1
|
Li T, Li S, Kang Y, Zhou J, Yi M. Harnessing the evolving CRISPR/Cas9 for precision oncology. J Transl Med 2024; 22:749. [PMID: 39118151 PMCID: PMC11312220 DOI: 10.1186/s12967-024-05570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system, a groundbreaking innovation in genetic engineering, has revolutionized our approach to surmounting complex diseases, culminating in CASGEVY™ approved for sickle cell anemia. Derived from a microbial immune defense mechanism, CRISPR/Cas9, characterized as precision, maneuverability and universality in gene editing, has been harnessed as a versatile tool for precisely manipulating DNA in mammals. In the process of applying it to practice, the consecutive exploitation of novel orthologs and variants never ceases. It's conducive to understanding the essentialities of diseases, particularly cancer, which is crucial for diagnosis, prevention, and treatment. CRISPR/Cas9 is used not only to investigate tumorous genes functioning but also to model disparate cancers, providing valuable insights into tumor biology, resistance, and immune evasion. Upon cancer therapy, CRISPR/Cas9 is instrumental in developing individual and precise cancer therapies that can selectively activate or deactivate genes within tumor cells, aiming to cripple tumor growth and invasion and sensitize cancer cells to treatments. Furthermore, it facilitates the development of innovative treatments, enhancing the targeting efficiency of reprogrammed immune cells, exemplified by advancements in CAR-T regimen. Beyond therapy, it is a potent tool for screening susceptible genes, offering the possibility of intervening before the tumor initiative or progresses. However, despite its vast potential, the application of CRISPR/Cas9 in cancer research and therapy is accompanied by significant efficacy, efficiency, technical, and safety considerations. Escalating technology innovations are warranted to address these issues. The CRISPR/Cas9 system is revolutionizing cancer research and treatment, opening up new avenues for advancements in our understanding and management of cancers. The integration of this evolving technology into clinical practice promises a new era of precision oncology, with targeted, personalized, and potentially curative therapies for cancer patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China
| | - Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Yue Kang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Karahan ZS, Aras M, Sütlü T. TCR-NK Cells: A Novel Source for Adoptive Immunotherapy of Cancer. Turk J Haematol 2023; 40:1-10. [PMID: 36719099 PMCID: PMC9979742 DOI: 10.4274/tjh.galenos.2022.2022.0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Antigen-specific retargeting of cytotoxic lymphocytes against tumor-associated antigens has thus far remained largely dependent on chimeric antigen receptors (CARs) that can be constructed by the fusion of an extracellular targeting domain (classically a single-chain variable fragment from an antibody) fused with intracellular signaling domains to trigger activation of T or natural killer (NK) cells. A major limitation of CAR-based therapies is that this technology only allows for the targeting of antigens that would be located on the surface of target cells while non-surface antigens, which affect approximately three-fourths of all human genes, remain out of reach. The targeting of non-surface antigens is only possible using inherent T cell receptor (TCR) mechanisms. However, introducing a second TCR into T cells via genetic modification is problematic due to the heterodimeric nature of the TCR ligand-binding domain, which is composed of TCR α and β chains. It has been observed that the delivery of a second TCR α/β pair may lead to the mispairing of new TCR chains with the endogenously expressed ones and create mixed TCR dimers, and this has negatively affected the advancement of TCR-based T cell therapies. Recently, NK cells have been put forward as possible effectors for TCR gene therapy. Since NK cells do not endogenously express TCR chains, this seems to be an infallible approach to circumventing the problem of mispairing. Moreover, the similarity of intracellular signaling pathways and mechanisms of cytotoxicity between NK and T cells ensures that the triggering of antigen-specific responses by the TCR/CD3 complex can be used to induce antigen-specific cytotoxicity by TCR-modified NK (TCR-NK) cells. This review provides an overview of the initial studies of TCR-NK cells, identifies open questions in the field, and defines the place of this approach within the spectrum of adoptive immunotherapy techniques that rely on cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Zeynep Sena Karahan
- Boğaziçi University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, İstanbul, Türkiye
| | - Mertkaya Aras
- Boğaziçi University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, İstanbul, Türkiye,Sabancı University Faculty of Engineering and Natural Sciences, Department of Molecular Biology, Genetics, and Bioengineering, İstanbul, Türkiye
| | - Tolga Sütlü
- Boğaziçi University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, İstanbul, Türkiye,* Address for Correspondence: Boğaziçi University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, İstanbul, Türkiye E-mail:
| |
Collapse
|
3
|
Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, Li J, Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer 2023; 22:35. [PMID: 36797756 PMCID: PMC9933290 DOI: 10.1186/s12943-023-01738-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Meixin Shi
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuqing Ren
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenjing Ning
- grid.207374.50000 0001 2189 3846Department of Emergency Center, Zhengzhou University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Xiaoyong Ge
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lifeng Li
- grid.412633.10000 0004 1799 0733Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Individualized Multimodal Immunotherapy for Adults with IDH1 Wild-Type GBM: A Single Institute Experience. Cancers (Basel) 2023; 15:cancers15041194. [PMID: 36831536 PMCID: PMC9954396 DOI: 10.3390/cancers15041194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synergistic activity between maintenance temozolomide (TMZm) and individualized multimodal immunotherapy (IMI) during/after first-line treatment has been suggested to improve the overall survival (OS) of adults with IDH1 wild-type MGMT promoter-unmethylated (unmeth) GBM. We expand the data and include the OS of MGMT promoter-methylated (meth) adults with GBM. Unmeth (10 f, 18 m) and meth (12 f, 10 m) patients treated between 27 May 2015 and 1 January 2022 were analyzed retrospectively. There were no differences in age (median: 48 y) or Karnofsky performance index (median: 80). The IMI consisted of 5-day immunogenic cell death (ICD) therapies during TMZm: Newcastle disease virus (NDV) bolus injections and sessions of modulated electrohyperthermia (mEHT); subsequent active specific immunotherapy: dendritic cell (DC) vaccines plus modulatory immunotherapy; and maintenance ICD therapy. There were no differences in the number of vaccines (median: 2), total number of DCs (median: 25.6 × 106), number of NDV injections (median: 31), and number of mEHT sessions (median: 28) between both groups. The median OS of 28 unmeth patients was 22 m (2y-OS: 39%), confirming previous results. OS of 22 meth patients was significantly better (p = 0.0414) with 38 m (2y-OS: 81%). There were no major treatment-related adverse reactions. The addition of IMI during/after standard of care should be prospectively explored.
Collapse
|
5
|
Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023; 28:1283. [PMID: 36770950 PMCID: PMC9921752 DOI: 10.3390/molecules28031283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.
Collapse
Affiliation(s)
- Zi-Hua Guo
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, No. 54 East Caizhengting St., Kaifeng 475000, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sufyan Razak
- Dow Medical College, John Hopkins Medical Center, School of Medicine, Baltimore, MD 21205, USA
| | - Chang-Yong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Xu Y, Wang C, Li S, Zhou H, Feng Y. Prognosis and immune response of a cuproptosis-related lncRNA signature in low grade glioma. Front Genet 2022; 13:975419. [PMID: 36338998 PMCID: PMC9633682 DOI: 10.3389/fgene.2022.975419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Cuproptosis is a newly discovered new mechanism of programmed cell death, and its unique pathway to regulate cell death is thought to have a unique role in understanding cancer progression and guiding cancer therapy. However, this regulation has not been studied in low grade glioma (LGG) at present. In this study, data on low grade glioma patients were downloaded from the TCGA database. We screened the genes related to cuproptosis from the published papers and confirmed the lncRNAs related to them. We applied univariate/multivariate, and LASSO regression algorithms, finally identified 11 lncRNAs for constructing prognosis prediction models, and constructed a risk scoring model. The reliability and validity test of the model indicated that the model could well distinguish the prognosis and survival of LGG patients. Furthermore, the analyses of immunotherapy, immune microenvironment, as well as functional enrichment were also performed. Finally, we verified the expression of these six prognostic key lncRNAs using real-time polymerase chain reaction (RT-PCR). In conclusion, this study is the first analysis based on cuproptosis-related lncRNAs in LGG and aims to open up new directions for LGG therapy.
Collapse
Affiliation(s)
- Yifan Xu
- *Correspondence: Yifan Xu, ; Yugong Feng,
| | | | | | | | | |
Collapse
|
7
|
Li JJ, Xia XP, Wu LM, Zhu Z, Shi YN, Zhang XC, Xia YS, Lu GR. Cancer suppression by ferroptosis and its role in digestive system tumors. Shijie Huaren Xiaohua Zazhi 2022; 30:718-728. [DOI: 10.11569/wcjd.v30.i16.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer is the second leading cause of death worldwide, and digestive system tumors remain the leading malignancy in China, seriously endangering national health and imposing a huge economic burden. Ferroptosis is a form of cell death characterized by increased intracellular reduced iron and accumulated lipid peroxide. Recent studies have revealed that ferroptosis is closely related to the occurrence and treatment of cancer. Therefore, this paper reviews the studies on ferroptosis and cancer to explore the potential of ferroptosis in the treatment of malignant tumors, especially digestive system tumors, and to provide a new direction for developing treatment options.
Collapse
Affiliation(s)
- Jia-Jia Li
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xuan-Ping Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li-Min Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zheng Zhu
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yu-Ning Shi
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xu-Chao Zhang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yu-Shan Xia
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Guang-Rong Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
8
|
MTAP loss correlates with an immunosuppressive profile in GBM and its substrate MTA stimulates alternative macrophage polarization. Sci Rep 2022; 12:4183. [PMID: 35264604 PMCID: PMC8907307 DOI: 10.1038/s41598-022-07697-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer known for its potent immunosuppressive effects. Loss of Methylthioadenosine Phosphorylase (MTAP) expression, via gene deletion or epigenetic silencing, is one of the most common alterations in GBM. Here we show that MTAP loss in GBM cells is correlated with differential expression of immune regulatory genes. In silico analysis of gene expression profiles in GBM samples revealed that low MTAP expression is correlated with an increased proportion of M2 macrophages. Using in vitro macrophage models, we found that methylthioadenosine (MTA), the metabolite that accumulates as a result of MTAP loss in GBM cells, promotes the immunosuppressive alternative activation (M2) of macrophages. We show that this effect of MTA on macrophages is independent of IL4/IL3 signaling, is mediated by the adenosine A2B receptor, and can be pharmacologically reversed. This study suggests that MTAP loss in GBM cells may contribute to the immunosuppressive tumor microenvironment, and that MTAP status should be considered for characterizing GBM immune states and devising immunotherapy-based approaches for treating MTAP-null GBM.
Collapse
|
9
|
Cancer vaccines: An unkept promise? Drug Discov Today 2021; 26:1347-1352. [PMID: 33601016 DOI: 10.1016/j.drudis.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/16/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Two decades ago, cancer vaccines were hailed as a prominent breakthrough for the treatment of cancer. However, the vaccines failed to show any improvement in median survival time in various clinical trials, even though they stimulated the immune response and showed exceptional safety profiles. The resistance of cancer cells to the immune response was revealed as a significant hurdle. In this review, I discuss the different types of cancer vaccines and the strategies used to design them. I also highlight how cancer cells develop resistance to the immune response, and how therapies, such as monoclonal antibodies (mAbs) and small interfering (si)RNA/short hairpin (sh)RNA could be used to address some of the shortcomings of cancer vaccine treatments.
Collapse
|
10
|
Abstract
Cancer is a major burden on the healthcare system, and new therapies are needed. Recently, the development of immunotherapies, which aim to boost or use the immune system, or its constituents, as a tool to fight malignant cells, has provided a major new tool in the arsenal of clinicians and has revolutionized the treatment of many cancers.Cellular immunotherapies are based on the administration of living cells to patients and have developed hugely, especially since 2010 when Sipuleucel-T (Provenge), a DC vaccine, was the first cellular immunotherapy to be approved by the FDA. The ensuing years have seen two further cellular immunotherapies gain FDA approval: tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta).This review will give an overview of the principles of immunotherapies before focusing on the major forms of cellular immunotherapies individually, T cell-based, natural killer (NK) cell-based and dendritic cell (DC)-based, as well as detailing some of the clinical trials relevant to each therapy.
Collapse
Affiliation(s)
- Conall Hayes
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Nejo T, Mende A, Okada H. The current state of immunotherapy for primary and secondary brain tumors: similarities and differences. Jpn J Clin Oncol 2020; 50:1231-1245. [PMID: 32984905 DOI: 10.1093/jjco/hyaa164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment and resolution of primary and metastatic brain tumors have long presented a challenge to oncologists. In response to the dismal survival outcomes associated with conventional therapies, various immunotherapy modalities, such as checkpoint inhibitors, vaccine, cellular immunotherapy and viral immunotherapy have been actively explored over the past couple of decades. Although improved patient survival has been more frequently noted in treatment of brain metastases, little progress has been made in improving patient survival in cases of primary brain tumors, specifically glioblastoma, which is the representative primary brain tumor discussed in this review. Herein, we will first overview the findings of recent clinical studies for treatment of primary and metastatic brain tumors with immunotherapeutic interventions. The clinical efficacy of these immunotherapies will be discussed in the context of their ability or inability to overcome inherent characteristics of the tumor as well as restricted antigen presentation and its immunosuppressive microenvironment. Additionally, this review aims to briefly inform clinicians in the field of neuro-oncology on the relevant aspects of the immune system as it pertains to the central nervous system, with special focus on the differing modes of antigen presentation and tumor microenvironment of primary and metastatic brain tumors and the role these differences may play in the efficacy of immunotherapy in eradicating the tumor.
Collapse
Affiliation(s)
- Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Abigail Mende
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.,The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.,Cancer Immunotherapy Program, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Hanif S, Muhammad P, Chesworth R, Rehman FU, Qian RJ, Zheng M, Shi BY. Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacol Sin 2020; 41:936-953. [PMID: 32467570 PMCID: PMC7468531 DOI: 10.1038/s41401-020-0429-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Central nervous system (CNS) disorders represent a broad spectrum of brain ailments with short- and long-term disabilities, and nanomedicine-based approaches provide a new therapeutic approach to treating CNS disorders. A variety of potential drugs have been discovered to treat several neuronal disorders; however, their therapeutic success can be limited by the presence of the blood-brain barrier (BBB). Furthermore, unique immune functions within the CNS provide novel target mechanisms for the amelioration of CNS diseases. Recently, various therapeutic approaches have been applied to fight brain-related disorders, with moderate outcomes. Among the various therapeutic strategies, nanomedicine-based immunotherapeutic systems represent a new era that can deliver useful cargo with promising pharmacokinetics. These approaches exploit the molecular and cellular targeting of CNS disorders for enhanced safety, efficacy, and specificity. In this review, we focus on the efficacy of nanomedicines that utilize immunotherapy to combat CNS disorders. Furthermore, we detailed summarize nanomedicine-based pathways for CNS ailments that aim to deliver drugs across the BBB by mimicking innate immune actions. Overview of how nanomedicines can utilize multiple immunotherapy pathways to combat CNS disorders. ![]()
Collapse
|
13
|
Murty S, Haile ST, Beinat C, Aalipour A, Alam IS, Murty T, Shaffer TM, Patel CB, Graves EE, Mackall CL, Gambhir SS. Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model. Oncoimmunology 2020; 9:1757360. [PMID: 32923113 PMCID: PMC7458609 DOI: 10.1080/2162402x.2020.1757360] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent advances in novel immune strategies, particularly chimeric antigen receptor (CAR)-bearing T-cells, have shown limited efficacy against glioblastoma (GBM) in clinical trials. We currently have an incomplete understanding of how these emerging therapies integrate with the current standard of care, specifically radiation therapy (RT). Additionally, there is an insufficient number of preclinical studies monitoring these therapies with high spatiotemporal resolution. To address these limitations, we report the first longitudinal fluorescence-based intravital microscopy imaging of CAR T-cells within an orthotopic GBM preclinical model to illustrate the necessity of RT for complete therapeutic response. Additionally, we detail the first usage of murine-derived CAR T-cells targeting the disialoganglioside GD2 in an immunocompetent tumor model. Cell culture assays demonstrated substantial GD2 CAR T-cell-mediated killing of murine GBM cell lines SB28 and GL26 induced to overexpress GD2. Complete antitumor response in advanced syngeneic orthotopic models of GBM was achieved only when a single intravenous dose of GD2 CAR T-cells was following either sub-lethal whole-body irradiation or focal RT. Intravital microscopy imaging successfully visualized CAR T-cell homing and T-cell mediated apoptosis of tumor cells in real-time within the tumor stroma. Findings indicate that RT allows for rapid CAR T-cell extravasation from the vasculature and expansion within the tumor microenvironment, leading to a more robust and lasting immunologic response. These exciting results highlight potential opportunities to improve intravenous adoptive T-cell administration in the treatment of GBM through concurrent RT. Additionally, they emphasize the need for advancements in immunotherapeutic homing to and extravasation through the tumor microenvironment.
Collapse
Affiliation(s)
- Surya Murty
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Samuel T Haile
- Department of Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Corinne Beinat
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Amin Aalipour
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.,Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Israt S Alam
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Tara Murty
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Travis M Shaffer
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Chirag B Patel
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.,Division of Neuro-Oncology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Crystal L Mackall
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv S Gambhir
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA.,Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
14
|
Wang J, Shen F, Yao Y, Wang LL, Zhu Y, Hu J. Adoptive Cell Therapy: A Novel and Potential Immunotherapy for Glioblastoma. Front Oncol 2020; 10:59. [PMID: 32083009 PMCID: PMC7005203 DOI: 10.3389/fonc.2020.00059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults with very poor prognosis and few advances in its treatment. Recently, fast-growing cancer immunotherapy provides a glimmer of hope for GBM treatment. Adoptive cell therapy (ACT) aims at infusing immune cells with direct anti-tumor activity, including tumor-infiltrating lymphocyte (TIL) transfer and genetically engineered T cells transfer. For example, complete regressions in patients with melanoma and refractory lymphoma have been shown by using naturally tumor-reactive T cells and genetically engineered T cells expressing the chimeric anti-CD19 receptor, respectively. Recently, the administration of ACT showed therapeutic potentials for GBM treatment as well. In this review, we summarize the success of ACT in the treatment of cancer and provide approaches to overcome some challenges of ACT to allow its adoption for GBM treatment.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Shen
- Department of Orthopaedic Surgery's Spine Division, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Ying Yao
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Hu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Strepkos D, Markouli M, Klonou A, Piperi C, Papavassiliou AG. Insights in the immunobiology of glioblastoma. J Mol Med (Berl) 2019; 98:1-10. [PMID: 31650201 DOI: 10.1007/s00109-019-01835-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Glioblastoma, a grade IV astrocytoma, is considered as the most malignant intracranial tumor, characterized by poor prognosis and therapy resistance. Tumor heterogeneity that often leads to distinct functional phenotypes contributes to glioblastoma (GB) indispensable growth and aggressiveness. The complex interaction of neoplastic cells with tumor microenvironment (TME) along with the presence of cancer stem-like cells (CSCs) largely confers to extrinsic and intrinsic GB heterogeneity. Recent data indicate that glioma cells secrete a variety of soluble immunoregulatory factors to attract different cell types to TME including astrocytes, endothelial cells, circulating stem cells, and a range of immune cells. These further induce a local production of cytokines, chemokines, and growth factors which upon crosstalk with extracellular matrix (ECM) components reprogram immune cells to inflammatory or anti-inflammatory phenotypes and manipulate host's immune response in favor of cancer growth and metastasis. Herein, we provide an overview of the immunobiologic factors that orchestrate the complex network of glioma cells and TME interactions in an effort to identify potential therapeutic targets for GB malignancy. Current therapeutic schemes and advances in targeting GB-TME crosstalk are further discussed. KEY MESSAGES: • Intrinsic and extrinsic tumor heterogeneity affects GB growth and aggressiveness. • GB cells secrete growth factors and chemoattractants to recruit immune cells to TME. • GAMs are a critical cell type in promoting GB growth. • GAMs change from pro-inflammatory, anti-tumor M1 phenotype to pro-tumorigenic M2. • Novel therapeutic agents target the crosstalk of neoplastic cells with TME.
Collapse
Affiliation(s)
- Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street-Bldg 16, 115 27, Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street-Bldg 16, 115 27, Athens, Greece
| | - Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street-Bldg 16, 115 27, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street-Bldg 16, 115 27, Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street-Bldg 16, 115 27, Athens, Greece.
| |
Collapse
|
16
|
Gorabi AM, Hajighasemi S, Sathyapalan T, Sahebkar A. Cell transfer-based immunotherapies in cancer: A review. IUBMB Life 2019; 72:790-800. [PMID: 31633881 DOI: 10.1002/iub.2180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
Abstract
In cell transfer therapy (CTT), immune cells such as innate immune-derived natural killer cells and dendritic cells as well as acquired immune-related T lymphocytes such as tumor-infiltrating lymphocytes and cytokine-activated or genetically modified peripheral blood T cells are used in the management of cancer. These therapies are increasingly becoming the most used treatment modality in cancer after tumor resection, chemotherapy, and radiotherapy. In adoptive cell transfer, the lymphocytes isolated from either a donor or the patient are modified ex vivo and reinfused to target malignant cells. Transferring in vitro-manipulated immune cells produces a continuous antitumor immune response. In this review, we evaluate the recent advances in CTT for the management of various malignancies.
Collapse
Affiliation(s)
- Armita M Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Hajighasemi
- Faculty of Paramedicine, Department of Medical Biotechnology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Yang L, Antanovich A, Prudnikau A, Taniya OS, Grzhegorzhevskii KV, Zelenovskiy P, Terpinskaya T, Tang J, Artemyev M. Highly luminescent Zn-Cu-In-S/ZnS core/gradient shell quantum dots prepared from indium sulfide by cation exchange for cell labeling and polymer composites. NANOTECHNOLOGY 2019; 30:395603. [PMID: 31212270 DOI: 10.1088/1361-6528/ab2aa2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gradient core-shell Zn-Cu-In-S/ZnS quantum dots (QDs) of small size and with highly efficient photoluminescence were synthesized via a multi-step high-temperature method involving cation exchange. The procedure starts with the preparation of indium sulfide nanoparticles followed by the addition of Cu and Zn precursors. At this stage, Zn replaces Cu atoms and as a result the concentration of Cu ions in the final QDs is only about 5% of the total In content in a QD. Zn incorporation and the formation of a gradient ZnS shell dramatically increases the photoluminescence quantum yield. Furthermore, the formation of the ZnS shell improves the chemical stability of Cu-In-S QDs, as demonstrated by the preparation of polystyrene-QD composites and labeling of glioma cells. This work provides an effective strategy for obtaining efficient and stable fluorophores free of heavy metals.
Collapse
Affiliation(s)
- Lanlan Yang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Raimondi A, Randon G, Sepe P, Claps M, Verzoni E, de Braud F, Procopio G. The Evaluation of Response to Immunotherapy in Metastatic Renal Cell Carcinoma: Open Challenges in the Clinical Practice. Int J Mol Sci 2019; 20:ijms20174263. [PMID: 31480348 PMCID: PMC6747319 DOI: 10.3390/ijms20174263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has changed the therapeutic scenario of metastatic renal cell carcinoma (mRCC), however the evaluation of disease response to immune-checkpoint inhibitors is still an open challenge. Response evaluation criteria in solid tumors (RECIST) 1.1 criteria are the cornerstone of response assessment to anti-neoplastic treatments, but the use of anti-programmed death receptor 1 (PD1) and other immunotherapeutic agents has shown atypical patterns of response such as pseudoprogression. Therefore, immune-modified criteria have been developed in order to more accurately categorize the disease response, even though their use in the everyday clinical practice is still limited. In this review we summarize the available evidence on this topic, with particular focus on the application of immune-modified criteria in the setting of mRCC.
Collapse
Affiliation(s)
- Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Pierangela Sepe
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Melanie Claps
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Verzoni
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Giuseppe Procopio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
19
|
Kasten BB, Udayakumar N, Leavenworth JW, Wu AM, Lapi SE, McConathy JE, Sorace AG, Bag AK, Markert JM, Warram JM. Current and Future Imaging Methods for Evaluating Response to Immunotherapy in Neuro-Oncology. Theranostics 2019; 9:5085-5104. [PMID: 31410203 PMCID: PMC6691392 DOI: 10.7150/thno.34415] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/20/2019] [Indexed: 12/28/2022] Open
Abstract
Imaging plays a central role in evaluating responses to therapy in neuro-oncology patients. The advancing clinical use of immunotherapies has demonstrated that treatment-related inflammatory responses mimic tumor growth via conventional imaging, thus spurring the development of new imaging approaches to adequately distinguish between pseudoprogression and progressive disease. To this end, an increasing number of advanced imaging techniques are being evaluated in preclinical and clinical studies. These novel molecular imaging approaches will serve to complement conventional response assessments during immunotherapy. The goal of these techniques is to provide definitive metrics of tumor response at earlier time points to inform treatment decisions, which has the potential to improve patient outcomes. This review summarizes the available immunotherapy regimens, clinical response criteria, current state-of-the-art imaging approaches, and groundbreaking strategies for future implementation to evaluate the anti-tumor and immune responses to immunotherapy in neuro-oncology applications.
Collapse
Affiliation(s)
- Benjamin B. Kasten
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Neha Udayakumar
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna M. Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan E. McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Asim K. Bag
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jason M. Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
20
|
Carpenter CD, Alnahhas I, Gonzalez J, Giglio P, Puduvalli VK. Changing paradigms for targeted therapies against diffuse infiltrative gliomas: tackling a moving target. Expert Rev Neurother 2019; 19:663-677. [PMID: 31106606 DOI: 10.1080/14737175.2019.1621169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Gliomas are highly heterogeneous primary brain tumors which result in a disproportionately high degree of morbidity and mortality despite their locoregional occurrence. Advances in the understanding of the biological makeup of these malignancies have yielded a number of potential tumor-driving pathways which have been identified as rational targets for therapy. However, early trials of agents that target these pathways have uniformly failed to yield improvement in outcomes in patients with malignant gliomas. Areas covered: This review provides an overview of the most common biological features of gliomas and the strategies to target the same; in addition, the current status of immunotherapy and biological therapies are outlined and the future directions to tackle the challenges of therapy for gliomas are examined. Expert opinion: The limitations of current treatments are attributed to the inability of most of these agents to cross the blood-brain barrier and to the intrinsic heterogeneity of the tumors that result in treatment resistance. The recent emergence of immune-mediated and biological therapies and of agents that target metabolic pathways in gliomas have provided strategies that may overcome tumor heterogeneity and ongoing trials of such agents are anticipated to yield improved outcomes.
Collapse
Affiliation(s)
- Candice D Carpenter
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Iyad Alnahhas
- b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Javier Gonzalez
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Pierre Giglio
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Vinay K Puduvalli
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| |
Collapse
|
21
|
Hu X, Leak RK, Thomson AW, Yu F, Xia Y, Wechsler LR, Chen J. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 2018; 14:559-568. [PMID: 29925925 PMCID: PMC6237550 DOI: 10.1038/s41582-018-0028-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The healthy immune system has natural checkpoints that temper pernicious inflammation. Cells mediating these checkpoints include regulatory T cells, regulatory B cells, regulatory dendritic cells, microglia, macrophages and monocytes. Here, we highlight discoveries on the beneficial functions of regulatory immune cells and their mechanisms of action and evaluate their potential use as novel cell-based therapies for brain disorders. Regulatory immune cell therapies have the potential not only to mitigate the exacerbation of brain injury by inflammation but also to promote an active post-injury brain repair programme. By harnessing the reparative properties of these cells, we can reduce over-reliance on medications that mask clinical symptoms but fail to impede or reverse the progression of brain disorders. Although these discoveries encourage further testing and genetic engineering of regulatory immune cells for the clinical management of neurological disorders, a number of challenges must be surmounted to improve their safety and efficacy in humans.
Collapse
Affiliation(s)
- Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuguo Xia
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet 2018; 392:432-446. [PMID: 30060998 DOI: 10.1016/s0140-6736(18)30990-5] [Citation(s) in RCA: 812] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Primary CNS tumours refer to a heterogeneous group of tumours arising from cells within the CNS, and can be benign or malignant. Malignant primary brain tumours remain among the most difficult cancers to treat, with a 5 year overall survival no greater than 35%. The most common malignant primary brain tumours in adults are gliomas. Recent advances in molecular biology have improved understanding of glioma pathogenesis, and several clinically significant genetic alterations have been described. A number of these (IDH, 1p/19q codeletion, H3 Lys27Met, and RELA-fusion) are now combined with histology in the revised 2016 WHO classification of CNS tumours. It is likely that understanding such molecular alterations will contribute to the diagnosis, grading, and treatment of brain tumours. This progress in genomics, along with significant advances in cancer and CNS immunology, has defined a new era in neuro-oncology and holds promise for diagntic and therapeutic improvement. The challenge at present is to translate these advances into effective treatments. Current efforts are focused on developing molecular targeted therapies, immunotherapies, gene therapies, and novel drug-delivery technologies. Results with single-agent therapies have been disappointing so far, and combination therapies seem to be required to achieve a broad and durable antitumour response. Biomarker-targeted clinical trials could improve efficiencies of therapeutic development.
Collapse
Affiliation(s)
- Sarah Lapointe
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Arie Perry
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, CA, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
23
|
Ren PP, Li M, Li TF, Han SY. Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma. Curr Pharm Des 2018; 23:2113-2116. [PMID: 28302023 PMCID: PMC5470055 DOI: 10.2174/1381612823666170316125402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) is one of the most devastating brain tumors with poor prognosis and high mortality. Although radical surgical treatment with subsequent radiation and chemotherapy can improve the survival, the efficacy of such regimens is insufficient because the GBM cells can spread and destroy normal brain structures. Moreover, these non-specific treatments may damage adjacent healthy brain tissue. It is thus imperative to develop novel therapies to precisely target invasive tumor cells without damaging normal tissues. Immunotherapy is a promising approach due to its capability to suppress the growth of various tumors in preclinical model and clinical trials. Adoptive cell therapy (ACT) using T cells engineered with chimeric antigen receptor (CAR) targeting an ideal molecular marker in GBM, e.g. epidermal growth factor receptor type III (EGFRvIII) has demonstrated a satisfactory efficacy in treating malignant brain tumors. Here we summarize the recent progresses in immunotherapeutic strategy using CAR-modified T cells oriented to EGFRvIII against GBM.
Collapse
Affiliation(s)
- Pei-Pei Ren
- Translational Research Center, People's Hospital of Henan Province, Zhengzhou University, Zhengzhou 450003, China
| | - Ming Li
- Departmentt of Neurosurgery, People's Hospital of Henan Province, Zhengzhou University, Zhengzhou 450003, China
| | - Tian-Fang Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Shuang-Yin Han
- Translational Research Center, People's Hospital of Henan Province, Zhengzhou University, #7 Weiwu Road, Zhengzhou 450003, China; and Dr. Tian-Fnag Li, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe Road, Zhengzhou 450003, China
| |
Collapse
|
24
|
Qu X, Tang Y, Hua S. Immunological Approaches Towards Cancer and Inflammation: A Cross Talk. Front Immunol 2018; 9:563. [PMID: 29662489 PMCID: PMC5890100 DOI: 10.3389/fimmu.2018.00563] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
The inflammation is the protective response of the body against various harmful stimuli; however, the aberrant and inappropriate activation tends to become harmful. The acute inflammatory response tends to resolved once the offending agent is subside but this acute response becomes chronic in nature when the body is unable to successfully neutralized the noxious stimuli. This chronic inflammatory microenvironment is associated with the release of various pro-inflammatory and oncogenic mediators such as nitric oxide (NO), cytokines [IL-1β, IL-2, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)], growth factor, and chemokines. These mediators make the inflammatory microenvironment more vulnerable toward tumorigenesis. The pro-inflammatory mediators released during the chronic inflammation tends to induce several molecular signaling cascades such as nuclear factor kappa B, MAPKinase, nuclear factor erythroid 2-related factor 2, phosphoinositide-3-kinase, Janus kinases/STAT, Wnt/B-catenin, and cyclic AMP response element binding protein. The immune system and its components have a pleiotropic effect on inflammation and cancer progression. Immune components such as T cells, natural killer cells, macrophages, and neutrophils either inhibit or enhance tumor initiation depending on the type of tumor and immune cells involved. Tumor-associated macrophages and tumor-associated neutrophils are pro-tumorigenic cells highly prevalent in inflammation-mediated tumors. Similarly, presence of T regulatory (Treg) cells in an inflammatory and tumor setting suppresses the immune system, thus paving the way for oncogenesis. However, Treg cells also inhibit autoimmune inflammation. By contrast, cytotoxic T cells and T helper cells confer antitumor immunity and are associated with better prognosis in patients with cancer. Cytotoxic T cells inflict a direct cytotoxic effect on cells expressing oncogenic markers. Currently, several anti-inflammatory and antitumor therapies are under trials in which these immune cells are exploited. Adoptive cell transfer composed of tumor-infiltrating lymphocytes has been tried for the treatment of tumors after their ex vivo expansion. Mediators released by cells in a tumorigenic and inflammatory microenvironment cross talk with nearby cells, either promoting or inhibiting inflammation and cancer. Recently, several cytokine-based therapies are either being developed or are under trial to treat such types of manifestations. Monoclonal antibodies directed against TNF-α, VEGF, and IL-6 has shown promising results to ameliorate inflammation and cancer, while direct administration of IL-2 has been shown to cause tumor regression.
Collapse
Affiliation(s)
- Xinglong Qu
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Ying Tang
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant cancer of brain, which is extremely aggressive and carries a dreadful prognosis. Current treatment protocol runs around radiotherapy, surgical resection, and temozolomide with median overall survival of around 12-15 months. Due to its heterogeneity and mutational load, immunotherapy with chimeric antigen receptor (CAR) T cell therapy can be a promising treatment option for recurrent glioblastoma. Initial phase 1 studies have shown that this therapy is safe without dose-limiting side effects and it also has a better clinical outcome. Therefore, CAR T cell therapy can be a great future tool in our armamentarium to treat advanced GBM. In this article, we have explained the structure, mechanism of action, and rationale of CAR T cell therapy in GBM; we also discussed various antigenic targets and clinical outcome of initial studies of this novel therapy.
Collapse
Affiliation(s)
- Vishal Jindal
- Department of Internal Medicine, Saint Vincent Hospital, 123 summer street, Worcester, MA, 01608, USA. .,, Worcester, USA.
| |
Collapse
|
26
|
Zhang H, Wu Y, Wang J, Tang Z, Ren Y, Ni D, Gao H, Song R, Jin T, Li Q, Bu W, Yao Z. In Vivo MR Imaging of Glioma Recruitment of Adoptive T-Cells Labeled with NaGdF 4 -TAT Nanoprobes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702951. [PMID: 29168917 DOI: 10.1002/smll.201702951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Adoptive T lymphocyte immunotherapy is one of the most promising methods to treat residual lesions after glioma surgery. However, the fate of the adoptively transferred T-cells in vivo is unclear, hampering the understanding of this emerging therapy. Thus, it is highly desirable to develop noninvasive and quantitative in vivo tracking of these T-cells to glioma for better identification of the migratory fate and to provide objective evaluation of outcomes of adoptive T-cell immunotherapy targeting glioma. In this work, ultrasmall T1 MR-based nanoprobes, NaGdF4 -TAT, as molecular probes with high longitudinal relaxivity (8.93 mm-1 s-1 ) are designed. By means of HIV-1 transactivator (TAT) peptides, nearly 95% of the adoptive T-cells are labeled with the NaGdF4 -TAT nanoprobes without any measurable side effects on the labeled T-cells, which is remarkably superior to that of the control fluorescein isothiocyanate-NaGdF4 concerning labeling efficacy. Labeled adoptive T-cell clusters can be sensitively tracked in an orthotopic GL261-glioma model 24 h after intravenous infusion of 107 labeled T-cells by T1 -weighted MR imaging. Both in vitro and in vivo experiments show that the NaGdF4 -TAT nanoprobes labeling of T-cells may be a promising method to track adoptive T-cells to improve our understanding of the pathophysiology in adoptive immunotherapy for gliomas.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yue Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Zhongmin Tang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Dalong Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Gao
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ruixue Song
- Shanghai Key laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Teng Jin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Qiao Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Wenbo Bu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Shanghai Key laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
27
|
Lieberman F. Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials. F1000Res 2017; 6:1892. [PMID: 29263783 PMCID: PMC5658706 DOI: 10.12688/f1000research.11493.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/19/2022] Open
Abstract
This is an exciting time in neuro-oncology. Discoveries elucidating the molecular mechanisms of oncogenesis and the molecular subtypes of glioblastoma multiforme (GBM) have led to new diagnostic and classification schemes with more prognostic power than histology alone. Molecular profiling has become part of the standard neuropathological evaluation of GBM. Chemoradiation followed by adjuvant temozolomide remains the standard therapy for newly diagnosed GBM, but survival remains unsatisfactory. Patients with recurrent GBM continue to have a dismal prognosis, but neuro-oncology centers with active clinical trial programs are seeing a small but increasing cadre of patients with longer survival. Molecularly targeted therapeutics, personalized therapy based on molecular profiling of individual tumors, and immunotherapeutic strategies are all being evaluated and refined in clinical trials. Understanding of the molecular mechanisms of tumor-mediated immunosuppression, and specifically interactions between tumor cells and immune effector cells in the tumor microenvironment, has led to a new generation of immunotherapies, including vaccine and immunomodulatory strategies as well as T-cell-based treatments. Molecularly targeted therapies, chemoradiation, immunotherapies, and anti-angiogenic therapies have created the need to develop more reliable neuroimaging criteria for differentiating the effects of therapy from tumor progression and changes in blood–brain barrier physiology from treatment response. Translational clinical trials for patients with GBM now incorporate quantitative imaging using both magnetic resonance imaging and positron emission tomography techniques. This update presents a summary of the current standards for therapy for newly diagnosed and recurrent GBM and highlights promising translational research.
Collapse
Affiliation(s)
- Frank Lieberman
- Neurooncology Program, UPMC Hillman Cancer Center, UPMC Cancer Pavilion, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Abstract
Glioblastoma (GBM) is the most lethal form of brain tumor and remains a large, unmet medical need. This review focuses on recent advances in the neurosciences that converge with the broader field of immuno-oncology. Recent findings in neuroanatomy provide a basis for new approaches of cellular therapies for tumors that involve the CNS. The ultimate success of immunotherapy in the CNS will require improved imaging technologies and methods for analysis of the tumor microenvironment in patients with GBM. It is likely that combinatorial approaches with targeted immunotherapies will be required to exploit the vulnerabilities of GBM and other brain tumors.
Collapse
Affiliation(s)
- John H Sampson
- John H. Sampson, Duke University, Durham, NC; Marcela V. Maus, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Carl H. June, University of Pennsylvania, Philadelphia, PA
| | - Marcela V Maus
- John H. Sampson, Duke University, Durham, NC; Marcela V. Maus, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Carl H. June, University of Pennsylvania, Philadelphia, PA
| | - Carl H June
- John H. Sampson, Duke University, Durham, NC; Marcela V. Maus, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Carl H. June, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
29
|
Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N, Mazor T, Chheda ZS, Downey KM, Watchmaker PB, Beppler C, Warta R, Amankulor NA, Herold-Mende C, Costello JF, Okada H. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J Clin Invest 2017; 127:1425-1437. [PMID: 28319047 DOI: 10.1172/jci90644] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/19/2017] [Indexed: 01/16/2023] Open
Abstract
Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 are among the first genetic alterations observed during the development of lower-grade glioma (LGG). LGG-associated IDH mutations confer gain-of-function activity by converting α-ketoglutarate to the oncometabolite R-2-hydroxyglutarate (2HG). Clinical samples and gene expression data from The Cancer Genome Atlas (TCGA) demonstrate reduced expression of cytotoxic T lymphocyte-associated genes and IFN-γ-inducible chemokines, including CXCL10, in IDH-mutated (IDH-MUT) tumors compared with IDH-WT tumors. Given these findings, we have investigated the impact of IDH mutations on the immunological milieu in LGG. In immortalized normal human astrocytes (NHAs) and syngeneic mouse glioma models, the introduction of mutant IDH1 or treatment with 2HG reduced levels of CXCL10, which was associated with decreased production of STAT1, a regulator of CXCL10. Expression of mutant IDH1 also suppressed the accumulation of T cells in tumor sites. Reductions in CXCL10 and T cell accumulation were reversed by IDH-C35, a specific inhibitor of mutant IDH1. Furthermore, IDH-C35 enhanced the efficacy of vaccine immunotherapy in mice bearing IDH-MUT gliomas. Our findings demonstrate a mechanism of immune evasion in IDH-MUT gliomas and suggest that specific inhibitors of mutant IDH may improve the efficacy of immunotherapy in patients with IDH-MUT gliomas.
Collapse
|
30
|
Wiencke JK, Koestler DC, Salas LA, Wiemels JL, Roy RP, Hansen HM, Rice T, McCoy LS, Bracci PM, Molinaro AM, Kelsey KT, Wrensch MR, Christensen BC. Immunomethylomic approach to explore the blood neutrophil lymphocyte ratio (NLR) in glioma survival. Clin Epigenetics 2017; 9:10. [PMID: 28184256 PMCID: PMC5288996 DOI: 10.1186/s13148-017-0316-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/19/2017] [Indexed: 01/04/2023] Open
Abstract
Background Differentially methylated regions (DMRs) within DNA isolated from whole blood can be used to estimate the proportions of circulating leukocyte subtypes. We use the term “immunomethylomics” to describe the application of these immune lineage DMRs to studying leukocyte profiles. Here, we applied this approach to peripheral blood DNA from 72 glioma patients with molecularly defined brain tumors, representing common patient groups with defined characteristic survival times and risk factors. We first estimated the proportions of leukocyte subtypes in samples using deconvolution algorithms with reference DMR libraries from isolated leukocyte populations and Illumina 450K DNA methylation data. Then, we calculated the neutrophil to lymphocyte ratio (NLR) using methylation-derived cell composition estimates (mdNLR). The NLR is considered an indicator of immunosuppressive cells in cancer patients. Results Elevated mdNLR scores were observed in glioma patients compared to mdNLR values of published controls. Significantly decreased survival times were associated with mdNLR ≥ 4.0 in Cox proportional hazards models adjusted for age, gender, tumor grade, and molecular subtype (HR 2.02, 95% CI, 1.11–3.69). We also identified five myeloid-related CpGs that were highly correlated with the mdNLR (adjusted R2 ≥ 0.80). Each of the five myeloid CpG loci was associated with survival when adjusted for the above covariates and offer a simplified approach for utilizing fresh or archived peripheral blood samples for interrogating a very small number of methylation markers to estimate myeloid immune influences in glioma survival. Conclusions The mdNLR (based on DNA methylation) is a novel candidate methylation biomarker that represents immunosuppressive myeloid cells within the blood of glioma patients with potential application in clinical trials and future epidemiologic studies of glioma risk and survival. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0316-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA 94158-0520 USA
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Lucas A Salas
- Computational Biology Core, University of California San Francisco, San Francisco, CA 94158 USA
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Ritu P Roy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158 USA.,Computational Biology Core, University of California San Francisco, San Francisco, CA 94158 USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA 94158-0520 USA
| | - Terri Rice
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA 94158-0520 USA
| | - Lucie S McCoy
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA 94158-0520 USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Annette M Molinaro
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Karl T Kelsey
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912 USA
| | - Margaret R Wrensch
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA 94158-0520 USA
| | - Brock C Christensen
- Departments of Epidemiology, Pharmacology & Toxicology, and Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756 USA
| |
Collapse
|
31
|
Menon S, Shin S, Dy G. Advances in Cancer Immunotherapy in Solid Tumors. Cancers (Basel) 2016; 8:E106. [PMID: 27886124 PMCID: PMC5187504 DOI: 10.3390/cancers8120106] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is heralded as one of the most important advances in oncology. Until recently, only limited immunotherapeutic options were available in selected immunogenic cancers like melanoma and renal cell carcinomas. Nowadays, there is an improved understanding that anti-tumor immunity is controlled by a delicate balance in the tumor microenvironment between immune stimulatory and immune inhibitory pathways. Either by blocking the inhibitory pathways or stimulating the activating pathways that regulate cytotoxic lymphocytes, anti-tumor immunity can be enhanced leading to durable anti-tumor responses. Drugs which block the immune regulatory checkpoints namely the PD-1/PDL1 and CTLA 4 pathway have shown tremendous promise in a wide spectrum of solid and hematological malignancies, significantly improving overall survival in newly diagnosed and heavily pretreated patients alike. Hence there is renewed enthusiasm in the field of immune oncology with current research focused on augmenting responses to checkpoint inhibitors by combination therapy as well as studies looking at other immune modulators and adoptive T cell therapy. In this article, we highlight the key clinical advances and concepts in immunotherapy with particular emphasis on checkpoint inhibition as well as the future direction in this field.
Collapse
Affiliation(s)
- Smitha Menon
- Division of Hematology and Oncology, Department of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Sarah Shin
- Department of Internal Medicine, State University of New York at Buffalo, Buffalo, NY 14228, USA.
| | - Grace Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
| |
Collapse
|