1
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Ustunel S, Pandya H, Prévôt ME, Pegorin G, Shiralipour F, Paul R, Clements RJ, Khabaz F, Hegmann E. A Molecular Rheology Dynamics Study on 3D Printing of Liquid Crystal Elastomers. Macromol Rapid Commun 2024:e2300717. [PMID: 38445752 DOI: 10.1002/marc.202300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Indexed: 03/07/2024]
Abstract
This work presents a rheological study of a biocompatible and biodegradable liquid crystal elastomer (LCE) ink for three dimensional (3D) printing. These materials have shown that their structural variations have an effect on morphology, mechanical properties, alignment, and their impact on cell response. Within the last decade LCEs are extensively studied as potential printing materials for soft robotics applications, due to the actuation properties that are produced when liquid crystal (LC) moieties are induced through external stimuli. This report utilizes experiments and coarse-grained molecular dynamics to study the macroscopic rheology of LCEs in nonlinear shear flow. Results from the shear flow simulations are in line with the outcomes of these experimental investigations. This work believes the insights from these results can be used to design and print new material with desirable properties necessary for targeted applications.
Collapse
Affiliation(s)
- Senay Ustunel
- Materials Science Graduate Program, Kent State University, Kent, OH, 44240, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
- Department of Biological Sciences, Kent State University, Kent State University, Kent, OH, 44240, USA
| | - Harsh Pandya
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent State University, Kent, OH, 44240, USA
| | - Gisele Pegorin
- Materials Science Graduate Program, Kent State University, Kent, OH, 44240, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
| | - Faeze Shiralipour
- Materials Science Graduate Program, Kent State University, Kent, OH, 44240, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
- Department of Biological Sciences, Kent State University, Kent State University, Kent, OH, 44240, USA
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
| | - Robert J Clements
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
- Biomedical Sciences Program, Kent State University, Kent State University, Kent, OH, 44240, USA
- Brain Health Research Institute, Kent State University, Kent State University, Kent, OH, 44240, USA
| | - Fardin Khabaz
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH, 44325, USA
| | - Elda Hegmann
- Materials Science Graduate Program, Kent State University, Kent, OH, 44240, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
- Department of Biological Sciences, Kent State University, Kent State University, Kent, OH, 44240, USA
- Biomedical Sciences Program, Kent State University, Kent State University, Kent, OH, 44240, USA
- Brain Health Research Institute, Kent State University, Kent State University, Kent, OH, 44240, USA
| |
Collapse
|
3
|
Pinchin NP, Guo H, Meteling H, Deng Z, Priimagi A, Shahsavan H. Liquid Crystal Networks Meet Water: It's Complicated! ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303740. [PMID: 37392137 DOI: 10.1002/adma.202303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Soft robots are composed of compliant materials that facilitate high degrees of freedom, shape-change adaptability, and safer interaction with humans. An attractive choice of material for soft robotics is crosslinked networks of liquid crystal polymers (LCNs), as they are responsive to a wide variety of external stimuli and capable of undergoing fast, programmable, complex shape morphing, which allows for their use in a wide range of soft robotic applications. However, unlike hydrogels, another popular material in soft robotics, LCNs have limited applicability in flooded or aquatic environments. This can be attributed not only to the poor efficiency of common LCN actuation methods underwater but also to the complicated relationship between LCNs and water. In this review, the relationship between water and LCNs is elaborated and the existing body of literature is surveyed where LCNs, both hygroscopic and non-hygroscopic, are utilized in aquatic soft robotic applications. Then the challenges LCNs face in widespread adaptation to aquatic soft robotic applications are discussed and, finally, possible paths forward for their successful use in aquatic environments are envisaged.
Collapse
Affiliation(s)
- Natalie P Pinchin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hongshuang Guo
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Henning Meteling
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Zixuan Deng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
4
|
Ustunel S, Sternbach S, Prévôt ME, Freeman EJ, McDonough JA, Clements RJ, Hegmann E. 3D
Co‐culturing of human neuroblastoma and human oligodendrocytes, emulating native tissue using
3D
porous biodegradable liquid crystal elastomers. J Appl Polym Sci 2023. [DOI: 10.1002/app.53883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Senay Ustunel
- Materials Science Graduate Program Kent State University Kent Ohio USA
- Advanced Materials and Liquid Crystal Institute Kent State University Kent Ohio USA
| | - Sarah Sternbach
- Department of Biological Sciences Kent State University Kent Ohio USA
| | - Marianne E. Prévôt
- Advanced Materials and Liquid Crystal Institute Kent State University Kent Ohio USA
| | - Ernie J. Freeman
- Department of Biological Sciences Kent State University Kent Ohio USA
- Biomedical Sciences Program Kent State University Kent Ohio USA
- Brain Health Research Institute Kent State University Kent Ohio USA
| | - Jennifer A. McDonough
- Department of Biological Sciences Kent State University Kent Ohio USA
- Biomedical Sciences Program Kent State University Kent Ohio USA
- Brain Health Research Institute Kent State University Kent Ohio USA
| | - Robert J. Clements
- Advanced Materials and Liquid Crystal Institute Kent State University Kent Ohio USA
- Department of Biological Sciences Kent State University Kent Ohio USA
- Biomedical Sciences Program Kent State University Kent Ohio USA
- Brain Health Research Institute Kent State University Kent Ohio USA
| | - Elda Hegmann
- Materials Science Graduate Program Kent State University Kent Ohio USA
- Advanced Materials and Liquid Crystal Institute Kent State University Kent Ohio USA
- Department of Biological Sciences Kent State University Kent Ohio USA
- Biomedical Sciences Program Kent State University Kent Ohio USA
- Brain Health Research Institute Kent State University Kent Ohio USA
| |
Collapse
|
5
|
Prévôt ME, Ustunel S, Freychet G, Webb CR, Zhernenkov M, Pindak R, Clements RJ, Hegmann E. Physical Models from Physical Templates Using Biocompatible Liquid Crystal Elastomers as Morphologically Programmable Inks For 3D Printing. Macromol Biosci 2023; 23:e2200343. [PMID: 36415071 DOI: 10.1002/mabi.202200343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Advanced manufacturing has received considerable attention as a tool for the fabrication of cell scaffolds however, finding ideal biocompatible and biodegradable materials that fit the correct parameters for 3D printing and guide cells to align remain a challenge. Herein, a photocrosslinkable smectic-A (Sm-A) liquid crystal elastomer (LCE) designed for 3D printing is presented, that promotes cell proliferation but most importantly induces cell anisotropy. The LCE-based bio-ink allows the 3D duplication of a highly complex brain structure generated from an animal model. Vascular tissue models are generated from fluorescently stained mouse tissue spatially imaged using confocal microscopy and subsequently processed to create a digital 3D model suitable for printing. The 3D structure is reproduced using a Digital Light Processing (DLP) stereolithography (SLA) desktop 3D printer. Synchrotron Small-Angle X-ray Diffraction (SAXD) data reveal a strong alignment of the LCE layering within the struts of the printed 3D scaffold. The resultant anisotropy of the LCE struts is then shown to direct cell growth. This study offers a simple approach to produce model tissues built within hours that promote cellular alignment.
Collapse
Affiliation(s)
- Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Senay Ustunel
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.,Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Guillaume Freychet
- Brookhaven National Laboratory, National Synchrotron Light Source-II, Upton, NY, 11973, USA
| | - Caitlyn R Webb
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.,Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Mikhail Zhernenkov
- Brookhaven National Laboratory, National Synchrotron Light Source-II, Upton, NY, 11973, USA
| | - Ron Pindak
- Brookhaven National Laboratory, National Synchrotron Light Source-II, Upton, NY, 11973, USA
| | - Robert J Clements
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.,Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.,Biomedical Sciences Program, Kent State University, Kent, OH, 44242, USA
| | - Elda Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.,Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.,Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA.,Biomedical Sciences Program, Kent State University, Kent, OH, 44242, USA.,Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
6
|
Uchida J, Soberats B, Gupta M, Kato T. Advanced Functional Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109063. [PMID: 35034382 DOI: 10.1002/adma.202109063] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Liquid crystals have been intensively studied as functional materials. Recently, integration of various disciplines has led to new directions in the design of functional liquid-crystalline materials in the fields of energy, water, photonics, actuation, sensing, and biotechnology. Here, recent advances in functional liquid crystals based on polymers, supramolecular complexes, gels, colloids, and inorganic-based hybrids are reviewed, from design strategies to functionalization of these materials and interfaces. New insights into liquid crystals provided by significant progress in advanced measurements and computational simulations, which enhance new design and functionalization of liquid-crystalline materials, are also discussed.
Collapse
Affiliation(s)
- Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Bartolome Soberats
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Monika Gupta
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
7
|
Synchrotron Microbeam Diffraction Studies on the Alignment within 3D-Printed Smectic-A Liquid Crystal Elastomer Filaments during Extrusion. CRYSTALS 2021. [DOI: 10.3390/cryst11050523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
3D printing of novel and smart materials has received considerable attention due to its applications within biological and medical fields, mostly as they can be used to print complex architectures and particular designs. However, the internal structure during 3D printing can be problematic to resolve. We present here how time-resolved synchrotron microbeam Small-Angle X-ray Diffraction (μ-SAXD) allows us to elucidate the local orientational structure of a liquid crystal elastomer-based printed scaffold. Most reported 3D-printed liquid crystal elastomers are mainly nematic; here, we present a Smectic-A 3D-printed liquid crystal elastomer that has previously been reported to promote cell proliferation and alignment. The data obtained on the 3D-printed filaments will provide insights into the internal structure of the liquid crystal elastomer for the future fabrication of liquid crystal elastomers as responsive and anisotropic 3D cell scaffolds.
Collapse
|