1
|
De la Fuente-Muñoz M, De la Fuente-Fernández M, Román-Carmena M, Amor S, Iglesias-de la Cruz MC, García-Laínez G, Llopis S, Martorell P, Verdú D, Serna E, García-Villalón ÁL, Guilera SI, Inarejos-García AM, Granado M. Supplementation with a New Standardized Extract of Green and Black Tea Exerts Antiadipogenic Effects and Prevents Insulin Resistance in Mice with Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24108521. [PMID: 37239868 DOI: 10.3390/ijms24108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Insulin resistance is one of the main characteristics of metabolic syndrome (MetS) and the main cause of the development of type II diabetes. The high prevalence of this syndrome in recent decades has made it necessary to search for preventive and therapeutic agents, ideally of natural origin, with fewer side effects than conventional pharmacological treatments. Tea is widely known for its medicinal properties, including beneficial effects on weight management and insulin resistance. The aim of this study was to analyze whether a standardized extract of green and black tea (ADM® Complex Tea Extract (CTE)) prevents the development of insulin resistance in mice with MetS. For this purpose, C57BL6/J mice were fed for 20 weeks with a standard diet (Chow), a diet with 56% kcal from fat and sugar (HFHS) or an HFHS diet supplemented with 1.6% CTE. CTE supplementation reduced body weight gain, adiposity and circulating leptin levels. Likewise, CTE also exerted lipolytic and antiadipogenic effects in 3T3-L1 adipocyte cultures and in the C. elegans model. Regarding insulin resistance, CTE supplementation significantly increased plasma adiponectin concentrations and reduced the circulating levels of insulin and the HOMA-IR. Incubation of liver, gastrocnemius muscle and retroperitoneal adipose tissue explants with insulin increased the pAkt/Akt ratio in mice fed with Chow and HFHS + CTE but not in those fed only with HFHS. The greater activation of the PI3K/Akt pathway in response to insulin in mice supplemented with CTE was associated with a decrease in the expression of the proinflammatory markers Mcp-1, IL-6, IL-1β or Tnf-α and with an overexpression of the antioxidant enzymes Sod-1, Gpx-3, Ho-1 and Gsr in these tissues. Moreover, in skeletal muscle, mice treated with CTE showed increased mRNA levels of the aryl hydrocarbon receptor (Ahr), Arnt and Nrf2, suggesting that the CTE's insulin-sensitizing effects could be the result of the activation of this pathway. In conclusion, supplementation with the standardized extract of green and black tea CTE reduces body weight gain, exerts lipolytic and antiadipogenic effects and reduces insulin resistance in mice with MetS through its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Mario De la Fuente-Muñoz
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | - Marta Román-Carmena
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Sara Amor
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | - Guillermo García-Laínez
- Nutrition Archer Daniels Midland (ADM) Health & Wellness, Biopolis S. L. Parc Cientific, Universitat de València, 46980 Paterna, Spain
| | - Silvia Llopis
- Nutrition Archer Daniels Midland (ADM) Health & Wellness, Biopolis S. L. Parc Cientific, Universitat de València, 46980 Paterna, Spain
| | - Patricia Martorell
- Nutrition Archer Daniels Midland (ADM) Health & Wellness, Biopolis S. L. Parc Cientific, Universitat de València, 46980 Paterna, Spain
| | - David Verdú
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Eva Serna
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
| | - Ángel L García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Sonia I Guilera
- R&D Department of Functional Extracts, ADM® Valencia, 46740 Carcaixent, Spain
| | | | - Miriam Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
The Effects of 12 Weeks of Concurrent and Combined Training on Inflammatory Markers, Muscular Performance, and Body Composition in Middle-Aged Overweight and Obese Males. Nutrients 2023; 15:nu15061482. [PMID: 36986212 PMCID: PMC10056532 DOI: 10.3390/nu15061482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Aim: Previous studies have focused on the order of endurance and resistance training when performing concurrent training (CT). However, no study has compared the effects of combined training with CT orders on inflammatory markers, muscular performance, and body composition in overweight and obese males. Therefore, the purpose of the current study was to compare the effects of 12 weeks of CT and combined training on the aforementioned markers in overweight and obese males. Methods: Sixty middle-aged overweight and obese males (age 51 ± 4 years) were randomly assigned into one of four groups: endurance followed by resistance training (ER; n = 15), resistance followed by endurance training (RE; n = 15), combined resistance and endurance training (COM), or control (CON; n = 15). Anthropometric, body composition, inflammatory marker, and muscular performance measurements were collected at baseline and after 12 weeks. Results: FFM remained unchanged in all three intervention groups (p > 0.05). Reductions in FM in the RE group were significantly greater than in CON (p = 0.038). The increases in serum concentrations of adiponectin in the RE group were significantly greater than in all other groups (p < 0.05). Increased serum concentrations of CTRP3 in all intervention groups were significantly greater than the CON group (p < 0.05); moreover, the increases in the RE group were significantly greater than CON (p < 0.001). Regarding CTRP5, the increase in RE was significantly greater than COM (p = 0.014). The RE group experienced significantly greater increases in CTRP9 than all other groups (p < 0.05), and the decreases in serum concentrations of CRP and TNF-α were significantly greater in the RE group compared to CON and ER (p < 0.05). Vo2max in the ER group was significantly greater than COM (p = 0.009), and all interventions resulted in higher gains compared to CON (p < 0.05). The increases in leg press strength, chest press strength, lower-body power, and upper-body power in the RE group were significantly greater than in the COM group (p < 0.05). In addition, the increases in chest press strength in the ER group were significantly greater than COM (p = 0.023). Conclusions: Regardless of training order, CT improved inflammatory markers, body composition, power, and VO2max. Notably, our analysis indicated significantly greater improvements in adiponectin, CTRP5, CTRP9, CRP, and TNF-α levels when RT preceded ET in CT sessions compared to other exercise training sequences. These findings suggested that the order of exercise training may have a significant impact on the effectiveness of CT on inflammatory markers, which has potential implications for exercise prescription and optimization of health-related training outcomes.
Collapse
|
3
|
Ashtary-Larky D, Niknam S, Alaeian MJ, Nadery M, Afrisham R, Fouladvand F, Ojani Z, Ghohpayeh MZ, Zamani M, Asbaghi O. The effect of green tea on blood pressure in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. J Herb Med 2023. [DOI: 10.1016/j.hermed.2022.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Zamani M, Kelishadi MR, Ashtary-Larky D, Amirani N, Goudarzi K, Torki IA, Bagheri R, Ghanavati M, Asbaghi O. The effects of green tea supplementation on cardiovascular risk factors: A systematic review and meta-analysis. Front Nutr 2023; 9:1084455. [PMID: 36704803 PMCID: PMC9871939 DOI: 10.3389/fnut.2022.1084455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose A bulk of observational studies have revealed the protective role of green tea supplementation in cardiovascular diseases. The current systematic review and meta-analysis study aimed to establish the effects of green tea supplementation on cardiovascular risk factors including lipid profile, blood pressure, glycemic control markers and CRP. Methods A systematic literature search of randomized clinical trials (RCTs) that investigated the effects of green tea supplementation and cardiovascular risk factors was undertaken in online databases including PubMed/Medline, Scopus, Web of Science, and Embase using a combination of green tea and cardiovascular risk factors search terms. Meta-analyses were carried out using a random-effects model. The I2 index was used to assess the heterogeneity of RCTs. Results Among the initial 11,286 studies that were identified from electronic databases search, 55 eligible RCTs with 63 effect sizes were eligible. Results from the random effects meta-analysis showed that GTE supplementation significantly reduced TC (WMD = -7.62; 95% CI: -10.51, -4.73; P = < 0.001), LDL-C (WMD = -5.80; 95% CI: -8.30, -3.30; P = < 0.001), FBS (WMD = -1.67; 95% CI: -2.58, -0.75; P = < 0.001), HbA1c (WMD = -0.15; 95% CI: -0.26, -0.04; P = 0.008), DBP (WMD = -0.87; 95% CI: -1.45, -0.29; P = 0.003), while increasing HDL-C (WMD = 1.85; 95% CI: 0.87, 2.84; P = 0.010). Subgroup analyses based on the duration of supplementation (≥ 12 vs. < 12 weeks), dose of green tea extract (GTE) (≥1,000 vs. < 1,000 mg/d), sex (male, female, and both), baseline serum levels of lipid profile, and glycemic control factors demonstrated different results for some risk factors. Conclusion The current study suggests improvements in the lipid and glycemic profiles following green tea supplementation. These findings support previous evidence showing the health benefits of green tea supplementation on cardiometabolic risk factors.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Surma S, Sahebkar A, Banach M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol Res 2023; 187:106596. [PMID: 36473629 DOI: 10.1016/j.phrs.2022.106596] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of premature death worldwide. Inflammation and its biomarkers, like C-reactive protein (CRP), among the risk factors, such as hypertension, lipid disorders, and diabetes, may be also responsible for the residual cardiovascular disease (CVD) risk. Modern lipid-lowering treatment with statins, ezetimibe, PCSK9 inhibitors, or bempedoic acid does not fully protect against inflammation. The recommendations of the International Lipid Expert Panel (ILEP) indicate selected nutraceuticals with anti-inflammatory properties. Diet may have a significant impact on inflammation. Especially interesting in the context of inflammation is the consumption of coffee and tea. These drinks in many observational studies significantly reduced cardiovascular risk and mortality. The question is whether the anti-inflammatory effects of these drinks contribute significantly to the observed clinical effects. Thus, in this narrative review, we primarily discuss the anti-inflammatory properties of consuming tea and coffee. Based on a comprehensive analysis of the studies and their meta-analyses, inconsistent results were obtained, which makes it impossible to conclusively state how clinically significant the potential anti-inflammatory properties of black and green tea and coffee are. A number of confounding factors can cause the inconsistency of the available results. Consumption of tea and coffee appears to increase adiponectin concentrations, decrease reactive oxygen species, decrease low density lipoprotein (LDL) cholesterol concentrations (effect of green tea, etc.). Despite the still uncertain anti-inflammatory effect of tea and coffee, we recommend their consumption as a part of the healthy diet.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93-338 Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland; Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland.
| |
Collapse
|
6
|
Tea Plant ( Camellia sinensis): A Current Update on Use in Diabetes, Obesity, and Cardiovascular Disease. Nutrients 2022; 15:nu15010037. [PMID: 36615695 PMCID: PMC9823498 DOI: 10.3390/nu15010037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The tea plant (C. sinensis) has traditionally been consumed worldwide as "tea" for its many health benefits, with the potential for the prevention and therapy of various conditions. Regardless of its long history, the use of tea plants in modern times seems not to have changed much, as the beverage remains the most popular form. This review aimed to compile scientific information about the role and action of tea plants, as well as their status concerning clinical applications, based on the currently available evidence, with a focus on metabolic syndrome, mainly covering obesity, diabetes, and cardiovascular disease. It has been recognized that these diseases pose a significant threat to public health, and the development of effective treatment and prevention strategies is necessary but still challenging. In this article, the potential benefits of tea plants and their derived bioactive components (such as epigallocatechin-3-gallate) as anti-obesity, anti-diabetic, and anti-cardiovascular agents are clearly shown and emphasized, along with their mechanisms of action. However, according to the status of the clinical translation of tea plants, particularly in drug development, more substantial efforts in well-designed, randomized, controlled trials are required to expand their applications in treating the three major metabolic disorders and avoiding the toxicity caused by overconsumption.
Collapse
|
7
|
Wang P, Ma XM, Geng K, Jiang ZZ, Yan PY, Xu Y. Effects of Camellia tea and herbal tea on cardiometabolic risk in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36:4051-4062. [PMID: 36197117 DOI: 10.1002/ptr.7572] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/07/2022]
Abstract
Evidence for the anti-diabetic actions of camellia and herbal tea in diabetic patients has not been summarized. Several data sources were searched for randomized trials assessing the effect of different teas on cardiometabolic risk factors in T2D subjects. Two independent reviewers extracted relevant data and assessed the risk of bias. Results were summarized using mean differences (MDs) based on a random model. Sixteen studies (19 trials, N = 832) fulfilled the eligibility criteria. Mean differences were measured for body weight, body mass index, fasting blood glucose, glycosylated hemoglobin, a homeostatic model for insulin resistance, high and low-density lipoproteins, triglycerides, and systolic and diastolic blood pressure. No effects on total cholesterol and waist circumference were observed when either camellia or herbal tea was consumed. Tea produced moderate regulatory effects on adipose, glycemic control, lipid profiles, and blood pressure. In terms of efficacy, camellia and herbal teas yield different benefits in regulating metabolism. This discovery has some implications for clinical research and drug development. However, more high-quality trials are needed to improve the certainty of our estimates.
Collapse
Affiliation(s)
- Peng Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Xiu Mei Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Kang Geng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zong Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Pei Yu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Yong Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
8
|
Mahmudiono T, Khaydarov NK, Jasim SA, Hammid AT, Failoc-Rojas VE, Shalaby MN, Jannat B, Nouri M, Fadel A. Systematic review and meta-analysis of randomized, controlled trials on the effects of soy and soy products supplementation on serum adiponectin levels. Diabetes Metab Syndr 2022; 16:102558. [PMID: 35803164 DOI: 10.1016/j.dsx.2022.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Our aim in this meta-analysis was to determine the effect of soy and soy product supplementation on serum adiponectin levels. METHOD A systematic search was conducted using Medline (PubMed and Web of Science), Scopus, and Cochrane Library for eligible trials up to August 2020. A random-effects model was used to pool calculated effect sizes. RESULTS Seven trials were included in the overall analysis. Our analysis showed that soy and soy product supplementation did not significantly affect adiponectin concentrations (WMD = -0.77 μg/ml, 95% CI: -0.61, 2.15, P = 0.27) in comparison with a placebo. The between-study heterogeneity was high (I2: 68.2%, P = 0.004). Subgroup analysis, based on participants' health status and duration of the supplementation, could not detect the potential source of the observed heterogeneity. In addition, subgroup analysis showed that the effect was not statistically significant in all subgroups. CONCLUSION Overall, soy and soy product supplementation did not change the circulatory adiponectin levels. In addition, the results were not affected by the participant's health status and duration of supplementation. However, further studies are needed to confirm the present results.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Indonesia
| | | | - Saade Abdalkareem Jasim
- Al-maarif University College, Medical Laboratory Techniques Department, Al-anbar-Ramadi, Iraq
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | | | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| | - Behrooz Jannat
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abdulmnannan Fadel
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
9
|
Xu J, Dong J, Ding H, Wang B, Wang Y, Qiu Z, Yao F. Ginsenoside compound K inhibits obesity-induced insulin resistance by regulation of macrophage recruitment and polarization via activating PPARγ. Food Funct 2022; 13:3561-3571. [PMID: 35260867 DOI: 10.1039/d1fo04273d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Obesity disrupts the immune system of adipose tissue, and the activation of its macrophages constantly infiltrating adipose tissue is a crucial cause of insulin resistance induced by obesity. We previously reported for the first time in vitro that the antidiabetic effect of CK may be through the inhibition of macrophage activation and we further explored the specific mechanism in vivo. In order to clarify it, the C57BL/6J mice were fed with a high fat diet and then administered with CK orally. The related biochemical indices were detected, the inflammatory factors in serum and tissues were measured, and the related protein expression levels in insulin pathways and inflammatory signaling pathways were observed. The results showed that CK could dose-dependently reduce macrophage M1-type inflammatory factor expression in serum and adipose tissue, improve insulin resistance and glucose tolerance effectively, upregulate PPARγ expression and block TLR4/TRAF6/TAK1/NF-κB activation in obese mice. In addition, CK promoted the expression of IRS1/PI3K/AKT. Furthermore, our study showed that ginsenoside CK could improve insulin resistance by reducing inflammation through the PPARγ/NF-κB signaling pathway, which implies that ginsenoside CK may be an effective agent against obesity or early diabetes.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jinxiang Dong
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Hongyue Ding
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Bei Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yuqi Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Fan Yao
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
10
|
Moghadam BH, Rashidlamir A, Hosseini SRA, Gaeini AA, Kaviani M. The Effects of Saffron (Crocus sativus L.) in conjunction with Concurrent Training on body composition, glycemic status, and inflammatory markers in obese men with type 2 diabetes mellitus: a randomized double-blind clinical trial. Br J Clin Pharmacol 2022; 88:3256-3271. [PMID: 35001410 DOI: 10.1111/bcp.15222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022] Open
Abstract
AIM Chronic inflammation is one of the major challenges in the management of obesity and type 2 diabetes mellitus (T2DM). Our primary aim was to assess the anti-inflammatory effects of Saffron (Crocus sativus L.) supplementation and concurrent training in obese men with T2DM. METHODS Sixty obese men with T2DM (age = 39 ± 5 years; body mass = 93.9 ± 6 kg) were randomly assigned to four groups; concurrent training + placebo (CT; n = 15), saffron supplementation (S; n = 15), concurrent training + saffron supplementation (CTS; n = 15), or control (CON; n = 15). The participants in the CT group performed concurrent training (resistance + aerobic) three times per week for 12 weeks and received daily one pill of placebo (maltodextrin); the participants in the S group supplemented with one pill of 100 mg of saffron daily, and the participants in the CTS group participated in both saffron and training intervention while CON group continued regular lifestyle (no training or no supplementation). Inflammatory markers, body composition (evaluated by a multi-frequency bioelectrical impedance device; Jawon X-Contact 356), and metabolic profile were evaluated before and after interventions. RESULTS All three interventions significantly (p<0.05) decreased TNF-α (CT = -4.22, S = -1.91, CTS = -9.69 pg/mL), hs-CRP (CT = -0.13, S = -0.1, CTS = -0.32 ng/mL), IL-6 (CT = -6.84, S = -6.36, CTS = -13.55 pg/mL), IL-1β (CT = -8.85, S = -6.46, CTS = -19.8 pg/mL), FBG (CT = -6.97, S = -2.45, CTS = -13.86 mg/dL), insulin (CT = -0.13, S = -0.03, CTS = -0.21 mU/L), HOMA-IR (CT = -0.12, S = -0.04, CTS = -0.21), HbA1c (CT = -0.17, S = -0.11, CTS = -0.26 %), and increased IL-10 (CT = 1.09, S= 0.53, CTS = 2.27 pg/mL) concentrations. There was a positive correlation between changes in BFP with hs-CRP, IL-6, IL-1β, and TNF-α, and IL-10 concentrations across the intervention groups. Additionally, significant differences were observed between the changes for all variables in the CTS group compared to CT, S, and CON groups (p<0.05) CONCLUSION: It seems that an interactive of saffron supplementation and concurrent training has more efficient effects on the anti-inflammatory status compared to the saffron supplementation or concurrent training alone.
Collapse
Affiliation(s)
| | - Amir Rashidlamir
- Department of Exercise Physiology, Ferdowsi university of Mashhad, Mashhad, Iran
| | | | - Abbas Ali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
11
|
The Effects of TRX Suspension Training Combined with Taurine Supplementation on Body Composition, Glycemic and Lipid Markers in Women with Type 2 Diabetes. Nutrients 2021; 13:nu13113958. [PMID: 34836211 PMCID: PMC8621658 DOI: 10.3390/nu13113958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background: We aimed to investigate the effects of an 8-week total-body resistance exercise (TRX) suspension training intervention combined with taurine supplementation on body composition, blood glucose, and lipid markers in T2D females. Methods: Forty T2D middle-aged females (age: 53 ± 5 years, body mass = 84.3 ± 5.1 kg) were randomly assigned to four groups, TRX suspension training + placebo (TP; n = 10), TRX suspension training + taurine supplementation (TT; n = 10), taurine supplementation (T; n = 10), or control (C; n = 10). Body composition (body mass, body mass index (BMI), body fat percentage (BFP)), blood glucose (fasting blood sugar (FBS)), hemoglobin A1c (HbA1c), Insulin, and Insulin resistance (HOMA-IR), and lipid markers (low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), and total cholesterol (TC)) were evaluated prior to and after interventions. Results: All three interventions significantly decreased body mass, BMI, and BFP with no changes between them for body mass and BMI; however, BFP changes in the TT group were significantly greater than all other groups. FBS was significantly reduced in TP and TT. Insulin concentrations’ decrement were significantly greater in all experimental groups compared to C; however, no between group differences were observed between TT, TP, and T. In regards to HOMA-IR, decreases in TT were significantly greater than all other groups TG, HbA1c, and LDL were reduced following all interventions. HDL values significantly increased only in the TT group, while TC significantly decreased in TP and TT groups. Changes in HbA1c, TG, HDL, and TC were significantly greater in the TT compared to all other groups. Conclusions: TRX training improved glycemic and lipid profiles, while taurine supplementation alone failed to show hypoglycemic and hypolipidemic properties. Notably, the synergic effects of TRX training and taurine supplementation were shown in HbA1c, HOMA-IR, TG, TC, HDL, and BFP changes. Our outcomes suggest that TRX training + taurine supplementation may be an effective adjuvant therapy in individuals with T2D.
Collapse
|
12
|
Rahimi GRM, Yousefabadi HA, Niyazi A, Rahimi NM, Alikhajeh Y. Effects of Lifestyle Intervention on Inflammatory Markers and Waist Circumference in Overweight/Obese Adults With Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biol Res Nurs 2021; 24:94-105. [PMID: 34702086 DOI: 10.1177/10998004211044754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Physical inactivity and an imbalanced diet could lead to some cardio metabolic risk factors. OBJECTIVE The objective of this meta-analysis was to investigate the effects of lifestyle modification on inflammatory indicators and waist circumference (WC) in overweight/obese subjects with metabolic syndrome (MS). DATA SOURCES A systematic search was conducted in PubMed, CINAHL, MEDLINE, Cochrane, Google Scholar, and Web of Science. STUDY SELECTION The selection criteria were randomized controlled trials (RCTs) investigating the effects of lifestyle interventions on inflammation and WC from inception to 20 December 2020. The weighted mean difference (WMD) and 95% confidence interval (CI) between interventions were computed using a random or fixed-effects model. RESULTS Six RCTs (including 1246 MS patients who had, on average, overweight/obesity) met all inclusion criteria. Interventions lasted 6 to 12 months (2-5 sessions per week). Lifestyle intervention significantly reduced C-reactive protein (WMD: -0.52 mg/ml, 95% CI: -0.72, -0.33), IL-6 (WMD: -0.50 pg/ml, 95% CI: -0.56, -0.45), and increased adiponectin (WMD: 0.81 µg/ml, 95% CI, 0.64, 0.98). Moreover, lifestyle modification significantly decreased WC (WMD: -3.12 cm, 95% CI, -4.61, -1.62). CONCLUSION Our findings provide evidence that lifestyle alterations, including physical activity and diet, can lead to significant improvement in abdominal obesity, measured by WC and some inflammation markers among overweight/obese individuals with MS. Further high-quality research is needed to clarify the mechanisms underlying the effect of such interventions on this population's inflammatory markers.
Collapse
Affiliation(s)
| | | | - Arghavan Niyazi
- Sanabad Institution of Higher Education Mashhad, Mashhad, Iran
| | | | - Yaser Alikhajeh
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
13
|
Asbaghi O, Naeini F, Ashtary-Larky D, Moradi S, Zakeri N, Eslampour E, Kelishadi MR, Naeini AA. Effects of chromium supplementation on lipid profile in patients with type 2 diabetes: A systematic review and dose-response meta-analysis of randomized controlled trials. J Trace Elem Med Biol 2021; 66:126741. [PMID: 33813266 DOI: 10.1016/j.jtemb.2021.126741] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The purpose of this study was to determine the influence of chromium supplementation on lipid profile in patients with type 2 diabetes mellitus (T2DM). METHODS A systematic search was performed in Scopus, Embase, Web of Science, the Cochrane library and PubMed databases to find randomized controlled trials (RCTs) related to the effect of chromium supplementation on lipid profile in patients with T2DM, up to June 2020. Meta-analyses were performed using the random-effects model, and I2 index was used to evaluate heterogeneity. RESULTS The primary search yielded 725 publications. 24 RCTs (with 28 effect size) were eligible. Our meta-analysis indicated that chromium supplementation resulted in a significant decrease in serum levels of triglyceride (TG) (MD: -6.54 mg/dl, 95 % CI: -13.08 to -0.00, P = 0.050) and total cholesterol (TC) (WMD: -7.77 mg/dl, 95 % CI: -11.35 to -4.18, P < 0.001). Furthermore, chromium significantly increases high-density lipoprotein (HDL) (WMD: 2.23 mg/dl, 95 % CI: 0.07-4.40, P = 0.043) level. However, chromium supplementation did not have significant effects on low-density lipoprotein (LDL) (WMD: -8.54 mg/dl, 95 % CI: -19.58 to 2.49, P = 0.129) level. CONCLUSION Chromium supplementation may significantly improve lipid profile in patients with T2DM by decreasing TG and TC and increasing HDL. However, based on our analysis, chromium failed to affect LDL. It should be noted that the lipid-lowering properties of chromium supplementation were small and may not reach clinical importance.
Collapse
Affiliation(s)
- Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajjad Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Halal Research Centre of IRI, FDA, Tehran, Iran
| | - Nazanin Zakeri
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Eslampour
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Effects of intermittent fasting combined with resistance training on body composition: a systematic review and meta-analysis. Physiol Behav 2021; 237:113453. [PMID: 33984329 DOI: 10.1016/j.physbeh.2021.113453] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
This systematic review and meta-analysis evaluated the influence of intermittent fasting (IF) in combination with resistance training (RT) on body composition outcomes. Studies examining IF vs. non-IF diets in individuals performing RT, published up to February 2021, were identified through PubMed, the Cochrane Library, Web of Science, Embase, and SCOPUS databases. Eight studies, including 221 participants were analyzed using a random-effects model to calculate weighted mean differences (WMDs) with 95% confidence intervals (CIs). Results indicated that IF had a significant effect on body mass (WMD = -2.08 kg; 95% CI: -3.04, -1.13), fat mass (WMD = -1.36 kg; 95% CI: -1.94, -0.78), body mass index (WMD = -0.52 kg/m2; 95% CI: -0.85, -0.19), and body fat percentage (WMD = -1.49%; 95% CI: -2.24, -0.74) relative to non-IF diets, without a significant effect for fat-free mass (WMD = -0.27 kg; 95% CI: -0.82, 0.28). The present systematic review and meta-analysis demonstrates potentially beneficial effects of IF in combination with RT for reducing body mass and body fat relative to non-IF control diets, with similar preservation of fat-free mass.
Collapse
|
15
|
Namkhah Z, Ashtary-Larky D, Naeini F, Clark CCT, Asbaghi O. Does vitamin C supplementation exert profitable effects on serum lipid profile in patients with type 2 diabetes? A systematic review and dose-response meta-analysis. Pharmacol Res 2021; 169:105665. [PMID: 33984490 DOI: 10.1016/j.phrs.2021.105665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/03/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Previous studies have reported that vitamin C supplementation may decrease lipid profile in patients with type 2 diabetes mellitus (T2DM). This systematic review and meta-analysis evaluated the influence of vitamin C supplementation on lipid profile in patients with T2DM. Studies examining the effects of vitamin C supplementation on lipid profile in patients with T2DM, published up to November 2020, were identified through PubMed, SCOPUS, and Embase databases. 15 studies, including 872 participants, were included and analyzed using a random-effects model to calculate weighted mean differences (WMDs) with 95% confidence intervals (CI). Findings from 15 studies indicated that vitamin C supplementation significantly decreased Triglyceride (TG) (WMD: -16.48 mg/dl, 95% CI (-31.89, -1.08), P < 0.001) and total cholesterol (TC) (WMD: -13.00 mg/dl, 95% CI (-23.10, -2.91), P < 0.001) in patients with T2DM. However, vitamin C supplementation failed to improve LDL and HDL. The meta-regression analysis suggested that lipid profile improvement was affected by duration of vitamin C treatment. Dose-response analysis showed that vitamin C supplementation changed LDL significantly based on vitamin C dose. According to our findings, vitamin C supplementation significantly improved lipid profile via decreases in TG and TC. However, vitamin C failed to affect LDL and HDL in diabetic populations. It appears that vitamin C supplementation is more beneficial to lipid profile in long-term vs. short term interventions.
Collapse
Affiliation(s)
- Zahra Namkhah
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran university of medical science, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran university of medical science, Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, U.K
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|