (EDs) were sold to the general public as soft drinks and recreational beverages, mixing EDs with ethanol has grown in popularity, particularly among younger people. Given the research that links these drinks with higher risk behaviors and increased ethanol intake, ethanol combined with EDs (AmEDs) is a particularly worrying combination. EDs generally commonly include a variety of ingredients. Sugar, caffeine, taurine, and B-group vitamins are almost always present. Studies on the combined effect of ethanol and sugar and caffeine on ethanol-induced behaviors are extensive. Not so much in regards to taurine and vitamins. This review briefly summarises available information from research on the isolated compounds on EtOH-induced behaviors first, and secondly, the combination of AmEDs on EtOH effects. The conclusion is that additional research is needed to fully comprehend the characteristics and consequences of AmEDs on EtOH-induced behaviors.
Collapse
|
3
|
Dahchour A, Ward RJ. Changes in Brain Dopamine Extracellular Concentration after Ethanol Administration; Rat Microdialysis Studies. Alcohol Alcohol 2021; 57:165-175. [PMID: 34693981 DOI: 10.1093/alcalc/agab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The purpose of this review is to evaluate microdialysis studies where alterations in the dopaminergic system have been evaluated after different intoxication states, in animals showing preference or not for alcohol, as well as during alcohol withdrawal. METHODS Ethanol administration induces varying alterations in dopamine microdialysate concentrations, thereby modulating the functional output of the dopaminergic system. RESULTS Administration of low doses of ethanol, intraperitoneally, intravenously, orally or directly into the nucleus accumbens, NAc, increases mesolimbic dopamine, transmission, as shown by increases in dopamine content. Chronic alcohol administration to rats, which show alcohol-dependent behaviour, induced little change in basal dopamine microdialysis content. In contrast, reduced basal dopamine content occurred after ethanol withdrawal, which might be the stimulus to induce alcohol cravings and consumption. Intermittent alcohol consumption did not identify any consistent changes in dopamine transmission. Animals which have been selectively or genetically bred for alcohol preference did not show consistent changes in basal dopamine content although, exhibited a significant ethanol-evoked dopamine response by comparison to non-preference animals. CONCLUSIONS Microdialysis has provided valuable information about ethanol-evoked dopamine release in the different animal models of alcohol abuse. Acute ethanol administration increases dopamine transmission in the rat NAc whereas chronic ethanol consumption shows variable results which might reflect whether the rat is prior to or experiencing ethanol withdrawal. Ethanol withdrawal significantly decreases the extracellular dopamine content. Such changes in dopamine surges will contribute to both drug dependence, e.g. susceptibility to drug withdrawal, and addiction, by compromising the ability to react to normal dopamine fluctuations.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Department of Biology, Faculty of Sciences, Clinical Neurosciences Laboratory, Faulty of medicine and Pharmacy. Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Roberta J Ward
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
4
|
Tarragon E, Calleja-Conde J, Giné E, Segovia-Rodríguez L, Durán-González P, Echeverry-Alzate V. Alcohol mixed with energy drinks: what about taurine? Psychopharmacology (Berl) 2021; 238:1-8. [PMID: 33175215 DOI: 10.1007/s00213-020-05705-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/04/2020] [Indexed: 01/31/2023]
Abstract
RATIONALE Since energy drinks (EDs) were marketed to the general public as recreational and soft drinks, mixing these with alcohol has become a popular practice, especially in the younger population. Alcohol mixed with EDs (AmEDs) is a particularly alarming combination, given the evidence that consistently associate these drinks with increased risk behaviours and greater alcohol consumption. Caffeine and taurine are commonly found in EDs. In contrast to caffeine, the studies on taurine psychoactive properties and how this amino acid influences ethanol intake alone or in combination with caffeine are not so numerous. OBJECTIVES We summarised relevant and available data on the studies focusing on taurine as a psychoactive agent and its influence on ethanol (EtOH)-induced behaviours. Given the increased risk that represents mixing alcohol with energy drinks, we put emphasis on the research exploring the impact of these combinations on motivated behaviour towards EtOH consumption. RESULTS The research on taurine properties on motivated behaviour towards EtOH consumption is limited, and mostly all done in combination with caffeine or other molecules. This makes it difficult to elucidate the effect of this amino acid when combined with alcohol. CONCLUSIONS Incomplete understanding of the properties and effects of AmEDs is unavoidable until more studies are performed on the influence of taurine on motivation to consume alcohol. Taurine should be further explored, particularly in regard to its potential beneficial applications, motivational properties and synergies with other psychoactive ingredients (i.e. caffeine).
Collapse
Affiliation(s)
- E Tarragon
- Department of Psychobiology and Methodology on Behavioral Sciences, School of Psychology, Complutense University of Madrid, Campus de Somosaguas, Madrid, Spain.
- Universidad Internacional de La Rioja, Faculty of Health Sciences, Avenida de la Paz, 137, 26006, Logroño, La Rioja, Spain.
| | - J Calleja-Conde
- Department of Psychobiology and Methodology on Behavioral Sciences, School of Psychology, Complutense University of Madrid, Campus de Somosaguas, Madrid, Spain
| | - E Giné
- Department of Cellular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - L Segovia-Rodríguez
- Department of Psychobiology and Methodology on Behavioral Sciences, School of Psychology, Complutense University of Madrid, Campus de Somosaguas, Madrid, Spain
| | - P Durán-González
- Department of Psychobiology and Methodology on Behavioral Sciences, School of Psychology, Complutense University of Madrid, Campus de Somosaguas, Madrid, Spain
| | - V Echeverry-Alzate
- Department of Psychobiology and Methodology on Behavioral Sciences, School of Psychology, Complutense University of Madrid, Campus de Somosaguas, Madrid, Spain
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Taurine enhances voluntary alcohol intake and promotes anxiolytic-like behaviors in rats. Alcohol 2020; 88:55-63. [PMID: 32698052 DOI: 10.1016/j.alcohol.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022]
Abstract
Taurine is an amino acid usually added to energy drinks. In rodents, acute taurine administration decreases voluntary alcohol intake, and subchronic administration restores different behavioral features impaired by alcohol withdrawal. In the present study, we evaluated the effects of chronic taurine treatment on voluntary alcohol consumption and changes in behavioral parameters in rats. Adult male Wistar rats were divided into two groups and were allowed to choose from two bottles containing 20% alcohol or 0.08% saccharin (vehicle solution), or two bottles containing vehicle, 24 h per day, for 5 weeks. After 3 weeks, rats received 100 mg/kg taurine (TAU) or saline (SAL) intraperitoneally once a day for 2 weeks, and daily alcohol consumption was monitored. On days 22 and 33, rats were tested in the open-field, and on day 34, they were exposed to the light/dark task (LDT). Our results show for the first time that chronic taurine treatment enhanced voluntary alcohol intake and preference in rats, and that these changes were accompanied by an anxiolytic-like phenotype in alcohol-treated rats, possibly due to its synergistic effect with alcohol on the dopaminergic and GABAergic systems.
Collapse
|
6
|
Kirson D, Oleata CS, Roberto M. Taurine Suppression of Central Amygdala GABAergic Inhibitory Signaling via Glycine Receptors Is Disrupted in Alcohol Dependence. Alcohol Clin Exp Res 2019; 44:445-454. [PMID: 31782155 DOI: 10.1111/acer.14252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) increases brain stress systems while suppressing reward system functioning. One expression of stress system recruitment is elevated GABAergic activity in the central amygdala (CeA), which is involved in the excessive drinking seen with AUD. The sulfonic amino acid taurine, a glycine receptor partial agonist, modulates GABAergic activity in the rewarding effects of alcohol. Despite taurine abundance in the amygdala, its role in the dysregulation of GABAergic activity associated with AUD has not been studied. Thus, here, we evaluated the effects of taurine on locally stimulated GABAergic neurotransmission in the CeA of naïve- and alcohol-dependent rats. METHODS We recorded intracellularly from CeA neurons of naïve- and alcohol-dependent rats, quantifying locally evoked GABAA receptor-mediated inhibitory postsynaptic potentials (eIPSP). We examined the effects of taurine and alcohol on CeA eIPSP to characterize potential alcohol dependence-induced changes in the effects of taurine. RESULTS We found that taurine decreased amplitudes of eIPSP in CeA neurons of naïve rats, without affecting the acute alcohol-induced facilitation of GABAergic responses. In CeA neurons from dependent rats, taurine no longer had an effect on eIPSP, but now blocked the ethanol (EtOH)-induced increase in eIPSP amplitude normally seen. Additionally, preapplication of the glycine receptor-specific antagonist strychnine blocked the EtOH-induced increase in eIPSP amplitude in neurons from naïve rats. CONCLUSIONS These data suggest taurine may act to oppose the effects of acute alcohol via the glycine receptor in the CeA of naïve rats, and this modulatory system is altered in the CeA of dependent rats.
Collapse
Affiliation(s)
- Dean Kirson
- Department of Molecular Medicine, and Alcohol Research Center, The Scripps Research Institute, La Jolla, California
| | - Christopher S Oleata
- Department of Molecular Medicine, and Alcohol Research Center, The Scripps Research Institute, La Jolla, California
| | - Marisa Roberto
- Department of Molecular Medicine, and Alcohol Research Center, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
7
|
Söderpalm B, Lidö HH, Ericson M. The Glycine Receptor-A Functionally Important Primary Brain Target of Ethanol. Alcohol Clin Exp Res 2017; 41:1816-1830. [PMID: 28833225 DOI: 10.1111/acer.13483] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022]
Abstract
Identification of ethanol's (EtOH) primary molecular brain targets and determination of their functional role is an ongoing, important quest. Pentameric ligand-gated ion channels, that is, the nicotinic acetylcholine receptor, the γ-aminobutyric acid type A receptor, the 5-hydroxytryptamine3 , and the glycine receptor (GlyR), are such targets. Here, aspects of the structure and function of these receptors and EtOH's interaction with them are briefly reviewed, with special emphasis on the GlyR and the importance of this receptor and its ligands for EtOH pharmacology. It is suggested that GlyRs are involved in (i) the dopamine-activating effect of EtOH, (ii) regulating EtOH intake, and (iii) the relapse preventing effect of acamprosate. Exploration of the GlyR subtypes involved and efforts to develop subtype specific agonists or antagonists may offer new pharmacotherapies for alcohol use disorders.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Helga H Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Taurine supplementation improves economy of movement in the cycle test independently of the detrimental effects of ethanol. Biol Sport 2017; 34:353-359. [PMID: 29472738 PMCID: PMC5819472 DOI: 10.5114/biolsport.2017.69823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/31/2016] [Accepted: 04/12/2017] [Indexed: 01/06/2023] Open
Abstract
Taurine (TA) ingestion has been touted as blunting the deleterious effects of ethanol (ET) ingestion on motor performance. This study investigated the effects of ingestion of 0.6 mL·kg-1 of ET, 6 grams of TA, and ethanol in combination with taurine (ET+TA) on economy of movement (EM) and heart rate (HR). Nine volunteers, five female (22 ± 3 years) and four male (26 ± 5 years), participated in a study that used a counterbalanced experimental design. EM and HR were measured for 6 min while the subjects were pedalling at a fixed load 10% below the anaerobic threshold. The blood alcohol concentration (BAC) was similar between ET and ET+TA treatments at 30 min after ingestion and after exercise (12.3 mmol·L-1 vs. 13.7 mmol·L-1, and 9.7 mmol • L-1 vs 10.9 mmol·L-1, respectively). EM was significantly different among treatments, with lower mL·W-1 following ingestion of TA (-7.1%, p<0.001) than placebo and ET+TA (-2.45%, p=0.001) compared to ET. HR (bpm) was significantly (p<0.05) higher for ET (137 ± 14 bpm) than the other three treatments (placebo = 129 ± 14 bpm; TA = 127 ± 11 bpm; TA+ET = 133 ± 12 and ET = 137 ± 14 bpm). Taurine improved EM when compared to placebo or ET, and reduced HR when compared to ET. The combination of ET+TA also enhanced EM compared to placebo, and reduced HR in comparison to ET alone. Therefore, these findings indicate that taurine improves EM and counteracts ethanol-induced increases in HR during submaximal exercise.
Collapse
|
9
|
Fontana BD, Meinerz DL, Rosa LVC, Mezzomo NJ, Silveira A, Giuliani GS, Quadros VA, Filho GL, Blaser RE, Rosemberg DB. Modulatory action of taurine on ethanol-induced aggressive behavior in zebrafish. Pharmacol Biochem Behav 2016; 141:18-27. [DOI: 10.1016/j.pbb.2015.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/11/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
|
10
|
Fliegel S, Brand I, Spanagel R, Noori HR. Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. In Silico Pharmacol 2013; 1:7. [PMID: 25505652 PMCID: PMC4230485 DOI: 10.1186/2193-9616-1-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In recent years in vivo microdialysis has become an important method in research studies investigating the alterations of neurotransmitters in the extracellular fluid of the brain. Based on the major involvement of glutamate and γ-aminobutyric acid (GABA) in mediating a variety of alcohol effects in the mammalian brain, numerous microdialysis studies have focused on the dynamical behavior of these systems in response to alcohol. METHODS Here we performed multiple meta-analyses on published datasets from the rat brain: (i) we studied basal extracellular concentrations of glutamate and GABA in brain regions that belong to a neurocircuitry involved in neuropsychiatric diseases, especially in alcoholism (Noori et al., Addict Biol 17:827-864, 2012); (ii) we examined the effect of acute ethanol administration on glutamate and GABA levels within this network and (iii) we studied alcohol withdrawal-induced alterations in glutamate and GABA levels within this neurocircuitry. RESULTS For extraction of basal concentrations of these neurotransmitters, datasets of 6932 rats were analyzed and the absolute basal glutamate and GABA levels were estimated for 18 different brain sites. In response to different doses of acute ethanol administration, datasets of 529 rats were analyzed and a non-linear dose response (glutamate and GABA release) relationship was observed in several brain sites. Specifically, glutamate in the nucleus accumbens shows a decreasing logarithmic dose response curve. Finally, regression analysis of 11 published reports employing brain microdialysis experiments in 104 alcohol-dependent rats reveals very consistent augmented extracellular glutamate and GABA levels in various brain sites that correlate with the intensity of the withdrawal response were identified. CONCLUSIONS In summary, our results provide standardized basal values for future experimental and in silico studies on neurotransmitter release in the rat brain and may be helpful to understand the effect of ethanol on neurotransmitter release. Furthermore, this study illustrates the benefit of meta-analyses using the generalization of a wide range of preclinical data.
Collapse
Affiliation(s)
- Sarah Fliegel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Ines Brand
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| |
Collapse
|
11
|
Glycine receptor expression in the forebrain of male AA/ANA rats. Brain Res 2009; 1305 Suppl:S27-36. [PMID: 19781529 DOI: 10.1016/j.brainres.2009.09.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 09/04/2009] [Accepted: 09/15/2009] [Indexed: 11/21/2022]
Abstract
Ethanol is known to directly interact with the glycine receptor (GlyR). GlyRs are membrane proteins and are constituted as either alpha-homomers or alpha-beta heteromers with a subunit stoichiometry of 2 alpha 3 beta. Previous studies by our group have suggested a role for GlyRs and its endogenous ligands glycine and taurine in the mesolimbic dopamine activating and reinforcing effects of ethanol. Here we use quantitative PCR (qPCR) to compare the relative GlyR expression in Alko Alcohol/Non-Alcohol (AA/ANA) rats. These animals have been selectively bred to create distinct populations regarding alcohol consumption and preference, presumably mainly due to genetic differences. The aim of this study was to examine the relative gene expression of GlyR subunits (alpha1-3 and beta) in different brain areas and relate it to alcohol consumption. The hypothesis was that AA/ANA rats are differently disposed to ethanol consumption due to their GlyR set-ups and/or compositions. Results from the present study indicate that alpha2 is the most widely expressed alpha-subunit in the forebrain regions and that the alpha 2 beta-heteromer seems to be the most common subunit composition in this part of the CNS. Despite displaying different drinking behaviours the anticipated differences in mRNA expression were few. However, correlations found between alcohol consumption and/or preference and GlyR expression support a role for GlyRs in alcohol consumption. Tentative differences between AA and ANA animals related to GlyR transmission could therefore lie in, for example, the regulation of the levels of the endogenous ligand(s) for the receptor or in mechanisms downstream to GlyR activation.
Collapse
|
12
|
Javaux C, Joris B, De Witte P. Functional Characteristics of TauA Binding Protein from TauABC Escherichia coli System. Protein J 2007; 26:231-8. [PMID: 17203388 DOI: 10.1007/s10930-006-9064-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although TauA shares few common characteristics with other known periplasmic binding protein, TauA is a putative periplasmic binding protein, part of tauABCD gene cluster involved in sulfonate transport in sulphate starvation condition. This protein was expressed in E. coli BL 21 and purified before to assess its binding functionalities. Measurement of K (d) value (mean 11.3 nM) by binding/dialysis studies revealed high affinity and specificity with taurine and also indicated that TauA possessed a unique binding site for its ligand. Comparisons with other periplasmic binding proteins suggests TauA plays a major role in ABC transport system and could be ideal candidate to serve as taurine catcher in biological fluids.
Collapse
Affiliation(s)
- Cédric Javaux
- Biologie du Comportement, Université catholique de Louvain, Place Croix du Sud 1, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
13
|
Abstract
Recent microdialysis studies showed that ethanol administration increases the release of taurine in various rat brain regions, and it was suggested that this increase in extracellular concentrations of taurine might mediate some of the neurochemical effects of ethanol. Previous drug discrimination studies showed that positive modulators of the GABA(A) receptor consistently substituted for ethanol discriminative stimulus effects. Since taurine is also believed to modulate GABA(A) receptor activity, this study addressed the hypothesis that taurine mediates the discriminative stimulus effects of ethanol due to GABA(A) activation. Male Long-Evans rats were trained to discriminate water from either 1 or 2 g/kg ethanol. In a first experiment, various taurine doses (0-500 mg/kg) were tested to investigate whether taurine substitutes for ethanol. In a second experiment, rats were pretreated with either 500 mg/kg taurine or an equivalent volume of saline before testing for ethanol discrimination with various ethanol doses (0-2.0 g/kg). The results showed that taurine does not substitute for ethanol at any tested doses. In addition, taurine pretreatments failed to modify the dose-response curve for ethanol discrimination. These results demonstrate that taurine is not directly involved in mediating the discriminative stimulus effects of ethanol. It is therefore very unlikely that the brain release of taurine observed after ethanol administration is implicated in the major pharmacological effects of ethanol, i.e. positive modulation of GABA(A) receptor, that mediate its discriminative stimulus effects.
Collapse
Affiliation(s)
- E Quertemont
- Laboratoire de Psychopharmacologie, Université de Liège, Liège, Belgium
| | | |
Collapse
|
14
|
Quertemont E, Devitgh A, De Witte P. Systemic osmotic manipulations modulate ethanol-induced taurine release: a brain microdialysis study. Alcohol 2003; 29:11-9. [PMID: 12657372 DOI: 10.1016/s0741-8329(02)00324-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent microdialysis studies, increased extracellular concentrations of taurine after high ethanol dose administration were identified in various rat brain regions. The mechanisms by which ethanol caused these increases in extracellular taurine concentration remained unclear but could be related to ethanol-induced cell swelling. The aim of the current study was to investigate whether changes in the body osmotic state modulate the effects of ethanol on brain extracellular taurine concentrations. In several groups of rats, brain hypoosmotic or hyperosmotic states were superimposed on acute ethanol (2.0-g/kg) injections, and extracellular taurine concentrations within the nucleus accumbens were assessed by using an intracerebral microdialysis procedure. A hypoosmotic state was obtained by systemic administration of water while hyperosmotic states were induced by intraperitoneal injections of hypertonic saline solutions (1.8% or 3.6% saline). In isoosmotic conditions, ethanol induced an immediate and significant increase in taurine microdialysate content, confirming results of previous studies. However, the effects of ethanol on taurine concentrations were modulated by osmotic manipulations. Hypoosmotic conditions significantly potentiated ethanol-induced taurine release. In contrast, ethanol-induced increases in extracellular taurine levels were attenuated by 1.8% saline injection and totally prevented by 3.6% saline administration. These results strongly argue in favor of a primary role of osmoregulation in ethanol-induced taurine release. Ethanol-induced cell swelling probably activates volume-sensitive channels, and taurine passively diffuses outside the cells along its concentration gradient.
Collapse
Affiliation(s)
- Etienne Quertemont
- Biologie du Comportement, Université catholique de Louvain, Place Croix du Sud 1, 1348 Louvain-la-Neuve, Belgium.
| | | | | |
Collapse
|
15
|
Allen JW, Mutkus LA, Aschner M. Chronic ethanol produces increased taurine transport and efflux in cultured astrocytes. Neurotoxicology 2002; 23:693-700. [PMID: 12520759 DOI: 10.1016/s0161-813x(02)00027-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to ethanol's low potency and low level of toxicity, high amounts of ethanol are consumed to achieve pharmacological effects. Blood levels of ethanol in chronic alcoholics may reach as high as 80-100 mM. We undertook a series of studies to determine if these high levels of ethanol stimulated osmoregulatory processes in cultured astrocytes. The uptake and efflux of taurine, the major osmoregulatory amino acid with potentially neuroprotective actions, was assessed. In addition, uptake and efflux of the excitatory amino acid aspartate was studied since astrocytes are vital in maintaining proper synaptic excitatory amino levels through uptake, metabolism, and efflux. Ethanol exposure for 96 h resulted in increased uptake of both 3H-taurine and 3H-D-asparate. There were no significant changes in transporter function at 24 h consistent with the delayed time course of transporter up-regulation seen during chronic hyperosmotic stress. Following EtOH withdrawal, efflux of preloaded 3H-taurine was significantly increased as compared to controls for up to 1 h. In contrast to the efflux profile seen during hypotonic induced swelling and regulatory volume decrease (RVD), no increased 3H-D-asparate efflux was demonstrated. Cell volume measurements suggest that inhibition of the normal RVD response be involved in the increased taurine release.
Collapse
Affiliation(s)
- Jeffrey W Allen
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
16
|
Quertemont E, Linotte S, de Witte P. Differential taurine responsiveness to ethanol in high- and low-alcohol sensitive rats: a brain microdialysis study. Eur J Pharmacol 2002; 444:143-50. [PMID: 12063074 DOI: 10.1016/s0014-2999(02)01648-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several microdialysis studies have investigated the effects of acute ethanol on extracellular amino acids in various rat brain regions. However, these studies led to conflicting results, suggesting that individual differences between rat strains and lines may play an important role. In the present study, high-alcohol sensitive (HAS) and low-alcohol sensitive (LAS) rats were used to investigate the possible relationship between ethanol sensitivity and the concentrations of extracellular amino acids in the nucleus accumbens. Several groups of HAS and LAS rats were injected with either saline or ethanol (1.0, 2.0 or 3.0 g/kg, i.p.) and the concentrations of amino acids in the nucleus accumbens microdialysates were assayed by electrochemical detection. Acute ethanol induced a dose-dependent increase in extracellular taurine concentrations. However, this increase was significantly reduced at 2.0 and 3.0 g/kg ethanol in HAS rats relative to LAS rats. Since the biological functions of taurine suggest its implication in the reduction of ethanol adverse effects, a higher increase in taurine concentrations may contribute to the lower ethanol sensitivity of LAS rats. Although 2.0 and 3.0 g/kg ethanol did not affect extracellular glutamate concentrations, a significant increase in glutamate was observed after 1.0 g/kg ethanol to HAS rats but not to LAS rats. Such an effect remains unexplained but suggests that discrepancies between the results of previous microdialysate studies may be related to differences in the ethanol sensitivities of various rat strains.
Collapse
Affiliation(s)
- Etienne Quertemont
- Biologie du Comportement, Université catholique de Louvain, Place Croix du Sud 1, 1348 Louvain-La-Neuve, Belgium.
| | | | | |
Collapse
|
17
|
Aschner M, Allen JW, Mutkus LA, Cao C. Ethanol-induced swelling in neonatal rat primary astrocyte cultures. Brain Res 2001; 900:219-26. [PMID: 11334801 DOI: 10.1016/s0006-8993(01)02314-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We tested the hypothesis that astrocytes swell in response to ethanol (EtOH) exposure. The experimental approach consisted of an electrical impedance method designed to measure cell volume. In chronic experiments, EtOH (100 mM) was added to the culture media for 1, 3, or 7 days. The cells were subsequently exposed for 15 min to isotonic buffer (122 mM NaCl) also containing 100 mM EtOH. Subsequently, the cells were washed and exposed to hypotonic buffer (112 mM NaCl) containing 100 mM mannitol. Chronic exposure to EtOH led to a marked increase in cell volume compared with control cells. Specific anion cotransport blockers, such as SITS, DIDS, furosemide, or bumetanide, when simultaneously added with EtOH to hyponatremic buffer, failed to reverse the EtOH-induced effect on swelling. In acute experiments, confluent neonatal rat primary astrocyte cultures were exposed to isotonic media (122 mM NaCl) for 15 min, followed by 45-min exposure to hypotonic media (112 mM NaCl, mimicking in vivo hyponatremic conditions associated with EtOH withdrawal) in the presence of 0-100 mM EtOH. This exposure led to a concentration-dependent increase in cell volume. Combined, these studies suggest that astrocytes exposed to EtOH accumulate compensatory organic solutes to maintain cell volume, and that in response to hyponatremia and EtOH withdrawal their volume increases to a greater extent than in cells exposed to hyponatremia alone. Furthermore, the changes associated with EtOH are osmotic in nature, and they are not reversed by anion cotransport blockers.
Collapse
Affiliation(s)
- M Aschner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA.
| | | | | | | |
Collapse
|
18
|
Narahashi T, Kuriyama K, Illes P, Wirkner K, Fischer W, Muhlberg K, Scheibler P, Allgaier C, Minami K, Lovinger D, Lallemand F, Ward RJ, DeWitte P, Itatsu T, Takei Y, Oide H, Hirose M, Wang XE, Watanabe S, Tateyama M, Ochi R, Sato N. Neuroreceptors and Ion Channels as Targets of Alcohol. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02394.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Quertemont E, Lallemand F, Colombo G, De Witte P. Taurine and ethanol preference: a microdialysis study using Sardinian alcohol-preferring and non-preferring rats. Eur Neuropsychopharmacol 2000; 10:377-83. [PMID: 10974609 DOI: 10.1016/s0924-977x(00)00095-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent intracerebral microdialysis studies of different rat brain regions have shown that an acute ethanol injection induced a rapid dose-dependent increase in taurine microdialysate content during the first 60-min period. In taurine-supplemented rats, a reduced aversion for high ethanol doses was observed in a place conditioning paradigm, suggesting that taurine may be implicated in the regulation of some adverse effects of ethanol. The present study compares the effects of acute ethanol injections (1.0 and 2.0 g/kg, i.p.) on taurine nucleus accumbens microdialysate content in Sardinian ethanol-preferring (sP) and Sardinian ethanol-non-preferring (sNP) rats. While neither saline nor 1.0 g/kg ethanol injections had significant effect on taurine microdialysate concentration, 2.0 g/kg ethanol administration induced a rapid and significant increase in taurine microdialysate content in both sP and sNP rats. However, this ethanol-induced taurine release was significantly reduced in sP rats by comparison to sNP rats. As taurine is suggested to be released by brain cells to modulate different ethanol adverse effects, this lower taurine responsiveness to ethanol in sP rats by comparison to both sNP and Wistar rats may be a relevant indicator of reduced ethanol aversive effects in such animals and therefore be related to their higher alcohol consumption.
Collapse
Affiliation(s)
- E Quertemont
- Biologie du Comportement, Université Catholique de Louvain, Place Croix du Sud 1, 1348 Louvain-La-Neuve, Belgium.
| | | | | | | |
Collapse
|
20
|
McCool BA, Botting SK. Characterization of strychnine-sensitive glycine receptors in acutely isolated adult rat basolateral amygdala neurons. Brain Res 2000; 859:341-51. [PMID: 10719083 DOI: 10.1016/s0006-8993(00)02026-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Large concentrations of the beta-amino acid, taurine, can be found in many forebrain areas such as the basolateral amygdala, a portion of the limbic forebrain intimately associated with the regulation of fear/anxiety-like behaviors. In addition to its cytoprotective and osmoregulatory roles, taurine may also serve as an agonist at GABA(A)- and strychnine-sensitive glycine receptors. In this latter context, the present study demonstrates that application of taurine to acutely isolated neurons from the basolateral amygdala of adult rats causes significant alterations in resting membrane current, as measured by whole-cell patch clamp electrophysiology. Using standard pharmacological approaches, we find that currents gated by concentrations of taurine </=3 mM are predominantly mediated by strychnine-sensitive receptors. Furthermore, these strychnine-sensitive receptors are shown to be pharmacologically and biophysically similar to 'classic' strychnine-sensitive, chloride-conducting glycine receptors expressed in brainstem and spinal cord. While amygdala glycine receptors can be distinguished from GABA(A) receptors expressed by the same neurons, these two chloride channels are functionally expressed at comparable levels. Given that a number of clinically relevant compounds are associated with the regulation of GABA(A) receptors in this brain region, the presence of both strychnine-sensitive glycine receptors and their agonist, taurine, in the basolateral amygdala may suggest an important role for these receptors in the limbic forebrain of adult rats.
Collapse
Affiliation(s)
- B A McCool
- Department of Medical Pharmacology, Texas A&M University System Health Science Center, 368 Reynolds Building, College Station, TX, USA.
| | | |
Collapse
|
21
|
Dahchour A, De Witte P. Ethanol and amino acids in the central nervous system: assessment of the pharmacological actions of acamprosate. Prog Neurobiol 2000; 60:343-62. [PMID: 10670704 DOI: 10.1016/s0301-0082(99)00031-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ethanol induces alterations in the central nervous system by differentially interfering with a number of neurotransmitter systems, although the mechanisms by which such effects are executed are not well understood. The present review therefore, is designed to ascertain the effect of ethanol on both excitatory and inhibitory amino acid neurotransmitters, as well as the sulphonated amino acid taurine, assayed by the microdialysis technique within specific brain regions of rat during different types of alcohol intoxication, acute and chronic, as well as during the withdrawal period. Such an understanding of these pharmacological actions of ethanol on neurotransmitters is essential in order to provide the impetus for the development of appropriate therapeutic intervention to ameliorate the multitude of neurochemical disorders induced by ethanol. In addition the possible mode of action of a new therapeutic drug for the treatment of alcoholism, acamprosate will be discussed. The first part of this review will be limited to studies of the effect of ethanol on both amino acid neurotransmitters and the sulphonated amino acid taurine, a possible neuromodulator. While, the second part will seek to establish the possible mechanism of action of a new therapeutic drug, acamprosate, which is used to combat the effects of ethanol, particularly during the craving period, as well as maintaining abstinence in weaned alcoholics.
Collapse
Affiliation(s)
- A Dahchour
- Université catholique de Louvain, Laboratoire de Biologie du Comportement, Louvain-la-Neuve, Belgium
| | | |
Collapse
|