1
|
Kekou K, Svingou M, Sofocleous C, Mourtzi N, Nitsa E, Konstantinidis G, Youroukos S, Skiadas K, Katsalouli M, Pons R, Papavasiliou A, Kotsalis C, Pavlou E, Evangeliou A, Katsarou E, Voudris K, Dinopoulos A, Vorgia P, Niotakis G, Diamantopoulos N, Nakou I, Koute V, Vartzelis G, Papadimas GK, Papadopoulos C, Tsivgoulis G, Traeger-Synodinos J. Evaluation of Genotypes and Epidemiology of Spinal Muscular Atrophy in Greece: A Nationwide Study Spanning 24 Years. J Neuromuscul Dis 2021; 7:247-256. [PMID: 32417790 PMCID: PMC7836056 DOI: 10.3233/jnd-190466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Promising genetic treatments targeting the molecular defect of severe early-onset genetic conditions are expected to dramatically improve patients’ quality of life and disease epidemiology. Spinal Muscular Atrophy (SMA), is one of these conditions and approved therapeutic approaches have recently become available to patients. Objective: Analysis of genetic and clinical data from SMA patients referred to the single public-sector provider of genetic services for the disease throughout Greece followed by a retrospective assessment in the context of epidemiology and genotype-phenotype associations. Methods: Molecular genetic analysis and retrospective evaluation of findings for 361 patients tested positive for SMA- and 862 apparently healthy subjects from the general population. Spearman rank test and generalized linear models were applied to evaluate secondary modifying factors with respect to their impact on clinical severity and age of onset. Results: Causative variations- including 5 novel variants- were detected indicating a minimal incidence of about 1/12,000, and a prevalence of at least 1.5/100,000. For prognosis a minimal model pertaining disease onset before 18 months was proposed to include copy numbers of NAIP (OR = 9.9;95% CI, 4.7 to 21) and SMN2 (OR = 6.2;95% CI, 2.5–15.2) genes as well as gender (OR = 2.2;95% CI, 1.04 to 4.6). Conclusions: This long-term survey shares valuable information on the current status and practices for SMA diagnosis on a population basis and provides an important reference point for the future assessment of strategic advances towards disease prevention and health care planning.
Collapse
Affiliation(s)
- Kyriaki Kekou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens
| | - Maria Svingou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens.,Research Institute for the Study of Genetic and Malignant Disorders in Childhood, "Aghia Sophia" Children's Hospital, Athens
| | - Niki Mourtzi
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens
| | - Evangelia Nitsa
- Postgraduate Program in Biostatistics School Of Medicine, National and Kapodistrian University of Athens, Athens
| | - George Konstantinidis
- Laboratory of, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens
| | - Sotiris Youroukos
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens
| | | | | | - Roser Pons
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens
| | | | | | - Evangelos Pavlou
- 2nd Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, University General Hospital AHEPA, Thessaloniki
| | - Athanasios Evangeliou
- Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki
| | | | | | - Argirios Dinopoulos
- Third Department of Pediatrics, National & Kapodistrian University of Athens, "Attikon" University Hospital, Athens
| | - Pelagia Vorgia
- Pediatric Department, University Hospital of Heraklion, Crete
| | - George Niotakis
- Pediatric Neurology Clinics, Venizeleion General Hospital, Heraklion, Crete
| | | | - Iliada Nakou
- Department of Pediatrics, University of Ioannina, Stavros Niarchos Avenue, Ioannina
| | - Vasiliki Koute
- Pediatric Department, University Hospital of Larissa, University of Thessaly, Larissa
| | - George Vartzelis
- Second Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | | | - Constantinos Papadopoulos
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens
| | - Georgios Tsivgoulis
- Second Department of Neurology, National & Kapodistrian University of Athens, "Attikon" University Hospital, Athens
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens
| |
Collapse
|
2
|
Farzaneh M, Anbiyaiee A, Khoshnam SE. Human Pluripotent Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2020; 15:135-143. [PMID: 31656156 DOI: 10.2174/1574362414666191018121658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) as a serious public health issue and neurological insult is one of the most severe cause of long-term disability. To date, a variety of techniques have been widely developed to treat central nervous system injury. Currently, clinical treatments are limited to surgical decompression and pharmacotherapy. Because of their negative effects and inefficiency, novel therapeutic approaches are required in the management of SCI. Improvement and innovation of stem cell-based therapies have a huge potential for biological and future clinical applications. Human pluripotent stem cells (hPSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are defined by their abilities to divide asymmetrically, self-renew and ultimately differentiate into various cell lineages. There are considerable research efforts to use various types of stem cells, such as ESCs, neural stem cells (NSCs), and mesenchymal stem cells (MSCs) in the treatment of patients with SCI. Moreover, the use of patient-specific iPSCs holds great potential as an unlimited cell source for generating in vivo models of SCI. In this review, we focused on the potential of hPSCs in treating SCI.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|