1
|
Romero-Cruz VA, Ramos-Ligonio A, García-Alejandro K, Cerecedo-García M, Lagunes-Castro MDLS, López-Monteon A. Immunization of recombinant NS3 protein (protease region) of dengue virus induces high levels of CTLA-4 and apoptosis in splenocytes of BALB/c mice. Virus Genes 2024; 60:475-487. [PMID: 39102085 DOI: 10.1007/s11262-024-02095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
DENV infection outcomes depend on the host's variable expression of immune receptors and mediators, leading to either resolution or exacerbation. While the NS3 protein is known to induce robust immune responses, the specific impact of its protease region epitopes remains unclear. This study investigated the effect of recombinant NS3 protease region proteins from all four DENV serotypes on splenocyte activation in BALB/c mice (n = 5/group). Mice were immunized with each protein, and their splenocytes were subsequently stimulated with homologous antigens. We measured the expression of costimulatory molecules (CD28, CD80, CD86, CD152) by flow cytometry, along with IL-2 production, CD25 expression, and examined the antigen-specific activation of CD4 + and CD8 + T cells. Additionally, the expression of IL-1, IL-10, and TGF-β1 in splenocytes from immunized animals was assessed. Apoptosis was evaluated using Annexin V/PI staining and DNA fragmentation analysis. Stimulation of splenocytes from immunized mice triggered apoptosis (phosphatidylserine exposure and caspase 3/7 activation) and increased costimulatory molecule expression, particularly CD152. Low IL-2 production and low CD25 expression, as well as sustained expression of the IL-10 gene. These results suggest that these molecules might be involved in mechanisms by which the NS3 protein contributes to viral persistence and disease pathogenesis.
Collapse
Affiliation(s)
- Víctor Adolfo Romero-Cruz
- Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Luis Castelazo, Animas, 91190, Xalapa, Veracruz, Mexico
| | - Angel Ramos-Ligonio
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Edificio D, Universidad Veracruzana, Prolongación de Oriente 6 No. 1009, Col. Rafael Alvarado, 94340, Orizaba, Veracruz, Mexico
| | - Karen García-Alejandro
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Edificio D, Universidad Veracruzana, Prolongación de Oriente 6 No. 1009, Col. Rafael Alvarado, 94340, Orizaba, Veracruz, Mexico
- Maestría en Procesos Biológicos, Universidad Veracruzana, Prolongación de Oriente 6 No. 1009, Col. Rafael Alvarado, 94340, Orizaba, Veracruz, Mexico
| | - Melissa Cerecedo-García
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Edificio D, Universidad Veracruzana, Prolongación de Oriente 6 No. 1009, Col. Rafael Alvarado, 94340, Orizaba, Veracruz, Mexico
- Maestría en Procesos Biológicos, Universidad Veracruzana, Prolongación de Oriente 6 No. 1009, Col. Rafael Alvarado, 94340, Orizaba, Veracruz, Mexico
| | - María de la Soledad Lagunes-Castro
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Edificio D, Universidad Veracruzana, Prolongación de Oriente 6 No. 1009, Col. Rafael Alvarado, 94340, Orizaba, Veracruz, Mexico
| | - Aracely López-Monteon
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Edificio D, Universidad Veracruzana, Prolongación de Oriente 6 No. 1009, Col. Rafael Alvarado, 94340, Orizaba, Veracruz, Mexico.
| |
Collapse
|
2
|
Mao W, Yoo HS. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater Res 2024; 28:0086. [PMID: 39323561 PMCID: PMC11423863 DOI: 10.34133/bmr.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Huang K, Yang M, Zhou Y, Cao Y, Pang G, Zhao J, Liu Y, Luo J. Application of CD25 and CTLA4 gene transcription levels in early prediction of acute graft-versus-host disease. Front Immunol 2024; 15:1410439. [PMID: 39072333 PMCID: PMC11272456 DOI: 10.3389/fimmu.2024.1410439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Our study investigated the potential of peripheral blood T cell CD25, CD28, and CTLA-4 gene transcription levels as predictive biomarkers for acute graft-versus-host disease (aGVHD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Methods Real-time reverse transcription fluorescent quantitative PCR (RT-qPCR) analysis was conducted on day +7, +14, and +21 post-transplantation in patients undergoing allo-HSCT. Results Elevated levels of CD25 and CTLA-4 mRNA were found to be associated with the occurrence of aGVHD, as well as severe and gastrointestinal aGVHD. Receiver operating characteristic (ROC) curve analysis was utilized to assess the predictive value of each biomarker. Combined analysis of CD25 and CTLA-4 mRNA levels demonstrated promising predictive potential for aGVHD. Conclusion Our results confirmed that the transcription levels of CD25 and CTLA-4 genes could be used as early predictive biomarkers for aGVHD post-allo-HSCT.
Collapse
Affiliation(s)
- Ken Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Mengxin Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuhang Zhou
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yaxuan Cao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guanxiu Pang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Zhao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianming Luo
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Malkawi AK, Ohlund L, Rahman AMA, Sleno L, Siaj M. Co-stimulatory pathway competitive assay development using Liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Pharm Biomed Anal 2024; 242:116034. [PMID: 38422671 DOI: 10.1016/j.jpba.2024.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
T-cells play a significant role in the development of autoimmune diseases. The CD28-B7 costimulatory pathway is crucial for activating T-cells, and blocking this pathway is essential for treating autoimmune diseases. Therapeutic antibodies and fusion proteins that target costimulatory molecules like CD80, CD86, CTLA-4, and CD28 have been developed to explore the costimulation process and as targeted treatments. To advance our understanding of costimulation in autoimmunity and the inhibition of the costimulatory pathway, it is crucial to have an accurate, precise, and direct method for detecting and quantifying the soluble form of these molecules in body fluids and various biological systems. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying the four costimulatory proteins depending on the signature peptides derived from the soluble isoform of these proteins in multiple reaction monitoring (MRM) mode. The method was validated using the US FDA guidelines. The LOQ was determined as ∼0.5 nM for the four analytes, with quantification extended to 20 nM with a correlation coefficient of R2>0.998. The developed MRM method was used to analyze on-bead digested protein mixtures to establish a competitive assay for the CD28-B7 costimulatory pathway using CTLA4-Ig (Abatacept ™) as an FDA-approved drug for rheumatoid arthritis. The IC50 was determined to be 2.99 and 159.8 nM for sCD80 and sCD86, respectively. A straightforward MRM-based competitive assay will advance the knowledge about the costimulatory role in autoimmunity and the autoimmune therapeutic drug discovery, with the need for broad application on different in vitro and in vivo models to discover new targeted inhibitors.
Collapse
Affiliation(s)
- Abeer K Malkawi
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Leanne Ohlund
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia; Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Chemistry, Memorial University of Newfoundland, St. John's, NL AIC 5S7, Canada
| | - Lekha Sleno
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Mohamed Siaj
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
5
|
Çerçi Alkaç B, Soyöz M, Pehlivan M, Kılıçaslan Ayna T, Tatar E, Karahan Çöven Hİ, Tanrısev M, Pirim İ. Assessment of CTLA-4 Gene Expression Levels on CD8+ T Cells in Renal Transplant Patients and Relation with Serum sCTLA-4 Levels. Biochem Genet 2024:10.1007/s10528-024-10723-7. [PMID: 38467886 DOI: 10.1007/s10528-024-10723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/28/2024] [Indexed: 03/13/2024]
Abstract
CTLA-4 (Cytotoxic T Lymphocyte Antigen-4) is an immune regulator molecule that is expressed on a variety of immune cells, including CD4+ and CD8+ T cells. After realizing the significance of this regulator molecule, researchers began to concentrate on its activation or inhibition in cancer. Even though there have been some studies on organ transplantation and autoimmunity, the role of the CTLA-4 molecule in renal transplantation has not been demonstrated. The goal of this study was to see how CTLA-4 gene expression and serum sCTLA-4 levels affected renal transplant patients. Peripheral blood samples were collected before and 1-3 months after renal transplantation from 29 recipients. CD8+ T lymphocytes were separated using magnetic beads and purity of the cells controlled by Flow cytometry. CTLA-4 mRNA levels were determined by Real-Time PCR while serum sCTLA-4 levels were assessed by ELISA. 55% of the patient had decreased level of CTLA-4 mRNA after transplantation when compared to pre-transplantation levels. Moreover 61% of the patient had lower serum sCTLA-4 levels after transplantation. sCTLA-4 levels were decreased 11% of the patients with rejection episode after transplantation when compared to stabile patients (5%). Kidney rejection is a complicated process influenced by numerous unknown factors. Several parameters should be evaluated together to precise rejection episodes or graft dysfunctions. Further research focused on the other immune checkpoint regulator molecules could give an opportunity to have an idea about the effect of these molecules on renal transplantation.
Collapse
Affiliation(s)
- Burcu Çerçi Alkaç
- Department of Medical Biology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye.
| | - Mustafa Soyöz
- Department of Medical Biology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye
| | - Melek Pehlivan
- Vocational School of Health Services, Izmir Katip Celebi University, Izmir, Türkiye
| | - Tülay Kılıçaslan Ayna
- Department of Medical Biology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye
| | - Erhan Tatar
- Department of Nephrology, Bozyaka Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - H İlayhan Karahan Çöven
- Department of Medical Biology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye
| | - Mehmet Tanrısev
- Department of Nephrology, Tepecik Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - İbrahim Pirim
- Department of Medical Biology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|
6
|
Regmi M, Wang Y, Liu W, Dai Y, Liu S, Ma K, Lin G, Yang J, Liu H, Wu J, Yang C. From glioma gloom to immune bloom: unveiling novel immunotherapeutic paradigms-a review. J Exp Clin Cancer Res 2024; 43:47. [PMID: 38342925 PMCID: PMC10860318 DOI: 10.1186/s13046-024-02973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024] Open
Abstract
In tumor therapeutics, the transition from conventional cytotoxic drugs to targeted molecular therapies, such as those targeting receptor tyrosine kinases, has been pivotal. Despite this progress, the clinical outcomes have remained modest, with glioblastoma patients' median survival stagnating at less than 15 months. This underscores the urgent need for more specialized treatment strategies. Our review delves into the progression toward immunomodulation in glioma treatment. We dissect critical discoveries in immunotherapy, such as spotlighting the instrumental role of tumor-associated macrophages, which account for approximately half of the immune cells in the glioma microenvironment, and myeloid-derived suppressor cells. The complex interplay between tumor cells and the immune microenvironment has been explored, revealing novel therapeutic targets. The uniqueness of our review is its exhaustive approach, synthesizing current research to elucidate the intricate roles of various molecules and receptors within the glioma microenvironment. This comprehensive synthesis not only maps the current landscape but also provides a blueprint for refining immunotherapy for glioma, signifying a paradigm shift toward leveraging immune mechanisms for improved patient prognosis.
Collapse
Affiliation(s)
- Moksada Regmi
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
| | - Yingjie Wang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Yuwei Dai
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Shikun Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Ke Ma
- Peking University Health Science Center, Beijing, 100191, China
| | - Guozhong Lin
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Hongyi Liu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Jian Wu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China.
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China.
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China.
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China.
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
| |
Collapse
|
7
|
Darvish Z, Kheder RK, Faraj TA, Najmaldin SK, Mollazadeh S, Nosratabadi R, Esmaeili SA. A better understanding of the role of the CTLA-CD80/86 axis in the treatment of autoimmune diseases. Cell Biochem Funct 2024; 42:e3895. [PMID: 38050849 DOI: 10.1002/cbf.3895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Autoimmune diseases are diseases in which the regulatory mechanisms of the immune response are disturbed. As a result, the body loses self-tolerance. Since one of the main regulatory mechanisms of the immune response is the CTLA4-CD80/86 axis, this hypothesis suggests that autoimmune diseases potentially share a similar molecular basis of pathogenesis. Hence, investigating the CTLA4-CD80/86 axis may be helpful in finding an appropriate treatment strategy. Therefore, this study aims to investigate the molecular basis of the CTLA4-CD80/86 axis in the regulation of the immune response, and then its role in developing some autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. As well, the main therapeutic strategies affecting the CTLA4-CD80/86 axis have been summarized to highlight the importance of this axis in management of autoimmune diseases.
Collapse
Affiliation(s)
- Zahra Darvish
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Tola Abdulsattar Faraj
- Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Soran K Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center٫ North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Hosseinalizadeh H, Rabiee F, Eghbalifard N, Rajabi H, Klionsky DJ, Rezaee A. Regulating the regulatory T cells as cell therapies in autoimmunity and cancer. Front Med (Lausanne) 2023; 10:1244298. [PMID: 37828948 PMCID: PMC10565010 DOI: 10.3389/fmed.2023.1244298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Regulatory T cells (Tregs), possess a pivotal function in the maintenance of immune homeostasis. The dysregulated activity of Tregs has been associated with the onset of autoimmune diseases and cancer. Hence, Tregs are promising targets for interventions aimed at steering the immune response toward the desired path, either by augmenting the immune system to eliminate infected and cancerous cells or by dampening it to curtail the damage to self-tissues in autoimmune disorders. The activation of Tregs has been observed to have a potent immunosuppressive effect against T cells that respond to self-antigens, thus safeguarding our body against autoimmunity. Therefore, promoting Treg cell stability presents a promising strategy for preventing or managing chronic inflammation that results from various autoimmune diseases. On the other hand, Tregs have been found to be overactivated in several forms of cancer, and their role as immune response regulators with immunosuppressive properties poses a significant impediment to the successful implementation of cancer immunotherapy. However, the targeting of Tregs in a systemic manner may lead to the onset of severe inflammation and autoimmune toxicity. It is imperative to develop more selective methods for targeting the function of Tregs in tumors. In this review, our objective is to elucidate the function of Tregs in tumors and autoimmunity while also delving into numerous therapeutic strategies for reprogramming their function. Our focus is on reprogramming Tregs in a highly activated phenotype driven by the activation of key surface receptors and metabolic reprogramming. Furthermore, we examine Treg-based therapies in autoimmunity, with a specific emphasis on Chimeric Antigen Receptor (CAR)-Treg therapy and T-cell receptor (TCR)-Treg therapy. Finally, we discuss key challenges and the future steps in reprogramming Tregs that could lead to the development of novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Rabiee
- Department of Pharmacology and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Eghbalifard
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Rajabi
- Faculty of Medicine, ShahreKord University of Medical Sciences, Shahrekord, Iran
| | - Daniel J. Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Cohen GS, Kallarakal MA, Jayaraman S, Ibukun FI, Tong KP, Orzolek LD, Larman HB, Krummey SM. Transplantation elicits a clonally diverse CD8 + T cell response that is comprised of potent CD43 + effectors. Cell Rep 2023; 42:112993. [PMID: 37590141 PMCID: PMC10727118 DOI: 10.1016/j.celrep.2023.112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/09/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
CD8+ T cells mediate acute rejection of allografts, which threatens the long-term survival of transplanted organs. Using MHC class I tetramers, we find that allogeneic CD8+ T cells are present at an elevated naive precursor frequency relative to other epitopes, only modestly increase in number after grafting, and maintain high T cell receptor diversity throughout the immune response. While antigen-specific effector CD8+ T cells poorly express the canonical effector marker KLRG-1, expression of the activated glycoform of CD43 defines potent effectors after transplantation. Activated CD43+ effector T cells maintain high expression of the coreceptor induced T cell costimulator (ICOS) in the presence of CTLA-4 immunoglobulin (Ig), and dual CTLA-4 Ig/anti-ICOS treatment prolongs graft survival. These data demonstrate that graft-specific CD8+ T cells have a distinct response profile relative to anti-pathogen CD8+ T cells and that CD43 and ICOS are critical surface receptors that define potent effector CD8+ T cell populations that form after transplantation.
Collapse
Affiliation(s)
- Gregory S Cohen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Melissa A Kallarakal
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sahana Jayaraman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Francis I Ibukun
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Katherine P Tong
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linda D Orzolek
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - H Benjamin Larman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Scott M Krummey
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Wang T, Sun S, Zeng X, Li J. ICI-based therapies: A new strategy for oral potentially malignant disorders. Oral Oncol 2023; 140:106388. [PMID: 37054586 DOI: 10.1016/j.oraloncology.2023.106388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
Oral potentially malignant disorders (OPMDs) are linked with an escalated risk of developing cancers, particularly oral squamous cell carcinoma (OSCC). Since prevailing therapies cannot effectively forestall the exacerbation and recurrence of OPMDs, halting their malignant progression is paramount. The immune checkpoint serves as a cardinal regulator of the immune response and the primary cause of adaptive immunological resistance. Although the exact mechanism remains elusive, elevated expression of multiple immune checkpoints in OPMDs and OSCC relative to healthy oral mucosa has been ascertained. This review delves into the immunosuppressive microenvironment of OPMDs, the expression of diverse immune checkpoints such as programmed death receptor-1 (PD-1) and programmed death receptor-1 ligand (PD-L1) in OPMDs, and the potential application of corresponding inhibitors. In addition, synergistic strategies incorporating combined immune checkpoint inhibitors, such as cGAS-STING, costimulatory molecules, cancer vaccines, and hydrogels, are discussed to gain a more comprehensive understanding of the role and application of immune checkpoint inhibitors (ICIs) in oral carcinogenesis.
Collapse
Affiliation(s)
- Tianqing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Silu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
11
|
Sadeghi M, Khodakarami A, Ahmadi A, Fathi M, Gholizadeh Navashenaq J, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Movasaghpour Akbari AA, Jadidi-Niaragh F. The prognostic and therapeutic potentials of CTLA-4 in hematological malignancies. Expert Opin Ther Targets 2022; 26:1057-1071. [PMID: 36683579 DOI: 10.1080/14728222.2022.2170781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Hematological Malignancies (HMs) are a group of progressive, difficult-to-treat, and highly recurrent diseases. A suppressed phenotype of the immune system is present in HMs and growing evidence indicates the role of Cytotoxic T lymphocyte-Associated protein 4 (CTLA-4) in the course of HMs. AREAS COVERED This article reviews the recent literature on the role of CTLA-4 in different subtypes of HMs. Here, the studies on the expression pattern, its effect on the prognosis of different HMs, and polymorphisms of CTLA-4 have been elaborated. Finally, the effect of targeting CTLA-4 in vitro and in vivo, as well as in clinical trials, is discussed. EXPERT OPINION According to the recent literature, CTLA-4 is overexpressed in different HMs, which is correlated with poor survival, while it is associated with better a prognosis in Chronic Lymphocytic Leukemia (CLL). Targeting CTLA-4 in Acute Myeloid Leukemia (AML), Sezary Syndrome (SS), Hodgkin's Lymphoma (HL), and so on, is helpful. While this is not recommended and may even be harmful in multiple myeloma (MM) and CLL. Also, it seems that certain CTLA-4 gene polymorphisms are efficient factors in the course of HMs. Future studies may broaden our knowledge regarding the role of CTLA-4 in HMs.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Ahmadi
- Department of Chemical and Materials Engineering, the University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Ko ER, Anstrom KJ, Panettieri RA, Lachiewicz AM, Maillo M, O'Halloran JA, Boucher C, Smith PB, McCarthy MW, Segura Nunez P, Mendivil Tuchia de Tai S, Khan A, Mena Lora AJ, Salathe M, Kedar E, Capo G, Rodríguez Gonzalez D, Patterson TF, Palma C, Ariza H, Patelli Lima M, Blamoun J, Nannini EC, Sprinz E, Mykietiuk A, Wang JP, Parra-Rodriguez L, Der T, Willsey K, Benjamin DK, Wen J, Zakroysky P, Halabi S, Silverstein A, McNulty SE, O'Brien SM, Al-Khalidi HR, Butler S, Atkinson J, Adam SJ, Chang S, Maldonado MA, Proscham M, LaVange L, Bozzette SA, Powderly WG. Abatacept for Treatment of Adults Hospitalized with Moderate or Severe Covid-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.09.22.22280247. [PMID: 36203544 PMCID: PMC9536071 DOI: 10.1101/2022.09.22.22280247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND We investigated whether abatacept, a selective costimulation modulator, provides additional benefit when added to standard-of-care for patients hospitalized with Covid-19. METHODS We conducted a master protocol to investigate immunomodulators for potential benefit treating patients hospitalized with Covid-19 and report results for abatacept. Intravenous abatacept (one-time dose 10 mg/kg, maximum dose 1000 mg) plus standard of care (SOC) was compared with shared placebo plus SOC. Primary outcome was time-to-recovery by day 28. Key secondary endpoints included 28-day mortality. RESULTS Between October 16, 2020 and December 31, 2021, a total of 1019 participants received study treatment (509 abatacept; 510 shared placebo), constituting the modified intention-to-treat cohort. Participants had a mean age 54.8 (SD 14.6) years, 60.5% were male, 44.2% Hispanic/Latino and 13.7% Black. No statistically significant difference for the primary endpoint of time-to-recovery was found with a recovery-rate-ratio of 1.14 (95% CI 1.00-1.29; p=0.057) compared with placebo. We observed a substantial improvement in 28-day all-cause mortality with abatacept versus placebo (11.0% vs. 15.1%; odds ratio [OR] 0.62 [95% CI 0.41- 0.94]), leading to 38% lower odds of dying. Improvement in mortality occurred for participants requiring oxygen/noninvasive ventilation at randomization. Subgroup analysis identified the strongest effect in those with baseline C-reactive protein >75mg/L. We found no statistically significant differences in adverse events, with safety composite index slightly favoring abatacept. Rates of secondary infections were similar (16.1% for abatacept; 14.3% for placebo). CONCLUSIONS Addition of single-dose intravenous abatacept to standard-of-care demonstrated no statistically significant change in time-to-recovery, but improved 28-day mortality. TRIAL REGISTRATION ClinicalTrials.gov ( NCT04593940 ).
Collapse
|
13
|
Holers VM, Kuhn KA, Demoruelle MK, Norris JM, Firestein GS, James EA, Robinson WH, Buckner JH, Deane KD. Mechanism-driven strategies for prevention of rheumatoid arthritis. RHEUMATOLOGY & AUTOIMMUNITY 2022; 2:109-119. [PMID: 36312783 PMCID: PMC9610829 DOI: 10.1002/rai2.12043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
In seropositive rheumatoid arthritis (RA), the onset of clinically apparent inflammatory arthritis (IA) is typically preceded by a prolonged period of autoimmunity manifest by the presence of circulating autoantibodies that can include antibodies to citrullinated protein antigens (ACPA) and rheumatoid factor (RF). This period prior to clinical IA can be designated preclinical RA in those individuals who have progressed to a clinical diagnosis of RA, and an 'at-risk' status in those who have not developed IA but exhibit predictive biomarkers of future clinical RA. With the goal of developing RA prevention strategies, studies have characterized immune phenotypes of preclinical RA/at-risk states. From these studies, a model has emerged wherein mucosal inflammation and dysbiosis may lead first to local autoantibody production that should normally be transient, but instead is followed by systemic spread of the autoimmunity as manifest by serum autoantibody elevations, and ultimately drives the development of clinically identified joint inflammation. This model can be envisioned as the progression of disease development through serial 'checkpoints' that in principle should constrain or resolve autoimmunity; however, instead the checkpoints 'fail' and clinical RA develops. Herein we review the immune processes that are likely to be present at each step and the potential therapeutic strategies that could be envisioned to delay, diminish, halt or even reverse the progression to clinical RA. Notably, these prevention strategies could utilize existing therapies approved for clinical RA, therapies approved for other diseases that target relevant pathways in the preclinical/at-risk state, or approaches that target novel pathways.
Collapse
Affiliation(s)
- V. Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristine A. Kuhn
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - M. Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Gary S. Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - William H. Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA and VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | - Kevin D. Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Dyslipidemia in Renal Transplant Recipients. TRANSPLANTOLOGY 2022. [DOI: 10.3390/transplantology3020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia is a frequent complication after kidney transplantation (KT) and is an important risk factor for cardiovascular disease (CVD). Renal transplant recipients (RTRs) are considered at high, or very high, risk of CVD, which is a leading cause of death in this patient group. Despite many factors of post-transplant dyslipidemia, the immunosuppressive treatment has the biggest influence on a lipid profile. There are no strict dyslipidemia treatment guidelines for RTRs, but the ones proposing an individual approach regarding CVD risk seem most suitable. Proper diet and physical activity are the main general measures to manage dyslipidemia and should be introduced initially in every patient after KT. In the case of an insufficient correction of lipemia, statins are the basis for hypolipidemic treatment. Statins should be introduced with caution to avoid serious side-effects (e.g., myopathy) or drug-drug interactions, especially with immunosuppressants. To lower the incidence of adverse effects, and improve medication adherence, ezetimibe in combination with statins is recommended. Fibrates and bile sequestrants are not recommended due to their side-effects and variable efficacy. However, several new lipid-lowering drugs like Proprotein convertase subtilisin/Kexin type9 (PCSK9) inhibitors may have promising effects in RTRs, but further research assessing efficacy and safety is yet to be carried out.
Collapse
|
15
|
Silva RCMC, Panis C, Pires BRB. Lessons from transmissible cancers for immunotherapy and transplant. Immunol Med 2021; 45:146-161. [PMID: 34962854 DOI: 10.1080/25785826.2021.2018783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The emergence of horizontal transmission of cancer between vertebrates is an issue that interests scientists and medical society. Transmission requires: (i) a mechanism by which cancer cells can transfer to another organism and (ii) a repressed immune response on the part of the recipient. Transmissible tumors are unique models to comprehend the responses and mechanisms mediated by the major histocompatibility complex (MHC), which can be transposed for transplant biology. Here, we discuss the mechanisms involved in immune-mediated tissue rejection, making a parallel with transmissible cancers. We also discuss cellular and molecular mechanisms involved in cancer immunotherapy and anti-rejection therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | | |
Collapse
|
16
|
Wieland A, Ahmed R. Immunological lessons from CD28 deficiency in humans. Cell 2021; 184:3595-3597. [PMID: 34242561 DOI: 10.1016/j.cell.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this issue of Cell, Casanova and colleagues examine three family members with a mutation that results in deficiency of the T cell co-stimulatory molecule CD28. These patients exhibit clinical symptoms due to human papillomavirus-2 and -4 infections, show increased levels of Epstein-Barr virus and cytomegalovirus in the blood, and respond poorly to vaccines.
Collapse
Affiliation(s)
- Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
17
|
Adom D, Dillon SR, Yang J, Liu H, Ramadan A, Kushekhar K, Hund S, Albright A, Kirksey M, Adeniyan T, Lewis KE, Evans L, Wu R, Levin SD, Mudri S, Yang J, Rickel E, Seaberg M, Henderson K, Gudgeon CJ, Wolfson MF, Swanson RM, Swiderek KM, Peng SL, Hippen KL, Blazar BR, Paczesny S. ICOSL + plasmacytoid dendritic cells as inducer of graft-versus-host disease, responsive to a dual ICOS/CD28 antagonist. Sci Transl Med 2021; 12:12/564/eaay4799. [PMID: 33028709 DOI: 10.1126/scitranslmed.aay4799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 05/13/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic cell transplantation (HCT). CD146 and CCR5 are proteins that mark activated T helper 17 (Th17) cells. The Th17 cell phenotype is promoted by the interaction of the receptor ICOS on T cells with ICOS ligand (ICOSL) on dendritic cells (DCs). We performed multiparametric flow cytometry in a cohort of 156 HCT recipients and conducted experiments with aGVHD murine models to understand the role of ICOSL+ DCs. We observed an increased frequency of ICOSL+ plasmacytoid DCs, correlating with CD146+CCR5+ T cell frequencies, in the 64 HCT recipients with gastrointestinal aGVHD. In murine models, donor bone marrow cells from ICOSL-deficient mice compared to those from wild-type mice reduced aGVHD-related mortality. Reduced aGVHD resulted from lower intestinal infiltration of pDCs and pathogenic Th17 cells. We transplanted activated human ICOSL+ pDCs along with human peripheral blood mononuclear cells into immunocompromised mice and observed infiltration of intestinal CD146+CCR5+ T cells. We found that prophylactic administration of a dual human ICOS/CD28 antagonist (ALPN-101) prevented aGVHD in this model better than did the clinically approved belatacept (CTLA-4-Fc), which binds CD80 (B7-1) and CD86 (B7-2) and interferes with the CD28 T cell costimulatory pathway. When started at onset of aGVHD signs, ALPN-101 treatment alleviated symptoms of ongoing aGVHD and improved survival while preserving antitumoral cytotoxicity. Our data identified ICOSL+-pDCs as an aGVHD biomarker and suggest that coinhibition of the ICOSL/ICOS and B7/CD28 axes with one biologic drug may represent a therapeutic opportunity to prevent or treat aGVHD.
Collapse
Affiliation(s)
- Djamilatou Adom
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Jinfeng Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hao Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abdulraouf Ramadan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kushi Kushekhar
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Samantha Hund
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amanda Albright
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maykala Kirksey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Titilayo Adeniyan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Rebecca Wu
- Alpine Immune Sciences, Seattle, WA 98102, USA
| | | | | | - Jing Yang
- Alpine Immune Sciences, Seattle, WA 98102, USA
| | | | | | | | | | | | | | | | | | - Keli L Hippen
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. .,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Kim EJ, Kim JY, Choi HY, Lee H, Lee J, Kim MS, Kim YS, Huh KH, Kim BS. Systemic Immunomodulatory Effects of Combinatorial Treatment of Thalidomide and Dexamethasone on T Cells and Other Immune Cells. Yonsei Med J 2021; 62:137-148. [PMID: 33527793 PMCID: PMC7859687 DOI: 10.3349/ymj.2021.62.2.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE In organ transplantation, the need for immune modulation rather than immune suppression has been emphasized. In this study, we investigated whether combinatorial treatments of with thalidomide (TM) and dexamethasone (DX) might be new approaches to induce systemic immunomodulation on T cells and other immune cells that regulate the expression of co-inhibitory molecules. MATERIALS AND METHODS Naïve splenic T cells from C57BL/6 mice were sort-purified and cultured in vitro for CD4+ T cell proliferation and regulatory T cell (Treg) conversion in the presence of TM or/and DX. Expression of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1) in proliferated and converted T cells was quantified by flow cytometry. We also quantified in vivo expression of CTLA-4 and PD-1 on splenic CD4+ T cells and other immune cells isolated from TM- or/and DX-treated mice. Mixed lymphocytes reactions (MLR) were performed to evaluate the capacity of immune cells in carrying out immune responses. RESULTS CTLA-4 expressions in effector T cells in vivo and in Tregs in vivo/vitro significantly increased upon TM/DX combinatorial treatment. Corresponding to increased CTLA-4 expression in T cells, the expression of ligand molecules for CTLA-4 significantly increased in splenic dendritic cells in TM/DX-treated groups. In addition, MLR results demonstrated that splenocytes isolated from TM/DX-treated mice significantly suppressed the proliferation of T cells isolated from other strains. CONCLUSION Based on these results, we suggest that TM/DX combinatorial treatments might be efficient immunomodulatory methods for regulating T cell immunity.
Collapse
Affiliation(s)
- Eun Jee Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Joon Ye Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon Young Choi
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojung Lee
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Juhan Lee
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Myoung Soo Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Seun Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu Ha Huh
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea.
| | - Beom Seok Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Yu XH, Deng WY, Jiang HT, Li T, Wang Y. Kidney xenotransplantation: Recent progress in preclinical research. Clin Chim Acta 2020; 514:15-23. [PMID: 33301767 DOI: 10.1016/j.cca.2020.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/23/2023]
Abstract
Kidney transplantation is the most effective treatment for end-stage renal disease, but is limited by the increasing shortage of deceased and living human donor kidneys. Xenotransplantation using pig organs provides the possibility to resolve the issue of organ supply shortage and is regarded as the next great medical revolution. In the past five years, there have been sequential advances toward the prolongation of life-supporting pig kidney xenograft survival in non-human primates, with the longest survival being 499 days. This progress is due to the growing availability of pigs with multi-layered genetic modifications to overcome the pathobiological barriers and the application of a costimulation blockade-based immunosuppressive regimen. These encouraging results bring the hope to initiate the clinical trials of pig kidney transplantation in the near future. In this review, we summarized the latest advances regarding pig kidney xenotransplantation in preclinical models to provide a basis for future investigation and potential clinical translation.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Hong-Tao Jiang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Tao Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Yi Wang
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China.
| |
Collapse
|
20
|
Cui J, Yu J, Xu H, Zou Y, Zhang H, Chen S, Le S, Zhao J, Jiang L, Xia J, Wu J. Autophagy-lysosome inhibitor chloroquine prevents CTLA-4 degradation of T cells and attenuates acute rejection in murine skin and heart transplantation. Theranostics 2020; 10:8051-8060. [PMID: 32724457 PMCID: PMC7381746 DOI: 10.7150/thno.43507] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/19/2020] [Indexed: 01/31/2023] Open
Abstract
Background: The immune checkpoint cytotoxic T lymphocyte antigen-4 (CTLA-4), induced upon T cell activation but degraded quickly, has been targeted in the clinical therapy of advanced cancers and autoimmune diseases. However, whether inhibiting CTLA-4 degradation ameliorates transplant rejection remains unknown. Methods: The CTLA-4 expression in activated murine T cells treated with the inhibitors mediating protein degradation was detected by flow cytometry (FCM). CD45.1 mice, which received TEa T cells and underwent heart transplantation, were administrated with the inhibitor. Subsequently, CTLA-4 expression of TEa T cells was analyzed. Murine skin and heart transplantation models were built, then the survival and histopathology of the allografts, and T cell subsets in the spleens of each group were compared. Results: Chloroquine (CQ) was identified as an inhibitor of CTLA-4 degradation, which augmented both surface and total CTLA-4 expression in T cells. It considerably prolonged the skin and heart allograft survival time and reduced the infiltration of inflammatory cells in allografts. Besides decreasing the frequencies of the CD4+ and CD8+ effector T cells, especially IFN-γ producing T cells, CQ also increased the proportion of regulatory T cells in the spleen. The CTLA-4 blockade abrogated the benefits of CQ on the survival of heart allografts. Moreover, CQ enhanced CTLA-4 expression in activated human T cells and reduced the secretion of IFN-γ in human mixed lymphocyte reaction. Conclusion: Targeting CTLA-4 degradation provides a novel means to prevent transplant rejection and induce transplant tolerance.
Collapse
|
21
|
Cowpox virus encodes a protein that binds B7.1 and B7.2 and subverts T cell costimulation. Proc Natl Acad Sci U S A 2019; 116:21113-21119. [PMID: 31575740 DOI: 10.1073/pnas.1909414116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Costimulation is required for optimal T cell activation, yet it is unclear whether poxviruses dedicatedly subvert costimulation during infection. Here, we report that the secreted M2 protein encoded by cowpox virus (CPXV) specifically interacts with human and murine B7.1 (CD80) and B7.2 (CD86). We also show that M2 competes with CD28 and CTLA4 for binding to cell surface B7 ligands, with stronger efficacy against CD28. Functionally, recombinant M2 and culture supernatants from wild-type (WT) but not M2-deficient (∆M2) CPXV-infected cells can potently suppress B7 ligand-mediated T cell proliferation and interleukin-2 (IL-2) production. Furthermore, we observed increased antiviral CD4 and CD8 T cell responses in C57BL/6 mice challenged by ∆M2 CPXV compared with WT virus. These differences in immune responses to ∆M2 and WT CPXV were not observed in CD28-deficient mice. Taken together, our findings define a mechanism of viral sabotage of T cell activation that highlights the role of CD28 costimulation in host defense against poxvirus infections.
Collapse
|
22
|
CD28 Deficiency Ameliorates Blast Exposure-Induced Lung Inflammation, Oxidative Stress, Apoptosis, and T Cell Accumulation in the Lungs via the PI3K/Akt/FoxO1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4848560. [PMID: 31565151 PMCID: PMC6745179 DOI: 10.1155/2019/4848560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Although CD28 is associated with the expression of inflammatory mediators, apoptosis-related protein, immunosuppression, and tumorigenesis, the effects of CD28 deficiency on blast exposure-induced lung injury have not been investigated. In this study, we have explored the effects of CD28 on blast exposure-induced lung injury and studied its potential molecular mechanisms. A mouse model of blast exposure-induced acute lung injury was established. Sixty C57BL/6 wild-type (WT) and CD28 knockout (CD28−/−) mice were randomly divided into control or model groups. Lung tissue samples were collected 24 h and 48 h after blast injury. Histopathological changes and the expressions of inflammatory-related proteins were detected by hematoxylin-eosin, immunohistochemistry, and immunofluorescence staining. Apoptosis and oxidative stress were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and reactive oxygen species (ROS). Inflammation, apoptosis, oxidative stress, and related pathway protein expression were studied by western blotting. In addition, the levels of CD3 and CD28 proteins were measured by flow cytometry. In the current study, we found that CD28 deficiency significantly inhibited blast exposure-induced increases in the lung weight/body weight ratio and wet weight/dry weight ratio; decreased the infiltration of CD44+ leukocytes, CD163+ macrophages, and CD3+ T cells into the lungs; reduced the expressions of proinflammatory cytokines including IL-1β, TNF-α, and IL-6; and markedly increased IL-10 expression. CD28 deficiency also significantly attenuated blast exposure-induced ROS, MDA5, and IREα expressions; increased SOD-1 expression; lowered the number of apoptotic cells and Bax, Caspase-3, and active Caspase-8 expressions; and increased Bcl-2 expression. Additionally, CD28 deficiency significantly ameliorated blast exposure-induced increases of p-PI3K and p-Akt and ameliorated the decrease in the p-FoxO1 expression. Our results suggest that CD28 deficiency has a protective effect on blast exposure-induced lung injury, which might be associated with the PI3K/Akt/FoxO1 signaling pathway.
Collapse
|
23
|
Fitch Z, Schmitz R, Kwun J, Hering B, Madsen J, Knechtle SJ. Transplant research in nonhuman primates to evaluate clinically relevant immune strategies in organ transplantation. Transplant Rev (Orlando) 2019; 33:115-129. [PMID: 31027947 PMCID: PMC6599548 DOI: 10.1016/j.trre.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Research in transplant immunology using non-human primate (NHP) species to evaluate immunologic strategies to prevent rejection and prolong allograft survival has yielded results that have translated successfully into human organ transplant patient management. Other therapies have not proceeded to human translation due to failure in NHP testing, arguably sparing humans the futility and risk of such testing. The NHP transplant models are ethically necessary for drug development in this field and provide the closest analogue to human transplant patients available. The refinement of this resource with respect to colony MHC typing, reagent and assay development, and availability to the research community has greatly enhanced knowledge about transplant immunology and drug development.
Collapse
Affiliation(s)
- Zachary Fitch
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA; Center for Transplantation Sciences, Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, White 510c, 55 Fruit Street, Boston, MA, USA
| | - Robin Schmitz
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Jean Kwun
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Bernhard Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Joren Madsen
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA.
| |
Collapse
|
24
|
|
25
|
Khan MA, Shamma T. Complement factor and T-cell interactions during alloimmune inflammation in transplantation. J Leukoc Biol 2018; 105:681-694. [PMID: 30536904 DOI: 10.1002/jlb.5ru0718-288r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Complement factor and T-cell signaling during an effective alloimmune response plays a key role in transplant-associated injury, which leads to the progression of chronic rejection (CR). During an alloimmune response, activated complement factors (C3a and C5a) bind to their corresponding receptors (C3aR and C5aR) on a number of lymphocytes, including T-regulatory cells (Tregs), and these cell-molecular interactions have been vital to modulate an effective immune response to/from Th1-effector cell and Treg activities, which result in massive inflammation, microvascular impairments, and fibrotic remodeling. Involvement of the complement-mediated cell signaling during transplantation signifies a crucial role of complement components as a key therapeutic switch to regulate ongoing inflammatory state, and further to avoid the progression of CR of the transplanted organ. This review highlights the role of complement-T cell interactions, and how these interactions shunt the effector immune response during alloimmune inflammation in transplantation, which could be a novel therapeutic tool to protect a transplanted organ and avoid progression of CR.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Talal Shamma
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput Struct Biotechnol J 2018; 17:1-13. [PMID: 30581539 PMCID: PMC6297055 DOI: 10.1016/j.csbj.2018.11.004] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022] Open
Abstract
Studies have reported a positive correlation between elevated CD8+ T cells in the tumor microenvironment (TME) and good prognosis in cancer. However, the mechanisms linking T cell tumor-infiltration and tumor rejection are yet to be fully understood. The cells and factors of the TME facilitate tumor development in various ways. CD8+ T cell function is influenced by a number of factors, including CD8+ T cell trafficking and localization into tumor sites; as well as CD8+ T cell growth and differentiation. This review highlights recent literature as well as currently evolving concepts regarding the fates of CD8+ T cells in the TME from three different aspects CD8+ T cell trafficking, differentiation and function. A thorough understanding of factors contributing to the fates of CD8+ T cells will allow researchers to develop new strategies and improve on already existing strategies to facilitate CD8+ T cell mediated anti-tumor function, impede T cell dysfunction and modulate the TME into a less immunosuppressive TME.
Collapse
Affiliation(s)
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou 450052, China
| |
Collapse
|
27
|
Bojadzic D, Buchwald P. Toward Small-Molecule Inhibition of Protein-Protein Interactions: General Aspects and Recent Progress in Targeting Costimulatory and Coinhibitory (Immune Checkpoint) Interactions. Curr Top Med Chem 2018; 18:674-699. [PMID: 29848279 PMCID: PMC6067980 DOI: 10.2174/1568026618666180531092503] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Protein-Protein Interactions (PPIs) that are part of the costimulatory and coinhibitory (immune checkpoint) signaling are critical for adequate T cell response and are important therapeutic targets for immunomodulation. Biologics targeting them have already achieved considerable clinical success in the treatment of autoimmune diseases or transplant recipients (e.g., abatacept, belatacept, and belimumab) as well as cancer (e.g., ipilimumab, nivolumab, pembrolizumab, atezolizumab, durvalumab, and avelumab). In view of such progress, there have been only relatively limited efforts toward developing small-molecule PPI inhibitors (SMPPIIs) targeting these cosignaling interactions, possibly because they, as all other PPIs, are difficult to target by small molecules and were not considered druggable. Nevertheless, substantial progress has been achieved during the last decade. SMPPIIs proving the feasibility of such approaches have been identified through various strategies for a number of cosignaling interactions including CD40-CD40L, OX40-OX40L, BAFFR-BAFF, CD80-CD28, and PD-1-PD-L1s. Here, after an overview of the general aspects and challenges of SMPPII-focused drug discovery, we review them briefly together with relevant structural, immune-signaling, physicochemical, and medicinal chemistry aspects. While so far only a few of these SMPPIIs have shown activity in animal models (DRI-C21045 for CD40-D40L, KR33426 for BAFFR-BAFF) or reached clinical development (RhuDex for CD80-CD28, CA-170 for PD-1-PD-L1), there is proof-of-principle evidence for the feasibility of such approaches in immunomodulation. They can result in products that are easier to develop/ manufacture and are less likely to be immunogenic or encounter postmarket safety events than corresponding biologics, and, contrary to them, can even become orally bioavailable.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|