1
|
Wang YT, Zheng SY, Jiang SD, Luo Y, Wu YX, Naranmandakh S, Li YS, Liu SG, Xiao WF. Irisin in degenerative musculoskeletal diseases: Functions in system and potential in therapy. Pharmacol Res 2024; 210:107480. [PMID: 39490914 DOI: 10.1016/j.phrs.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Degenerative musculoskeletal diseases are a class of diseases related to the gradual structural and functional deterioration of muscles, joints, and bones, including osteoarthritis (OA), osteoporosis (OP), sarcopenia (SP), and intervertebral disc degeneration (IDD). As the proportion of aging people around the world increases, degenerative musculoskeletal diseases not only have a multifaceted impact on patients, but also impose a huge burden on the medical industry in various countries. Therefore, it is crucial to find key regulatory factors and potential therapeutic targets. Recent studies have shown that irisin plays an important role in degenerative musculoskeletal diseases, suggesting that it may become a key molecule in the prevention and treatment of degenerative diseases of the musculoskeletal system. Therefore, this review provides a comprehensive description of the release and basic functions of irisin, and summarizes the role of irisin in OA, OP, SP, and IDD from a cellular and tissue perspective, providing comprehensive basis for clinical application. In addition, we summarized the many roles of irisin as a key information molecule in bone-muscle-adipose crosstalk and a regulatory molecule involved in inflammation, senescence, and cell death, and proposed the interesting possibility of irisin in degenerative musculoskeletal diseases.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-de Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shu-Guang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Shen X, Chen Y, Zhang J, Yang M, Huang L, Luo J, Xu L. The association between circulating irisin levels and osteoporosis in women: a systematic review and meta-analysis of observational studies. Front Endocrinol (Lausanne) 2024; 15:1388717. [PMID: 39175571 PMCID: PMC11338845 DOI: 10.3389/fendo.2024.1388717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Objective This systematic review and meta-analysis aimed to investigate the association between circulating irisin levels and osteoporosis in women, exploring irisin's potential role in the pathophysiology and management of osteoporosis. Method We searched PubMed, Embase, Web of Science, Cochrane Library, CNKI, WanFang, and VIP databases up to January 2023. The inclusion criteria were observational studies reporting on circulating irisin levels in women. The standardized mean difference (SMD) and correlation coefficients with a 95% confidence interval (CI) were used as the main effect measures under a random-effects model. Heterogeneity was evaluated using the Cochrane Q statistic and the I2 statistics. Subgroup analysis and univariate meta-regression analysis were performed to identify the sources of heterogeneity. The quality of the included study was assessed by the Newcastle-Ottawa Score. The quality of evidence was evaluated using the GRADE system. Publication bias was assessed using Begg's and Egger's test, and the trim-and-fill method. Sensitivity analysis was performed to assess the stability of the results. Results Fifteen studies with a total of 2856 participants met the criteria. The analysis showed significantly lower irisin levels in postmenopausal osteoporotic women compared to non-osteoporotic controls (SMD = -1.66, 95% CI: -2.43 to -0.89, P < 0.0001; I2 = 98%, P < 0.00001) and in postmenopausal individuals with osteoporotic fractures than in non-fractures controls (SMD = -1.25, 95% CI: -2.15 to -0.34, P = 0.007; I2 = 97%, P < 0.00001). Correlation analysis revealed that irisin levels positively correlated with lumbar spine BMD (r = 0.37, 95% CI: 0.18 to 0.54), femoral BMD (r = 0.30, 95% CI: 0.18 to 0.42), and femoral neck BMD (r = 0.31, 95% CI: 0.14 to 0.47) in women. Despite significant heterogeneity, the robustness of the results was supported by using the random effects model and sensitivity analysis. Conclusion The current evidence suggests that lower irisin levels are significantly associated with osteoporosis and fracture in postmenopausal women, suggesting its utility as a potential biomarker for early detection of osteoporosis and therapeutic target. However, further high-quality prospective research controlling for confounding factors is needed to clarify the relationship between irisin levels and osteoporotic outcomes. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023410264.
Collapse
Affiliation(s)
- Xiaoyang Shen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Chen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jing Zhang
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Meina Yang
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Lu Huang
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiaqi Luo
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Dong Y, Yuan H, Ma G, Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci 2024; 81:310. [PMID: 39066929 PMCID: PMC11335237 DOI: 10.1007/s00018-024-05331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.
Collapse
Affiliation(s)
- Yuechao Dong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Parkin RA, Murray AJ. The therapeutic potential of irisin to mitigate the risk of metabolic syndrome in postmenopausal women. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1355922. [PMID: 39040132 PMCID: PMC11260725 DOI: 10.3389/frph.2024.1355922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/03/2024] [Indexed: 07/24/2024] Open
Abstract
Oestradiol withdrawal at menopause predisposes women to metabolic syndrome, a cluster of interrelated conditions including obesity, insulin resistance, dyslipidaemia and hypertension that together confer an increased risk of developing type 2 diabetes mellitus and cardiovascular disease. Hormone replacement therapies are commonly used to treat acute symptoms of the perimenopausal period, and whilst they have been associated with metabolic improvements in many studies, long-term use is considered unviable. Novel approaches are required to mitigate the risk of postmenopausal metabolic syndrome. In 2012, the exercise-inducible myokine irisin was isolated from the skeletal muscle of mice and identified to have anti-obesity and antidiabetic effects in vivo. Irisin is now recognised to exert pleiotropic action on cognitive, bone and metabolic health. There is accumulating evidence from in vitro and in vivo rodent studies that irisin can mitigate each component condition of metabolic syndrome. In postmenopausal women, independent associations have been observed between (a) exercise and plasma irisin concentration and (b) plasma irisin concentration and reduced incidence of metabolic syndrome. To date, however, no study has considered the mechanistic basis by which irisin, whether exercise-induced or exogenously administered, could reduce the incidence or severity of metabolic syndrome in postmenopausal women. This review aims to analyse the literature concerning the metabolic actions of irisin, with a focus on its therapeutic potential for metabolic syndrome driven by a state of oestradiol depletion. It evaluates the practicality of exercise as a therapy and discusses other irisin-based therapeutic strategies that may alleviate postmenopausal metabolic syndrome. Finally, it highlights areas where future research is required to advance knowledge of irisin's biological action such that it could be considered a viable candidate for clinical application.
Collapse
Affiliation(s)
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Falsetti I, Palmini G, Donati S, Aurilia C, Iantomasi T, Brandi ML. Irisin and Its Role in Postmenopausal Osteoporosis and Sarcopenia. Biomedicines 2024; 12:928. [PMID: 38672282 PMCID: PMC11048342 DOI: 10.3390/biomedicines12040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Menopause, an extremely delicate phase in a woman's life, is characterized by a drop in estrogen levels. This decrease has been associated with the onset of several diseases, including postmenopausal osteoporosis and sarcopenia, which often coexist in the same person, leading to an increased risk of fractures, morbidity, and mortality. To date, there are no approved pharmacological treatments for sarcopenia, while not all of those approved for postmenopausal osteoporosis are beneficial to muscles. In recent years, research has focused on the field of myokines, cytokines, or peptides secreted by skeletal muscle fibers following exercise. Among these, irisin has attracted great interest as it possesses myogenic properties but at the same time exerts anabolic effects on bone and could therefore represent the link between muscle and bone. Therefore, irisin could represent a new therapeutic strategy for the treatment of osteoporosis and also serve as a new biomarker of sarcopenia, thus facilitating diagnosis and pharmacological intervention. The purpose of this review is to provide an updated summary of what we know about the role of irisin in postmenopausal osteoporosis and sarcopenia.
Collapse
Affiliation(s)
- Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Gaia Palmini
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (F.I.R.M.O Onlus), 50129 Florence, Italy;
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (F.I.R.M.O Onlus), 50129 Florence, Italy;
| |
Collapse
|
6
|
Karras SN, Koufakis T, Dimakopoulos G, Zisimopoulou E, Mourampetzis P, Manthou E, Karalazou P, Thisiadou K, Tsachouridou O, Zebekakis P, Makedou K, Metallidis S, Kotsa K. Down regulation of the inverse relationship between parathyroid hormone and irisin in male vitamin D-sufficient HIV patients. J Endocrinol Invest 2023; 46:2563-2571. [PMID: 37245160 DOI: 10.1007/s40618-023-02112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE Infection with the human immunodeficiency virus (HIV) predisposes to endocrine disorders, manifesting as a metabolic phenotype that affects the entire adipose-musculoskeletal unit (AMS). The present cross-sectional study aimed to investigate differences in irisin and adiponectin concentrations between people living with HIV and healthy controls, as well as to explore potential correlations between the levels of the aforementioned adipokines and markers of calcium homeostasis. METHODS 46 HIV-infected individuals and 39 healthy controls (all men) were included in the study. Anthropometric data, adipokine levels, 25-hydroxyvitamin D [(25(OH)D)] and parathyroid hormone (PTH) concentrations were evaluated in the two groups. Correlations for the relationship between adiponectin, irisin, and PTH levels were examined. The results were adjusted for several confounders, including 25(OH)D levels, anthropometry, physical activity, bone mineral density, testosterone levels, and exposure to ultraviolet B radiation. RESULTS Mean adiponectin concentrations were significantly lower in the HIV group compared to the control group: 5868 ± 3668 vs 9068 ± 4277 ng/mL, p = 0.011. The same was applicable to irisin concentrations: 8.31 ± 8.17 (HIV) vs 29.27 ± 27.23 (controls) ng/mL, p = 0.013. A statistically significant and negative correlation was observed between irisin and PTH in the control group (r = - 0.591; p = 0.033). In contrast, no significant correlation was observed between PTH and irisin in the HIV group (p = 0.898). CONCLUSION Our results are the first to suggest a possible down regulation of the inverse relationship between PTH and irisin in HIV patients and to highlight that AMS dyshomeostasis could be involved in the development of skeletal and adipose HIV-related morbidities.
Collapse
Affiliation(s)
- S N Karras
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 1st. Kiriakidi Street, 54636, Thessaloniki, Greece
| | - T Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 1st. Kiriakidi Street, 54636, Thessaloniki, Greece
| | - G Dimakopoulos
- BIOSTATS, Epirus Science and Technology Park Campus of the University of Ioannina, Ioannina, Greece
| | - E Zisimopoulou
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 1st. Kiriakidi Street, 54636, Thessaloniki, Greece
| | - P Mourampetzis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 1st. Kiriakidi Street, 54636, Thessaloniki, Greece
| | - E Manthou
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 1st. Kiriakidi Street, 54636, Thessaloniki, Greece
| | - P Karalazou
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - K Thisiadou
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - O Tsachouridou
- Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - P Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 1st. Kiriakidi Street, 54636, Thessaloniki, Greece
- Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - K Makedou
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - S Metallidis
- Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - K Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 1st. Kiriakidi Street, 54636, Thessaloniki, Greece.
| |
Collapse
|
7
|
Storlino G, Dicarlo M, Zerlotin R, Pignataro P, Sanesi L, Suriano C, Oranger A, Mori G, Passeri G, Colucci S, Grano M, Colaianni G. Irisin Protects against Loss of Trabecular Bone Mass and Strength in Adult Ovariectomized Mice by Stimulating Osteoblast Activity. Int J Mol Sci 2023; 24:9896. [PMID: 37373043 DOI: 10.3390/ijms24129896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Irisin is a peptide secreted by skeletal muscle that plays a major role in bone metabolism. Experiments in mouse models have shown that administration of recombinant irisin prevents disuse-induced bone loss. In this study, we aimed to evaluate the effects of irisin treatment for the prevention of bone loss in the ovariectomized (Ovx) mouse, the animal model commonly used to investigate osteoporosis caused by estrogen deficiency. Micro-Ct analysis conducted on Sham mice (Sham-veh) and Ovx mice treated with vehicle (Ovx-veh) or recombinant irisin (Ovx-irisn) showed bone volume fraction (BV/TV) decreases in femurs (Ovx-veh 1.39± 0.71 vs. Sham-veh 2.84 ± 1.23; p = 0.02) and tibia at both proximal condyles (Ovx-veh 1.97 ± 0.68 vs. Sham-veh 3.48 ± 1.26; p = 0.03) and the subchondral plate (Ovx-veh 6.33 ± 0.36 vs. Sham-veh 8.18 ± 0.41; p = 0.01), which were prevented by treatment with a weekly dose of irisin for 4 weeks. Moreover, histological analysis of trabecular bone showed that irisin increased the number of active osteoblasts per bone perimeter (Ovx-irisin 32.3 ± 3.9 vs. Ovx-veh 23.5 ± 3.6; p = 0.01), while decreasing osteoclasts (Ovx-irisin 7.6 ± 2.4 vs. Ovx-veh 12.9 ± 3.04; p = 0.05). The possible mechanism by which irisin enhances osteoblast activity in Ovx mice is upregulation of the transcription factor Atf4, one of the key markers of osteoblast differentiation, and osteoprotegerin, thereby inhibiting osteoclast formation.
Collapse
Affiliation(s)
- Giuseppina Storlino
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Manuela Dicarlo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Patrizia Pignataro
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Lorenzo Sanesi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Clelia Suriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Angela Oranger
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Giovanni Passeri
- Unit of Clinica e Terapia Medica, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Silvia Colucci
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| |
Collapse
|
8
|
Ariano A, Posa F, Storlino G, Mori G. Molecules Inducing Dental Stem Cells Differentiation and Bone Regeneration: State of the Art. Int J Mol Sci 2023; 24:9897. [PMID: 37373044 DOI: 10.3390/ijms24129897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Teeth include mesenchymal stem cells (MSCs), which are multipotent cells that promote tooth growth and repair. Dental tissues, specifically the dental pulp and the dental bud, constitute a relevant source of multipotent stem cells, known as dental-derived stem cells (d-DSCs): dental pulp stem cells (DPSCs) and dental bud stem cells (DBSCs). Cell treatment with bone-associated factors and stimulation with small molecule compounds are, among the available methods, the ones who show excellent advantages promoting stem cell differentiation and osteogenesis. Recently, attention has been paid to studies on natural and non-natural compounds. Many fruits, vegetables, and some drugs contain molecules that can enhance MSC osteogenic differentiation and therefore bone formation. The purpose of this review is to examine research work over the past 10 years that has investigated two different types of MSCs from dental tissues that are attractive targets for bone tissue engineering: DPSCs and DBSCs. The reconstruction of bone defects, in fact, is still a challenge and therefore more research is needed; the articles reviewed are meant to identify compounds useful to stimulate d-DSC proliferation and osteogenic differentiation. We only consider the results of the research which is encouraging, assuming that the mentioned compounds are of some importance for bone regeneration.
Collapse
Affiliation(s)
- Anastasia Ariano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Giuseppina Storlino
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
9
|
Irisin and Bone in Sickness and in Health: A Narrative Review of the Literature. J Clin Med 2022; 11:jcm11226863. [PMID: 36431340 PMCID: PMC9699623 DOI: 10.3390/jcm11226863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Irisin is a hormone-like myokine produced by the skeletal muscle in response to exercise. Upon its release into the circulation, it is involved in the browning process and thermogenesis, but recent evidence indicates that this myokine could also regulate the functions of osteoblasts, osteoclasts, and osteocytes. Most human studies have reported that serum irisin levels decrease with age and in conditions involving bone diseases, including both primary and secondary osteoporosis. However, it should be emphasized that recent findings have called into question the importance of circulating irisin, as well as the validity and reproducibility of current methods of irisin measurement. In this review, we summarize data pertaining to the role of irisin in the bone homeostasis of healthy children and adults, as well as in the context of primary and secondary osteoporosis. Additional research is required to address methodological issues, and functional studies are required to clarify whether muscle and bone damage per se affect circulating levels of irisin or whether the modulation of this myokine is caused by the inherent mechanisms of underlying diseases, such as genetic or inflammatory causes. These investigations would shed further light on the effects of irisin on bone homeostasis and bone disease.
Collapse
|
10
|
Liu S, Cui F, Ning K, Wang Z, Fu P, Wang D, Xu H. Role of irisin in physiology and pathology. Front Endocrinol (Lausanne) 2022; 13:962968. [PMID: 36225200 PMCID: PMC9549367 DOI: 10.3389/fendo.2022.962968] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 01/10/2023] Open
Abstract
Irisin, out-membrane part of fibronectin type III domain-containing 5 protein (FNDC5), was activated by Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) during physical exercise in skeletal muscle tissues. Most studies have reported that the concentration of irisin is highly associated with health status. For instance, the level of irisin is significantly lower in patients with obesity, osteoporosis/fractures, muscle atrophy, Alzheimer's disease, and cardiovascular diseases (CVDs) but higher in patients with cancer. Irisin can bind to its receptor integrin αV/β5 to induce browning of white fat, maintain glucose stability, keep bone homeostasis, and alleviate cardiac injury. However, it is unclear whether it works by directly binding to its receptors to regulate muscle regeneration, promote neurogenesis, keep liver glucose homeostasis, and inhibit cancer development. Supplementation of recombinant irisin or exercise-activated irisin might be a successful strategy to fight obesity, osteoporosis, muscle atrophy, liver injury, and CVDs in one go. Here, we summarize the publications of FNDC5/irisin from PubMed/Medline, Scopus, and Web of Science until March 2022, and we review the role of FNDC5/irisin in physiology and pathology.
Collapse
Affiliation(s)
- Shiqiang Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Fengqi Cui
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Kaiting Ning
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Zhen Wang
- Xi’an International Medical Center Hospital Affiliated to Northwest University, Xi’an, China
| | - Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi’an, China
| | - Dongen Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
11
|
Ning K, Wang Z, Zhang XA. Exercise-induced modulation of myokine irisin in bone and cartilage tissue—Positive effects on osteoarthritis: A narrative review. Front Aging Neurosci 2022; 14:934406. [PMID: 36062149 PMCID: PMC9439853 DOI: 10.3389/fnagi.2022.934406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a chronic degenerative musculoskeletal disease characterized by pathological changes in joint structures along with the incidence of which increases with age. Exercise is recommended for all clinical treatment guidelines of osteoarthritis, but the exact molecular mechanisms are still unknown. Irisin is a newly discovered myokine released mainly by skeletal muscle in recent years—a biologically active protein capable of being released into the bloodstream as an endocrine factor, the synthesis and secretion of which is specifically induced by exercise-induced muscle contraction. Although the discovery of irisin is relatively recent, its role in affecting bone density and cartilage homeostasis has been reported. Here, we review the production and structural characteristics of irisin and discuss the effects of the different types of exercise involved in the current study on irisin and the role of irisin in anti-aging. In addition, the role of irisin in the regulation of bone mineral density, bone metabolism, and its role in chondrocyte homeostasis and metabolism is reviewed. A series of studies on irisin have provided new insights into the mechanisms of exercise training in improving bone density, resisting cartilage degeneration, and maintaining the overall environmental homeostasis of the joint. These studies further contribute to the understanding of the role of exercise in the fight against osteoarthritis and will provide an important reference and aid in the development of the field of osteoarthritis prevention and treatment.
Collapse
|
12
|
Baran R, Wehland M, Schulz H, Heer M, Infanger M, Grimm D. Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review. Int J Mol Sci 2022; 23:ijms23158650. [PMID: 35955775 PMCID: PMC9369243 DOI: 10.3390/ijms23158650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Space travelers are exposed to microgravity (µg), which induces enhanced bone loss compared to the age-related bone loss on Earth. Microgravity promotes an increased bone turnover, and this obstructs space exploration. This bone loss can be slowed down by exercise on treadmills or resistive apparatus. The objective of this systematic review is to provide a current overview of the state of the art of the field of bone loss in space and possible treatment options thereof. A total of 482 unique studies were searched through PubMed and Scopus, and 37 studies met the eligibility criteria. The studies showed that, despite increased bone formation during µg, the increase in bone resorption was greater. Different types of exercise and pharmacological treatments with bisphosphonates, RANKL antibody (receptor activator of nuclear factor κβ ligand antibody), proteasome inhibitor, pan-caspase inhibitor, and interleukin-6 monoclonal antibody decrease bone resorption and promote bone formation. Additionally, recombinant irisin, cell-free fat extract, cyclic mechanical stretch-treated bone mesenchymal stem cell-derived exosomes, and strontium-containing hydroxyapatite nanoparticles also show some positive effects on bone loss.
Collapse
Affiliation(s)
- Ronni Baran
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark;
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Martina Heer
- IU International University of Applied Sciences, 99084 Erfurt, Germany;
- Institute of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark;
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
13
|
Irisin Ameliorates Intervertebral Disc Degeneration by Activating LATS/YAP/CTGF Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9684062. [PMID: 35915608 PMCID: PMC9338732 DOI: 10.1155/2022/9684062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022]
Abstract
Unbalanced metabolism of an extracellular matrix (ECM) in nucleus pulposus cells (NPCs) is widely acknowledged as the primary cause of intervertebral disc degeneration (IDD). Irisin, a novel myokine, is cleaved from fibronectin type III domain-containing 5 (FNDC5) and has recently been proven to regulate the metabolism of ECM. However, little is known about its potential on NPCs and the development of IDD. Therefore, this study sought to examine the protective effects and molecular mechanism of irisin on IDD in vivo and in vitro. Decreased expression levels of FNDC5 and anabolism markers (COL2A1 and ACAN) but increased levels of catabolism markers (ADAMTS4) were found in degenerative nucleus pulposus (NP) tissues. In a punctured-induced rat IDD model, irisin treatment was found to significantly slow the development of IDD, and in TNF-α-stimulated NPCs, irisin treatment partly reversed the disorder of ECM metabolism. In mechanism, RNA-seq results suggested that irisin treatment affected the Hippo signaling pathway. Further studies revealed that with irisin treatment, the phosphorylation levels of key factors (LATS and YAP) were downregulated, while the expression level of CTGF was upregulated. Moreover, CTGF knockdown partially eliminated the protective effects of irisin on the metabolism of ECM in NPCs, including inhibiting the anabolism and promoting the catabolism. Taken together, this study demonstrated that the expression levels of FNDC5 were decreased in degenerative NP tissues, while irisin treatment promoted the anabolism, inhibited the catabolism of the ECM in NPCs, and delayed the progression of IDD via LATS/YAP/CTGF signaling. These results shed light on the protective actions of irisin on NPCs, leading to the development of a novel therapeutic target for treating IDD.
Collapse
|
14
|
A Bibliometric Analysis of the Literature on Irisin from 2012-2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106153. [PMID: 35627690 PMCID: PMC9141152 DOI: 10.3390/ijerph19106153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022]
Abstract
Irisin is a hormone-like molecule mainly released by skeletal muscles in response to exercise, which is proposed to induce the ‘browning’ of white adipose tissue. Since its identification, irisin was reported to be closely associated with many metabolic diseases, including type 2 diabetes mellitus (T2DM), obesity, cardiovascular disease (CVD), and metabolic bone diseases. In recent years, irisin has attracted increasing research interest, and numerous studies have been published in this field. Thus, it is essential to identify the current research status of irisin and measure research hotspots and possible future trends. In this study, by utilizing two visualization software named CiteSpace and VOSviewer, we analyzed 1510 Web of Science publications on irisin published from 2012 to 2021. Our results show that the number of irisin-related articles published annually has increased significantly. China participates in the most studies, followed by the United States and Turkey. Firat University, Harvard University, and Shandong University are three major institutions with larger numbers of publications. The analysis of keywords co-occurrence indicates that insulin resistance, inflammation, and circulating irisin levels in serum are the research hotspots. Apoptosis, BDNF, and osteoporosis will likely become the focus of future research related to irisin. Overall, this study may provide helpful insights for researchers to understand the current research situation and identify the potential frontiers of irisin.
Collapse
|
15
|
Luo Y, Qiao X, Xu L, Huang G. Irisin: circulating levels in serum and its relation to gonadal axis. Endocrine 2022; 75:663-671. [PMID: 35040046 PMCID: PMC8888466 DOI: 10.1007/s12020-022-02981-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/09/2022] [Indexed: 11/09/2022]
Abstract
Irisin is an exercise-induced myokine/adipokine in mice and humans that plays an important role in 'browning' of white adipose tissue and has shown great potential as a treatment for some metabolic diseases, such as obesity, insulin resistance, and inflammation. The circulating irisin level is reported to be associated with exercise, obesity, diet, diseases, and exposure to different pharmacological agents. Several studies have attempted to characterize the role of irisin in PCOS and other reproductive diseases, but contradictory results have been reported. Our previous study showed that irisin may serve further functions in folliculogenesis and fertility. In this review, we present the current knowledge on the physiology of irisin and its role in gonadal axis. Firstly, we describe irisin circulating levels and speculate on the potential mechanisms involved in irisin secretion and regulation. Then, we focus on the irisin levels in PCOS, and explore the relationships between, BMI, insulin resistance, and hyperandrogenism. Finally, we present the results from animal interventional studies and in vitro experiments to investigate the relationship between irisin and gonadal axis, indicating its novel effects on reproduction and fertility.
Collapse
Affiliation(s)
- Yunyao Luo
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproduction and Genetics Institute, Chongqing Health Center for women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013, China
| | - Xiaoyong Qiao
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China.
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproduction and Genetics Institute, Chongqing Health Center for women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013, China.
| |
Collapse
|
16
|
Wang X, Hu T, Ruan Y, Yao J, Shen H, Xu Y, Zheng B, Zhang Z, Wang J, Tan Q. The Association of Serum Irisin with Bone Mineral Density and Turnover Markers in New-Onset Type 2 Diabetic Patients. Int J Endocrinol 2022; 2022:7808393. [PMID: 35265126 PMCID: PMC8901306 DOI: 10.1155/2022/7808393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Irisin, an exercise-induced myokine and adipocytokine, has been reported to decrease in type 2 diabetic patients. Recently, several research studies indicated that circulating levels were correlated with bone mineral density (BMD). To evaluate bone metabolism, bone turnover markers (BTMs) should be included. However, with respect to newly diagnosed T2DM patients, the relevance of their irisin levels to their BTMs and BMD remains unclear. The investigation of serum irisin levels in patients who have been newly diagnosed with type 2 diabetes and illumination of the relationship between serum irisin levels and those two indices of BMD and BTMs mentioned above are the intention of this cross-sectional study. METHODS 66 new-onset type 2 diabetic patients (T2DM group), together with 82 control subjects (NGT group), were recruited in this study. Serum irisin concentrations and BTMs (including osteocalcin (OC), procollagen type 1 N-terminal propeptide (P1NP), and β-C-terminal telopeptides of type I collagen (β-CTX)) were determined by the enzyme-linked immunosorbent assay (ELISA). Glucose, lipid profile, and insulin were considered as measuring indicators as well. Dual-energy X-ray absorptiometry (DXA) was utilized to evaluate the indicator of BMD. Serum irisin, BTMs, and BMD were compared between diabetic patients and healthy individuals. Pearson and Spearman correlation analyses were applied as well to assess correlations between irisin and BTMs and BMD. Multiple stepwise regression analysis was conducted to identify the independent factors of irisin. ROC curve analyses were carried out for serum irisin prediction for osteoporosis/osteopenia (OP). RESULTS The serum levels of irisin, procollagen type 1, intact N-terminal propeptide (P1NP), and osteocalcin (OC) were evidently lower in T2DM subjects than in NGT subjects (10.90 ± 1.88 vs .11.69 ± 2.06 ng/mL, P < 0.05; 36.42(25.68,51.70) vs. 44.52(35.73,58.05)ng/ml, P < 0.05; 16.15(12.40,21.66) vs. 18.70(15.56, 23.22)ng/ml, P < 0.05). Among patients with T2DM, the circulating irisin level of those with OP was lower than that of normal BMD (9.98 ± 2.09 vs. 11.39 ± 1.57 ng/ml, P < 0.01); irisin had a negative correlation with β-C-terminal telopeptides of type I collagen (β-CTX) (r = -0.496, P < 0.001) and came back unrelated to Lumbar BMD; Lumbar BMD was negatively relevant to OC (r = -0.274, P < 0.05) and β-CTX (r = -0.410, P < 0.01). Multiple linear regression analyses of stepwise models implied that TG, LDL-C, and β-CTX were independently associated with serum irisin concentrations (P < 0.01 or P < 0.05). CONCLUSION Serum irisin level was declined in patients with type 2 diabetes diagnosed in the near term and had a certain association with bone turnover markers. It is suggested to consider irisin as a potential biomarker of bone metabolic disorder in T2DM patients with the initial diagnosis.
Collapse
Affiliation(s)
- Xiujing Wang
- Department of Endocrinology, The 903rd Hospital of PLA, Hangzhou, China
| | - Tianxiao Hu
- Department of Endocrinology, The 903rd Hospital of PLA, Hangzhou, China
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Ruan
- Department of Endocrinology, The 903rd Hospital of PLA, Hangzhou, China
| | - Jiaqi Yao
- Department of Endocrinology, The 903rd Hospital of PLA, Hangzhou, China
| | - Huiling Shen
- Department of Endocrinology, The 903rd Hospital of PLA, Hangzhou, China
| | - Yao Xu
- Department of Endocrinology, The 903rd Hospital of PLA, Hangzhou, China
| | - Bojing Zheng
- Department of Endocrinology, The 903rd Hospital of PLA, Hangzhou, China
| | - Zhengying Zhang
- Department of Endocrinology, The 903rd Hospital of PLA, Hangzhou, China
| | - Jing Wang
- Department of Endocrinology, The 903rd Hospital of PLA, Hangzhou, China
| | - Qingying Tan
- Department of Endocrinology, The 903rd Hospital of PLA, Hangzhou, China
| |
Collapse
|
17
|
Pereira LJ, Andrade EF, Barroso LC, Lima RRD, Macari S, Paiva SM, Silva TA. Irisin effects on bone: systematic review with meta-analysis of preclinical studies and prospects for oral health. Braz Oral Res 2022; 36:e055. [DOI: 10.1590/1807-3107bor-2022.vol36.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
|
18
|
Liu K, Jing P, Liu Z, Wang Y, Han Z, Wang Y, Zheng Z, Wu Y, Wang T, Li Y, Zhang H, Wang L. Serum levels of irisin in postmenopausal women with osteoporotic hip fractures. Cytokine 2021; 148:155708. [PMID: 34560610 DOI: 10.1016/j.cyto.2021.155708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the role of circulating serum levels of irisin in predicting hip fracture occurrence in a cohort of Chinese postmenopausal women. METHODS This was a cross-section and case-control study. Four hundred and thirty postmenopausal women aged 50-90 years were included (215 with hip fractures and 215 age-matched cases without fracture). Clinical features, bone mineral density (BMD) and serum biomarkers levels including irisin were measured at baseline. Cox proportional hazards regression analysis was used to assess the correlation between irisin and fracture risk. RESULTS The mean age of those participants was 68.7 (S.D. 11.7) and 53.0% were order than 65. The irisin serum levels were positively related to total body BMD and total hip BMD. Women with hip fractures showed lower mean serum levels of irisin compared normal control women (457.6 ± 172.6 ng/ml vs. 602.2 ng/ml; P < 0.001). The irisin levels in third and fourth quartiles were associated with the risk of hip fracture (the lowest quartile of irisin levels as the reference), and risk of fracture reduced by 67% (hazard ratio [HR] = 0.33; 95 %CI: 0.18-0.54; P < 0.001) and 84% (HR = 0.16; 95 %CI: 0.09-0.29; P < 0.001). The irisin levels in third and fourth quartiles were also associated with the risk of osteoporosis, and risk of fracture reduced by 55% (HR = 0.45; 95 %CI: 0.21-0.63; P = 0.003) and 73% (HR = 0.27; 95 %CI: 0.15-0.47; P < 0.001). CONCLUSION Decreased serum levels of circulating irisin are associated with high risk of osteoporosis-related hip fractures and osteoporosis.
Collapse
Affiliation(s)
- Kai Liu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengwei Jing
- Articulation Surgery and Sport Medicine Ward, Yantai Yuhuangding Hospital, Yan Tai, China
| | - Zehan Liu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Wang
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Yan Tai, China
| | - Zhu Han
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youqiang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhirui Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Wu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Wang
- Articulation Surgery and Sport Medicine Ward, Yantai Yuhuangding Hospital, Yan Tai, China
| | - Yuhui Li
- Articulation Surgery and Sport Medicine Ward, Yantai Yuhuangding Hospital, Yan Tai, China
| | - Hongying Zhang
- Department of Cardiology, Heilongjiang Forestry General Hospital, Harbin, China.
| | - Lichun Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
19
|
Kornel A, Den Hartogh DJ, Klentrou P, Tsiani E. Role of the Myokine Irisin on Bone Homeostasis: Review of the Current Evidence. Int J Mol Sci 2021; 22:9136. [PMID: 34502045 PMCID: PMC8430535 DOI: 10.3390/ijms22179136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a highly dynamic tissue that is constantly adapting to micro-changes to facilitate movement. When the balance between bone building and resorption shifts more towards bone resorption, the result is reduced bone density and mineralization, as seen in osteoporosis or osteopenia. Current treatment strategies aimed to improve bone homeostasis and turnover are lacking in efficacy, resulting in the search for new preventative and nutraceutical treatment options. The myokine irisin, since its discovery in 2012, has been shown to play an important role in many tissues including muscle, adipose, and bone. Evidence indicate that irisin is associated with increased bone formation and decreased bone resorption, leading to reduced risk of osteoporosis in post-menopausal women. In addition, low serum irisin levels have been found in individuals with osteoporosis and osteopenia. Irisin targets key signaling proteins, promoting osteoblastogenesis and reducing osteoclastogenesis. The present review summarizes the existing evidence regarding the effects of irisin on bone homeostasis.
Collapse
Affiliation(s)
- Amanda Kornel
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.K.); (D.J.D.H.)
| | - Danja J. Den Hartogh
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.K.); (D.J.D.H.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Panagiota Klentrou
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.K.); (D.J.D.H.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
| |
Collapse
|
20
|
Peng H, Hua Z, Yang H, Wang J. [Research progress on mechanism of myokines regulating bone tissue cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:923-929. [PMID: 34308604 DOI: 10.7507/1002-1892.202012062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the effects and mechanisms of various myokines secreted by skeletal muscle on various bone tissue cells. Methods Literature related to myokines and their regulation of bone tissue cells was reviewed and analyzed comprehensively in recent years. Results Bone and skeletal muscle are important members of the motor system, and they are closely related in anatomy, genetics, and physiopathology. In recent years, it has been found that skeletal muscle can secrete a variety of myokines to regulate bone marrow mesenchymal stem cells, osteoblasts, osteoclasts, and bone cells; these factors mutual crosstalk between myoskeletal unit, contact each other and influence each other, forming a complex myoskeletal micro-environment, and to some extent, it has a positive impact on bone repair and reconstruction. Conclusion Myokines are potential targets for the dynamic balance of bone tissue cells. In-depth study of its mechanism is helpful to the prevention and treatment of myoskeletal diseases.
Collapse
Affiliation(s)
- Hongcheng Peng
- Nanjing University of Traditional Chinese Medicine, Nanjing Jiangsu, 210023, P.R.China
| | - Zhen Hua
- Department of Orthopedics and Traumatology, Wuxi Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Wuxi Jiangsu, 214071, P.R.China
| | - Huilin Yang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215006, P.R.China
| | - Jianwei Wang
- Department of Orthopedics and Traumatology, Wuxi Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Wuxi Jiangsu, 214071, P.R.China
| |
Collapse
|
21
|
Maak S, Norheim F, Drevon CA, Erickson HP. Progress and Challenges in the Biology of FNDC5 and Irisin. Endocr Rev 2021; 42:436-456. [PMID: 33493316 PMCID: PMC8284618 DOI: 10.1210/endrev/bnab003] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 01/10/2023]
Abstract
In 2002, a transmembrane protein-now known as FNDC5-was discovered and shown to be expressed in skeletal muscle, heart, and brain. It was virtually ignored for 10 years, until a study in 2012 proposed that, in response to exercise, the ectodomain of skeletal muscle FNDC5 was cleaved, traveled to white adipose tissue, and induced browning. The wasted energy of this browning raised the possibility that this myokine, named irisin, might mediate some beneficial effects of exercise. Since then, more than 1000 papers have been published exploring the roles of irisin. A major interest has been on adipose tissue and metabolism, following up the major proposal from 2012. Many studies correlating plasma irisin levels with physiological conditions have been questioned for using flawed assays for irisin concentration. However, experiments altering irisin levels by injecting recombinant irisin or by gene knockout are more promising. Recent discoveries have suggested potential roles of irisin in bone remodeling and in the brain, with effects potentially related to Alzheimer's disease. We discuss some discrepancies between research groups and the mechanisms that are yet to be determined. Some important questions raised in the initial discovery of irisin, such as the role of the mutant start codon of human FNDC5 and the mechanism of ectodomain cleavage, remain to be answered. Apart from these specific questions, a promising new tool has been developed-mice with a global or tissue-specific knockout of FNDC5. In this review, we critically examine the current knowledge and delineate potential solutions to resolve existing ambiguities.
Collapse
Affiliation(s)
- Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
22
|
Posa F, Colaianni G, Di Cosola M, Dicarlo M, Gaccione F, Colucci S, Grano M, Mori G. The Myokine Irisin Promotes Osteogenic Differentiation of Dental Bud-Derived MSCs. BIOLOGY 2021; 10:biology10040295. [PMID: 33916859 PMCID: PMC8065887 DOI: 10.3390/biology10040295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Irisin is a recently discovered protein, mainly produced in the muscle tissue, whose action is proving effective in many other tissues. The crosstalk between muscle and bone has been long since demonstrated, and physical activity has shown to have an impressive positive effect in both tissues. Irisin production increases with exercising and drops with sedentariness and aging, indicating that the molecule is involved in sarcopenia and in bone mass reduction. Although skeleton is target of irisin, its mechanism of action on bone cells has not yet been completely elucidated. The aim of this work is to analyze the effect of irisin on osteoblast differentiation; to this purpose, we used a stem cell model reproducing the osteoblastogenesis and the bone-forming processes. We performed an in vitro study exploring the main osteoblast markers in the presence of irisin. We found that irisin has an impressive effect on the most peculiar osteoblast feature: the bone mineral matrix secretion process. Moreover, irisin demonstrated an inductive effect on osteoblast osteocalcin production. Both results suggest a stimulating effect of irisin in bone formation. The association we observed between irisin addition and osteoblast osteocalcin production should be further investigated. Abstract The myokine irisin, well known for its anabolic effect on bone tissue, has been demonstrated to positively act on osteoblastic differentiation processes in vitro. Mesenchymal stem cells (MSCs) have captured great attention in precision medicine and translational research for several decades due to their differentiation capacity, potent immunomodulatory properties, and their ability to be easily cultured and manipulated. Dental bud stem cells (DBSCs) are MSCs, isolated from dental tissues, that can effectively undergo osteoblastic differentiation. In this study, we analyzed, for the first time, the effects of irisin on DBSC osteogenic differentiation in vitro. Our results indicated that DBSCs were responsive to irisin, showed an enhanced expression of osteocalcin (OCN), a late marker of osteoblast differentiation, and displayed a greater mineral matrix deposition. These findings lead to deepening the mechanism of action of this promising molecule, as part of osteoblastogenesis process. Considering the in vivo studies of the effects of irisin on skeleton, irisin could improve bone tissue metabolism in MSC regenerative procedures.
Collapse
Affiliation(s)
- Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy; (F.P.); (M.D.C.)
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.C.); (M.D.); (F.G.); (M.G.)
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy; (F.P.); (M.D.C.)
| | - Manuela Dicarlo
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.C.); (M.D.); (F.G.); (M.G.)
| | - Francesco Gaccione
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.C.); (M.D.); (F.G.); (M.G.)
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy;
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.C.); (M.D.); (F.G.); (M.G.)
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy; (F.P.); (M.D.C.)
- Correspondence:
| |
Collapse
|
23
|
Lower Serum Irisin Levels Are Associated with Increased Osteoporosis and Oxidative Stress in Postmenopausal. Rep Biochem Mol Biol 2021; 10:13-19. [PMID: 34277864 DOI: 10.52547/rbmb.10.1.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 12/29/2022]
Abstract
Background Irisin as an exercise-induced myokine was proposed to improve bone health. This study investigated the role of serum irisin (s-irisin) in patients with osteoporosis (OP) through correlating to most biological bone markers and oxidative stress. Methods A cross-sectional study recruited an eligible 175 postmenopausal women at Al-Hussien Teaching Hospital, Iraq. They were scanned by DEXA and stratified into two groups based on T-score; the first 95 patients as control group (GI) with -1 ≤ T-score and the second 80 patients as cases group (GII) with T-score ≤ -2.5. Demographic criteria were age, bone mineral density (BMD, g/cm2) and T-score. Serum irisin, total serum calcium (s-calcium), serum inorganic phosphate (s-phosphate), serum alkaline phosphatase (s-ALP), serum 25 [OH] vitamin D, the serum parathyroid hormone (s-PTH), serum Carboxy terminal collagen crosslinks (CTx), serum procollagen type I C-termidnal peptide (s-PICP), serum malondialdehyde (s-MDA) and serum superoxide dismutase (s-SOD) were collected from blood samples. Results Serum irisin were 31.84 ± 2.65 vs. 20.88 ± 2.71 ng/mL for control and trial groups, respectively. Lower levels of BMD, T-score, 25 [OH] vitamin D, and s-irisin along with a higher serum levels of PTH, CTx, PICP, MDA and SOD were observed in patients with osteoporosis. All parameters were statistically meaningful upon correlation (p< 0.0001), except age and s-calcium (p= 0.0088 and p= 0.187, respectively). Conclusion The results showed that, a significantly lower serum irisin levels among osteoporosis women, was intimately correlated to most bone turnover markers and it can be considered as encouraging results for clinical application in prediction and treatment of osteoporosis.
Collapse
|
24
|
Zhao R, Zhou Y, Li J, Lin J, Cui W, Peng Y, Bu W. Irisin Regulating Skeletal Response to Endurance Exercise in Ovariectomized Mice by Promoting Akt/β-Catenin Pathway. Front Physiol 2021; 12:639066. [PMID: 33841178 PMCID: PMC8027323 DOI: 10.3389/fphys.2021.639066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose: Thought irisin is recognized as a pivotal modulator for bone formation, its role in regulating skeletal response to exercise training remains unknown. Therefore, we aimed to determine the change of irisin in response to 8-week exercise training and its role in regulating the effects of exercise on bone loss in ovariectomized (Ovx) mice. Methods: Forty 3-month old female C57BL/6 mic were randomly allocated into four groups: (1) Sham-operated (Sham); (2) ovariectomized; (3) Ovx plus 8-week downhill running exercise (Ex); (4) Ovx plus exercise and received twice weekly injection of cyclo RGDyk protein (a putative anti-irisin receptor agents) (ExRg). Results: Ex group showed enhanced cortical and trabecular volumetric bone mineral density (vBMD) (p < 0.05), improved bone microarchitecture, and increased intensity of alkaline phosphatase positive (ALP+) cells compared with Ovx group. However, cyclo RGDyk administration weakened the exercise-related improvement of vBMD, BV/TV, and ALP intensity in bone. Serum estradiol, irisin, and bone alkaline phosphatase were higher, whereas circulating tartrate-resistant acid phosphatase was lower in Ex group compared with Ovx group (p < 0.05). Exercise promoted mRNA expression of fibronectin type III domain-containing protein 5 (FNDC5), Akt and β-catenin, and enhanced protein levels of FNDC5, the ratio of phosphorylated Akt (p-Akt) to Akt, and β-catenin (p < 0.05). When irisin pathways were blocked with cyclo RGDyk, increment of Akt, p-Akt/Akt, and β-catenin in Ex mice were attenuated. Conclusion: It is suggested that irisin plays a potential role in regulating skeletal response to exercise partly through its interaction with Akt/β-catenin pathways.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Yalan Zhou
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Jinqiao Li
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Junjie Lin
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Wei Cui
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Yan Peng
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Wenqian Bu
- College of Physical Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
The effect of Irisin on bone cells in vivo and in vitro. Biochem Soc Trans 2021; 49:477-484. [PMID: 33449117 DOI: 10.1042/bst20200978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
The myokine Irisin, produced during physical exercise, has an anabolic effect on bone, both in vitro and in vivo. Very recently, using a controlled in vitro 3D cell model to mimic the bone microenvironment aboard the International Space Station, it has been shown that Irisin treatment in microgravity prevents the down-regulation of the transcription factors Atf4, Runx2 and Osterix, as well as Collagen I and Osteoprotegerin proteins, crucial for osteoblast differentiation in physiologic conditions. Irisin action has also been investigated in human subjects, in which it correlates with bone health status, supporting its physiological importance also in human bone, both in healthy subjects and in patients suffering from diseases related to bone metabolism, such as hyperparathyroidism and type 1 diabetes. Low levels of circulating Irisin have been found in post-menopausal women affected by hyperparathyroidism. Furthermore, Irisin is positively correlated with bone strength in athletes and bone mineral density in football players. Moreover, in healthy children, Irisin is positively associated with bone mineral status and in children with type 1 diabetes, Irisin is positively correlated with improved glycemic control and skeletal health. In this review, we will focus on recent findings about Irisin action on microgravity induced bone loss and on osteocyte activity and survival through its αV/β5 integrin receptor.
Collapse
|
26
|
Luo Y, Qiao X, Ma Y, Deng H, Xu CC, Xu L. Disordered metabolism in mice lacking irisin. Sci Rep 2020; 10:17368. [PMID: 33060792 PMCID: PMC7567109 DOI: 10.1038/s41598-020-74588-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
Irisin is a product of fibronectin type III domain-containing protein (Fndc5) and is involved in the regulation of adipokine secretion and the differentiation of osteoblasts and osteoclasts. In this study, we aimed to determine whether irisin lacking affects glucose/lipid and bone metabolism. We knocked out the Fndc5 gene to generate irisin-lacking mice. Remarkable, irisin lacking was related to poor 'browning response', with a bigger size of the intraperitoneal white adipose cell and decreased a number of brown adipose cells in brown adipose of interscapular tissue. The irisin lacking mice had hyperlipidemia and insulin resistance, reduced HDL-cholesterol level, increased LDL-cholesterol level, and decreased insulin sensitivity. The lacking of irisin was associated with reduced bone strength and bone mass in mice. The increased number of osteoclasts and higher expression of RANKL indicated increased bone resorption in irisin lacking mice. The level of IL-6 and TNF-α also increased in irisin lacking mice. The results showed that irisin lacking was related to decreased 'browning response', glucose/lipid metabolic derangement, and reduced bone mass with increased bone resorption. Further studies are needed to confirm these initial observations and explore the mechanisms underlying the effects of irisin on glucose/lipid and bone metabolism.
Collapse
Affiliation(s)
- Yunyao Luo
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, #20 Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaoyong Qiao
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, #20 Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yaxian Ma
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, #20 Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hongxia Deng
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, #20 Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
- The Joint Laboratory for Reproductive Medicine of Sichuan University, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Charles C Xu
- College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, #20 Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
- The Joint Laboratory for Reproductive Medicine of Sichuan University, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China.
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|