1
|
Lovisa S, Vetrano S. TWISTed fibroblasts: New drivers of intestinal fibrosis in Crohn's disease. Heliyon 2024; 10:e40604. [PMID: 39654763 PMCID: PMC11626011 DOI: 10.1016/j.heliyon.2024.e40604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Fibrosis is the pathological consequence of chronic inflammation. In Crohn's disease (CD), fibrostenotic complications occur with 50-70 % frequency as a failure to properly repair the tissue damage. Intestinal stenosis requires surgical intervention and relapses in most patients. Mesenchymal cells encompassed of heterogeneous cell subsets orchestrate this complex process. The lack of a full characterization of the stromal diversity and function in CD has consequently slowed the development of anti-fibrotic targets. Two recent studies align together demonstrating FAP+TWIST1+ fibroblasts as the primary mesenchymal population driving intestinal fibrosis in CD. Genetic and pharmacological targeting of Twist1 in mouse models proved the functional role of Fap+Twist1+ fibroblasts and indicate the use of the Twist1 inhibitor harmine as a potential therapeutic strategy to revert fibrosis.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stefania Vetrano
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
2
|
Xu Z, Sinha A, Pandya DN, Schnicker NJ, Wadas TJ. Cryo-electron microscopy reveals a single domain antibody with a unique binding epitope on fibroblast activation protein alpha. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619146. [PMID: 39463996 PMCID: PMC11507940 DOI: 10.1101/2024.10.18.619146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fibroblast activation protein alpha (FAP) is a serine protease that is expressed at basal levels in benign tissues but is overexpressed in a variety of pathologies, including cancer. Despite this unique expression profile, designing effective diagnostic and therapeutic agents that effectively target this biomarker remain elusive. Here we report the structural characterization of the interaction between a novel single domain antibody (sdAbs), I3, and FAP using cryo-electron microscopy. The reconstructions were determined to a resolution of 2.7 Å and contained two distinct populations; one I3 bound and two I3 molecules bound to the FAP dimer. In both cases, the sdAbs bound a unique epitope that was distinct from the active site of the enzyme. Furthermore, this report describes the rational mutation of specific residues within the complementarity determining region 3 (CDR3) loop to enhance affinity and selectivity of the I3 molecule for FAP. This report represents the first sdAb-FAP structure to be described in the literature.
Collapse
Affiliation(s)
- Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Akesh Sinha
- Department of Radiology, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Darpan N. Pandya
- Department of Radiology, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, Iowa, 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Thaddeus J. Wadas
- Department of Radiology, University of Iowa, Iowa City, Iowa, 52242, USA
| |
Collapse
|
3
|
Sanchez J, Claus C, McIntyre C, Tanos T, Boehnke A, Friberg LE, Jönsson S, Frances N. Combining mathematical modeling, in vitro data and clinical target expression to support bispecific antibody binding affinity selection: a case example with FAP-4-1BBL. Front Pharmacol 2024; 15:1472662. [PMID: 39444607 PMCID: PMC11497128 DOI: 10.3389/fphar.2024.1472662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The majority of bispecific costimulatory antibodies in cancer immunotherapy are capable of exerting tumor-specific T-cell activation by simultaneously engaging both tumor-associated targets and costimulatory receptors expressed by T cells. The amount of trimeric complex formed when the bispecific antibody is bound simultaneously to the T cell receptor and the tumor-associated target follows a bell-shaped curve with increasing bispecific antibody exposure/dose. The shape of the curve is determined by the binding affinities of the bispecific antibody to its two targets and target expression. Here, using the case example of FAP-4-1BBL, a fibroblast activation protein alpha (FAP)-directed 4-1BB (CD137) costimulator, the impact of FAP-binding affinity on trimeric complex formation and pharmacology was explored using mathematical modeling and simulation. We quantified (1) the minimum number of target receptors per cell required to achieve pharmacological effect, (2) the expected coverage of the patient population for 19 different solid tumor indications, and (3) the range of pharmacologically active exposures as a function of FAP-binding affinity. A 10-fold increase in FAP-binding affinity (from a dissociation constant [KD] of 0.7 nM-0.07 nM) was predicted to reduce the number of FAP receptors needed to achieve 90% of the maximum pharmacological effect from 13,400 to 4,000. Also, the number of patients with colon cancer that would achieve 90% of the maximum effect would increase from 6% to 39%. In this work, a workflow to select binding affinities for bispecific antibodies that integrates preclinical in vitro data, mathematical modeling and simulation, and knowledge on target expression in the patient population, is provided. The early implementation of this approach can increase the probability of success with cancer immunotherapy in clinical development.
Collapse
Affiliation(s)
- Javier Sanchez
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Christina Claus
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christine McIntyre
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Welwyn, Welwyn Garden City, United Kingdom
| | - Tamara Tanos
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Axel Boehnke
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | | | - Siv Jönsson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nicolas Frances
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
4
|
Carlomagno S, Setti C, Ortolani F, Sivori S. Pancreatic ductal adenocarcinoma microenvironment: Soluble factors and cancer associated fibroblasts as modulators of NK cell functions. Immunol Lett 2024; 269:106898. [PMID: 39019404 DOI: 10.1016/j.imlet.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the most frequent pancreatic cancer and represents one of the most aggressive human neoplasms. Typically identified at advance stage disease, most PDAC tumors are unresectable and resistant to standard therapies. The immunosuppressive microenvironment in PDAC impedes tumor control but a greater understanding of the complex stromal interactions within the tumor microenvironment (TME) and the development of strategies capable of restoring antitumor effector immune responses could be crucial to fight this aggressive tumor and its spread. Natural Killer (NK) cells play a crucial role in cancer immunosurveillance and represent an attractive target for immunotherapies, both as cell therapy and as a pharmaceutical target. This review describes some crucial components of the PDAC TME (collagens, soluble factors and fibroblasts) that can influence the presence, phenotype and function of NK cells in PDAC patients tumor tissue. This focused overview highlights the therapeutic relevance of dissecting the complex stromal composition to define new strategies for NK cell-based immunotherapies to improve the treatment of PDAC.
Collapse
Affiliation(s)
- Simona Carlomagno
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy.
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy
| | - Fulvia Ortolani
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
5
|
Baniasadi A, Das JP, Prendergast CM, Beizavi Z, Ma HY, Jaber MY, Capaccione KM. Imaging at the nexus: how state of the art imaging techniques can enhance our understanding of cancer and fibrosis. J Transl Med 2024; 22:567. [PMID: 38872212 PMCID: PMC11177383 DOI: 10.1186/s12967-024-05379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Both cancer and fibrosis are diseases involving dysregulation of cell signaling pathways resulting in an altered cellular microenvironment which ultimately leads to progression of the condition. The two disease entities share common molecular pathophysiology and recent research has illuminated the how each promotes the other. Multiple imaging techniques have been developed to aid in the early and accurate diagnosis of each disease, and given the commonalities between the pathophysiology of the conditions, advances in imaging one disease have opened new avenues to study the other. Here, we detail the most up-to-date advances in imaging techniques for each disease and how they have crossed over to improve detection and monitoring of the other. We explore techniques in positron emission tomography (PET), magnetic resonance imaging (MRI), second generation harmonic Imaging (SGHI), ultrasound (US), radiomics, and artificial intelligence (AI). A new diagnostic imaging tool in PET/computed tomography (CT) is the use of radiolabeled fibroblast activation protein inhibitor (FAPI). SGHI uses high-frequency sound waves to penetrate deeper into the tissue, providing a more detailed view of the tumor microenvironment. Artificial intelligence with the aid of advanced deep learning (DL) algorithms has been highly effective in training computer systems to diagnose and classify neoplastic lesions in multiple organs. Ultimately, advancing imaging techniques in cancer and fibrosis can lead to significantly more timely and accurate diagnoses of both diseases resulting in better patient outcomes.
Collapse
Affiliation(s)
- Alireza Baniasadi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA.
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Conor M Prendergast
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Zahra Beizavi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Hong Y Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | | | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| |
Collapse
|
6
|
Xu J, Zhang J, Chen W, Ni X. The tumor-associated fibrotic reactions in microenvironment aggravate glioma chemoresistance. Front Oncol 2024; 14:1388700. [PMID: 38863628 PMCID: PMC11165034 DOI: 10.3389/fonc.2024.1388700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Malignant gliomas are one of the most common and lethal brain tumors with poor prognosis. Most patients with glioblastoma (GBM) die within 2 years of diagnosis, even after receiving standard treatments including surgery combined with concomitant radiotherapy and chemotherapy. Temozolomide (TMZ) is the first-line chemotherapeutic agent for gliomas, but the frequent acquisition of chemoresistance generally leads to its treatment failure. Thus, it's urgent to investigate the strategies for overcoming glioma chemoresistance. Currently, many studies have elucidated that cancer chemoresistance is not only associated with the high expression of drug-resistance genes in glioma cells but also can be induced by the alterations of the tumor microenvironment (TME). Numerous studies have explored the use of antifibrosis drugs to sensitize chemotherapy in solid tumors, and surprisingly, these preclinical and clinical attempts have exhibited promising efficacy in treating certain types of cancer. However, it remains unclear how tumor-associated fibrotic alterations in the glioma microenvironment (GME) mediate chemoresistance. Furthermore, the possible mechanisms behind this phenomenon are yet to be determined. In this review, we have summarized the molecular mechanisms by which tumor-associated fibrotic reactions drive glioma transformation from a chemosensitive to a chemoresistant state. Additionally, we have outlined antitumor drugs with antifibrosis functions, suggesting that antifibrosis strategies may be effective in overcoming glioma chemoresistance through TME normalization.
Collapse
Affiliation(s)
- Jiaqi Xu
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ji Zhang
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wubing Chen
- Department of Radiology, Wuxi Fifth People’s Hospital, Jiangnan University, Wuxi, China
| | - Xiangrong Ni
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Fan S, Qi M, Qi Q, Miao Q, Deng L, Pan J, Qiu S, He J, Huang M, Li X, Huang J, Lin J, Lyu W, Deng W, He Y, Liu X, Gao L, Zhang D, Ye W, Chen M. Targeting FAP α-positive lymph node metastatic tumor cells suppresses colorectal cancer metastasis. Acta Pharm Sin B 2024; 14:682-697. [PMID: 38322324 PMCID: PMC10840431 DOI: 10.1016/j.apsb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
Lymphatic metastasis is the main metastatic route for colorectal cancer, which increases the risk of cancer recurrence and distant metastasis. The properties of the lymph node metastatic colorectal cancer (LNM-CRC) cells are poorly understood, and effective therapies are still lacking. Here, we found that hypoxia-induced fibroblast activation protein alpha (FAPα) expression in LNM-CRC cells. Gain- or loss-function experiments demonstrated that FAPα enhanced tumor cell migration, invasion, epithelial-mesenchymal transition, stemness, and lymphangiogenesis via activation of the STAT3 pathway. In addition, FAPα in tumor cells induced extracellular matrix remodeling and established an immunosuppressive environment via recruiting regulatory T cells, to promote colorectal cancer lymph node metastasis (CRCLNM). Z-GP-DAVLBH, a FAPα-activated prodrug, inhibited CRCLNM by targeting FAPα-positive LNM-CRC cells. Our study highlights the role of FAPα in tumor cells in CRCLNM and provides a potential therapeutic target and promising strategy for CRCLNM.
Collapse
Affiliation(s)
- Shuran Fan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ming Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qun Miao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lijuan Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Jinghua Pan
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Shenghui Qiu
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jiashuai He
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaobo Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jie Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiapeng Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wenyu Lyu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Weiqing Deng
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yingyin He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xuesong Liu
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Lvfen Gao
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Minfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
8
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
9
|
Poulie CBM, Shalgunov V, Elvas F, Van Rymenant Y, Moon ES, Battisti UM, De Loose J, De Meester I, Rösch F, Van Der Veken P, Herth MM. Next generation fibroblast activation protein (FAP) targeting PET tracers - The tetrazine ligation allows an easy and convenient way to 18F-labeled (4-quinolinoyl)glycyl-2-cyanopyrrolidines. Eur J Med Chem 2023; 262:115862. [PMID: 37883899 DOI: 10.1016/j.ejmech.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Small-molecular fibroblast activation protein inhibitor (FAPI)-based tracer have been shown to be promising Positron Emission Tomography (PET) 68Ga-labeled radiopharmaceuticals to image a variety of tumors including pancreatic, breast, and colorectal cancers, among others. In this study, we developed a novel 18F-labeled FAPI derivative. [18F]6 was labeled using a synthon approach based on the tetrazine ligation. It showed subnanomolar affinity for the FAP protein and a good selectivity profile against known off-target proteases. Small animal PET studies revealed high tumor uptake and good target-to-background ratios. [18F]6 was excreted via the liver. Overall, [18F]6 showed promising characteristics to be used as a PET tracer and could serve as a lead for further development of halogen-based theranostic FAPI radiopharmaceuticals.
Collapse
Affiliation(s)
- Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Filipe Elvas
- Molecular Imaging and Radiology (MIRA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Yentl Van Rymenant
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Euy-Sung Moon
- Department of Chemistry, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Joni De Loose
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Frank Rösch
- Department of Chemistry, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Pieter Van Der Veken
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
10
|
Dekempeneer Y, Massa S, Santens F, Navarro L, Berdal M, Lucero MM, Pombo Antunes AR, Lahoutte T, Van Ginderachter JA, Devoogdt N, D'Huyvetter M. Preclinical Evaluation of a Radiotheranostic Single-Domain Antibody Against Fibroblast Activation Protein α. J Nucl Med 2023; 64:1941-1948. [PMID: 38040444 DOI: 10.2967/jnumed.123.266381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2023] [Indexed: 12/03/2023] Open
Abstract
Fibroblast activation protein α (FAP) is highly expressed on cancer-associated fibroblasts of epithelial-derived cancers. Breast, colon, and pancreatic tumors often show strong desmoplastic reactions, which result in a dominant presence of stromal cells. FAP has gained interest as a target for molecular imaging and targeted therapies. Single-domain antibodies (sdAbs) are the smallest antibody-derived fragments with beneficial pharmacokinetic properties for molecular imaging and targeted therapy. Methods: We describe the generation, selection, and characterization of a sdAb against FAP. In mice, we assessed its imaging and therapeutic potential after radiolabeling with tracer-dose 131I and 68Ga for SPECT and PET imaging, respectively, and with 131I and 225Ac for targeted radionuclide therapy. Results: The lead sdAb, 4AH29, exhibiting picomolar affinity for a distinct FAP epitope, recognized both purified and membrane-bound FAP protein. Radiolabeled versions, including [68Ga]Ga-DOTA-4AH29, [225Ac]Ac-DOTA-4AH29, and [131I]I-guanidinomethyl iodobenzoate (GMIB)-4AH29, displayed radiochemical purities exceeding 95% and effectively bound to recombinant human FAP protein and FAP-positive GM05389 human fibroblasts. These radiolabeled compounds exhibited rapid and specific accumulation in human FAP-positive U87-MG glioblastoma tumors, with low but specific uptake in lymph nodes, uterus, bone, and skin (∼2-3 percentage injected activity per gram of tissue [%IA/g]). Kidney clearance of unbound [131I]I-GMIB-4AH29 was fast (<1 %IA/g after 24 h), whereas [225Ac]Ac-DOTA-4AH29 exhibited slower clearance (8.07 ± 1.39 %IA/g after 24 h and 2.47 ± 0.18 %IA/g after 96 h). Mice treated with [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 demonstrated prolonged survival compared with those receiving vehicle solution. Conclusion: [68Ga]Ga-DOTA-4AH29 and [131I]I-GMIB-4AH29 enable precise FAP-positive tumor detection in mice. Therapeutic [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 exhibit strong and sustained tumor targeting, resulting in dose-dependent therapeutic effects in FAP-positive tumor-bearing mice, albeit with kidney toxicity observed later for [225Ac]Ac-DOTA-4AH29. This study confirms the potential of radiolabeled sdAb 4AH29 as a radiotheranostic agent for FAP-positive cancers, warranting clinical evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tony Lahoutte
- Precirix NV/SA, Brussels, Belgium
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Nuclear Medicine, UZ Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; and
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Nick Devoogdt
- Precirix NV/SA, Brussels, Belgium
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- Precirix NV/SA, Brussels, Belgium;
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
11
|
Sánchez J, Claus C, Albrecht R, Gaillard BC, Marinho J, McIntyre C, Tanos T, Boehnke A, Friberg LE, Jönsson S, Frances N. A model-based approach leveraging in vitro data to support dose selection from the outset: A framework for bispecific antibodies in immuno-oncology. CPT Pharmacometrics Syst Pharmacol 2023; 12:1804-1818. [PMID: 37964753 PMCID: PMC10681425 DOI: 10.1002/psp4.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
FAP-4-1BBL is a bispecific antibody exerting 4-1BB-associated T-cell activation only while simultaneously bound to the fibroblast activation protein (FAP) receptor, expressed on the surface of cancer-associated fibroblasts. The trimeric complex formed when FAP-4-1BBL is simultaneously bound to FAP and 4-1BB represents a promising mechanism to achieve tumor-specific 4-1BB stimulation. We integrated in vitro data with mathematical modeling to characterize the pharmacology of FAP-4-1BBL as a function of trimeric complex formation when combined with the T-cell engager cibisatamab. This relationship was used to prospectively predict a range of clinical doses where trimeric complex formation is expected to be at its maximum. Depending on the dosing schedule and FAP-4-1BBL plasma: tumor distribution, doses between 2 and 145 mg could lead to maximum trimeric complex formation in the clinic. Due to the expected variability in both pharmacokinetic and FAP expression in the patient population, we predict that detecting a clear dose-response relationship would remain difficult without a large number of patients per dose level, highlighting that mathematical modeling techniques based on in vitro data could aid dose selection.
Collapse
Affiliation(s)
- Javier Sánchez
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
- Department of PharmacyUppsala UniversityUppsalaSweden
| | - Christina Claus
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Rosmarie Albrecht
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Brenda C. Gaillard
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Joana Marinho
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center ZurichSchlierenSwitzerland
| | - Christine McIntyre
- Roche Pharma Research and Early DevelopmentRoche Innovation Center WelwynWelwyn Garden CityUK
| | - Tamara Tanos
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| | - Axel Boehnke
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| | | | - Siv Jönsson
- Department of PharmacyUppsala UniversityUppsalaSweden
| | - Nicolas Frances
- Roche Pharma Research and Early Development (pRED)Roche Innovation Center BaselBaselSwitzerland
| |
Collapse
|
12
|
Jian HR, Niu WH, Xu ZS, Zhu JX, Pan X, Zhang YR, Lei P, Huang FQ, He Y. Establishment of FAP-overexpressing Cells for FAP-targeted Theranostics. Curr Med Sci 2023:10.1007/s11596-023-2740-7. [PMID: 37222958 DOI: 10.1007/s11596-023-2740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE Fibroblast activation protein (FAP) has been widely studied and exploited for its clinical applications. One of the difficulties in interpreting reports of FAP-targeted theranostics is due to the lack of accurate controls, making the results less specific and less confirmative. This study aimed to establish a pair of cell lines, in which one highly expresses FAP (HT1080-hFAP) and the other has no detectable FAP (HT1080-vec) as control, to accurately evaluate the specificity of the FAP-targeted theranostics in vitro and in vivo. METHODS The cell lines of the experimental group (HT1080-hFAP) and no-load group (HT1080-vec) were obtained by molecular construction of the recombinant plasmid pIRES-hFAP. The expression of hFAP in HT1080 cells was detected by PCR, Western blotting and flow cytometry. CCK-8, Matrigel transwell invasion assay, scratch test, flow cytometry and immunofluorescence were used to verify the physiological function of FAP. The activities of human dipeptidyl peptidase (DPP) and human endopeptidase (EP) were detected by ELISA in HT1080-hFAP cells. PET imaging was performed in bilateral tumor-bearing nude mice models to evaluate the specificity of FAP. RESULTS RT-PCR and Western blotting demonstrated the mRNA and protein expression of hFAP in HT1080-hFAP cells but not in HT1080-vec cells. Flow cytometry confirmed that nearly 95% of the HT1080-hFAP cells were FAP positive. The engineered hFAP on HT1080 cells had its ability to retain enzymatic activities and a variety of biological functions, including internalization, proliferation-, migration-, and invasion-promoting activities. The HT1080-hFAP xenografted tumors in nude mice bound and took up 68GA-FAPI-04 with superior selectivity. High image contrast and tumor-organ ratio were obtained by PET imaging. The HT1080-hFAP tumor retained the radiotracer for at least 60 min. CONCLUSION This pair of HT1080 cell lines was successfully established, making it feasible for accurate evaluation and visualization of therapeutic and diagnostic agents targeting the hFAP.
Collapse
Affiliation(s)
- Hui-Ru Jian
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, China
- The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China
| | - Wen-Hao Niu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo-Shuo Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Xu Zhu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, China
| | - Xin Pan
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, China
| | - Yi-Rui Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fa-Qing Huang
- The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China.
| | - Yong He
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, China.
| |
Collapse
|
13
|
Zhen DB, Safyan RA, Konick EQ, Nguyen R, Prichard CC, Chiorean EG. The role of molecular testing in pancreatic cancer. Therap Adv Gastroenterol 2023; 16:17562848231171456. [PMID: 37197396 PMCID: PMC10184226 DOI: 10.1177/17562848231171456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is highly aggressive and has few treatment options. To personalize therapy, it is critical to delineate molecular subtypes and understand inter- and intra-tumoral heterogeneity. Germline testing for hereditary genetic abnormalities is recommended for all patients with PDA and somatic molecular testing is recommended for all patients with locally advanced or metastatic disease. KRAS mutations are present in 90% of PDA, while 10% are KRAS wild type and are potentially targetable with epidermal growth factor receptor blockade. KRASG12C inhibitors have shown activity in G12C-mutated cancers, and novel G12D and pan-RAS inhibitors are in clinical trials. DNA damage repair abnormalities, germline or somatic, occur in 5-10% of patients and are likely to benefit from DNA damaging agents and maintenance therapy with poly-ADP ribose polymerase inhibitors. Fewer than 1% of PDA harbor microsatellite instability high status and are susceptible to immune checkpoint blockade. Albeit very rare, occurring in <1% of patients with KRAS wild-type PDAs, BRAF V600E mutations, RET and NTRK fusions are targetable with cancer agnostic Food and Drug Administration-approved therapies. Genetic, epigenetic, and tumor microenvironment targets continue to be identified at an unprecedented pace, enabling PDA patients to be matched to targeted and immune therapeutics, including antibody-drug conjugates, and genetically engineered chimeric antigen receptor or T-cell receptor - T-cell therapies. In this review, we highlight clinically relevant molecular alterations and focus on targeted strategies that can improve patient outcomes through precision medicine.
Collapse
Affiliation(s)
- David B. Zhen
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rachael A. Safyan
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric Q. Konick
- University of Washington, School of Medicine Seattle, WA, USA
| | - Ryan Nguyen
- University of Washington, School of Medicine Seattle, WA, USA
| | | | - E. Gabriela Chiorean
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, 825 Eastlake Avenue East, LG-465, Seattle, WA 98109, USA Fred Hutchinson
| |
Collapse
|
14
|
Importance of Fibrosis in the Pathogenesis of Uterine Leiomyoma and the Promising Anti-fibrotic Effects of Dipeptidyl Peptidase-4 and Fibroblast Activation Protein Inhibitors in the Treatment of Uterine Leiomyoma. Reprod Sci 2022; 30:1383-1398. [PMID: 35969363 DOI: 10.1007/s43032-022-01064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Uterine fibroid or leiomyoma is the most common benign uterus tumor. The tumor is primarily composed of smooth muscle (fibroid) cells, myofibroblast, and a significant amount of extracellular matrix components. It mainly affects women of reproductive age. They are uncommon before menarche and usually disappear after menopause. The fibroids have excessive extracellular matrix components secreted by activated fibroblast cells (myofibroblast). Myofibroblast has the characteristics of fibroblast and smooth muscle cells. These cells possess contractile capability due to the expression of contractile proteins which are normally found only in muscle tissues. The rigid nature of the tumor is responsible for many side effects associated with uterine fibroids. The current drug treatment strategies are primarily hormone-driven and not anti-fibrotic. This paper emphasizes the fibrotic background of uterine fibroids and the mechanisms behind the deposition of excessive extracellular matrix components. The transforming growth factor-β, hippo, and focal adhesion kinase-mediated signaling pathways activate the fibroblast cells and deposit excessive extracellular matrix materials. We also exemplify how dipeptidyl peptidase-4 and fibroblast activation protein inhibitors could be beneficial in reducing the fibrotic process in leiomyoma. Dipeptidyl peptidase-4 and fibroblast activation protein inhibitors prevent the fibrotic process in organs such as the kidneys, lungs, liver, and heart. These inhibitors are proven to inhibit the signaling pathways mentioned above at various stages of their activation. Based on literature evidence, we constructed a narrative review on the mechanisms that support the beneficial effects of dipeptidyl peptidase-4 and fibroblast activation protein inhibitors for treating uterine fibroids.
Collapse
|
15
|
Cheng J, Zhang Y, Yang J, Wang Y, Xu J, Fan Y. MiR-155-5p modulates inflammatory phenotype of activated oral lichen-planus-associated-fibroblasts by targeting SOCS1. Mol Biol Rep 2022; 49:7783-7792. [PMID: 35733067 DOI: 10.1007/s11033-022-07603-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Oral lichen planus (OLP) is a chronic inflammatory oral mucosal disease. Cytokines are closely associated with OLP development. In addition to immune cells, fibroblasts have been reported to induce regional inflammation. MicroRNA(miR)-155-5p is reportedly increased significantly in OLP and is known to regulate inflammation. This study aimed to investigate the role of miR-155-5p in fibroblasts of OLP lesions. METHODS AND RESULTS Normal mucosal fibroblasts (NFs) and OLP associated-fibroblasts (OLP AFs) were isolated from the oral mucosa of 15 healthy controls and 30 OLP patients. We detected the expression of miR-155-5p and fibroblast activation protein alpha (FAP-α) using quantitative RT-PCR and analyzed their correlation. Interleukin (IL)-6 and IL-8 levels were determined using ELISA. Expression of suppressor of cytokine signaling (SOCS) 1 was analyzed by western blotting. A dual-luciferase reporter assay was performed to investigate the interaction between miR-155-5p and SOCS1. MiR-155-5p and FAP-α were significantly increased and positively correlated in OLP AFs. Overexpression of miR-155-5p in OLP AFs augmented IL-6 and IL-8 release and decreased SOCS1 expression, whereas knockdown of miR-155-5p in OLP AFs decreased IL-6 and IL-8 release. The expression of SOCS1 was downregulated in OLP AFs, and SOCS1 silencing augmented IL-6 and IL-8 production in OLP AFs. Furthermore, miR-155-5p inhibited SOCS1 expression by directly targeting its 3'-UTR in OLP AFs. CONCLUSIONS MiR-155-5p regulates the secretion of IL-6 and IL-8 by downregulating the expression of SOCS1 in activated OLP AFs. Our results provide novel insights into the pathogenesis of OLP and identify a potential new target for OLP therapy.
Collapse
Affiliation(s)
- Juehua Cheng
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuyao Zhang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jingjing Yang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanting Wang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Juanyong Xu
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuan Fan
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
16
|
Huang R, Pu Y, Huang S, Yang C, Yang F, Pu Y, Li J, Chen L, Huang Y. FAPI-PET/CT in Cancer Imaging: A Potential Novel Molecule of the Century. Front Oncol 2022; 12:854658. [PMID: 35692767 PMCID: PMC9174525 DOI: 10.3389/fonc.2022.854658] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblast activation protein (FAP), a type II transmembrane serine protease, is highly expressed in more than 90% of epithelial tumors and is closely associated with various tumor invasion, metastasis, and prognosis. Using FAP as a target, various FAP inhibitors (FAPIs) have been developed, most of which have nanomolar levels of FAP affinity and high selectivity and are used for positron emission tomography (PET) imaging of different tumors. We have conducted a systematic review of the available data; summarized the biological principles of FAPIs for PET imaging, the synthesis model, and metabolic characteristics of the radiotracer; and compared the respective values of FAPIs and the current mainstream tracer 18F-Fludeoxyglucose (18F-FDG) in the clinical management of tumor and non-tumor lesions. Available research evidence indicates that FAPIs are a molecular imaging tool complementary to 18F-FDG and are expected to be the new molecule of the century with better imaging effects than 18F-FDG in a variety of cancers, including gastrointestinal tumors, liver tumors, breast tumors, and nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Rong Huang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Shun Huang
- Department of Nuclear medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Fake Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China.,Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
17
|
Zhang T, He X, Caldwell L, Goru SK, Ulloa Severino L, Tolosa MF, Misra PS, McEvoy CM, Christova T, Liu Y, Atin C, Zhang J, Hu C, Vukosa N, Chen X, Krizova A, Kirpalani A, Gregorieff A, Ni R, Chan K, Gill MK, Attisano L, Wrana JL, Yuen DA. NUAK1 promotes organ fibrosis via YAP and TGF-β/SMAD signaling. Sci Transl Med 2022; 14:eaaz4028. [PMID: 35320001 DOI: 10.1126/scitranslmed.aaz4028] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibrosis is a central pathway that drives progression of multiple chronic diseases, yet few safe and effective clinical antifibrotic therapies exist. In most fibrotic disorders, transforming growth factor-β (TGF-β)-driven scarring is an important pathologic feature and a key contributor to disease progression. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two closely related transcription cofactors that are important for coordinating fibrogenesis after organ injury, but how they are activated in response to tissue injury has, so far, remained unclear. Here, we describe NUAK family kinase 1 (NUAK1) as a TGF-β-inducible profibrotic kinase that is up-regulated in multiple fibrotic organs in mice and humans. Mechanistically, we show that TGF-β induces a rapid increase in NUAK1 in fibroblasts. NUAK1, in turn, can promote profibrotic YAP and TGF-β/SMAD signaling, ultimately leading to organ scarring. Moreover, activated YAP and TAZ can induce further NUAK1 expression, creating a profibrotic positive feedback loop that enables persistent fibrosis. Using mouse models of kidney, lung, and liver fibrosis, we demonstrate that this fibrogenic signaling loop can be interrupted via fibroblast-specific loss of NUAK1 expression, leading to marked attenuation of fibrosis. Pharmacologic NUAK1 inhibition also reduced scarring, either when initiated immediately after injury or when initiated after fibrosis was already established. Together, our data suggest that NUAK1 plays a critical, previously unrecognized role in fibrogenesis and represents an attractive target for strategies that aim to slow fibrotic disease progression.
Collapse
Affiliation(s)
- Tianzhou Zhang
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Xiaolin He
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Lauren Caldwell
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Santosh Kumar Goru
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Luisa Ulloa Severino
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Monica F Tolosa
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Paraish S Misra
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Caitríona M McEvoy
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Tania Christova
- Donnelly Centre and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yong Liu
- Ontario Institute of Cancer Research, Toronto, Ontario M5G OA3, Canada
| | - Cassandra Atin
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Johnny Zhang
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Catherine Hu
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Noah Vukosa
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Xiaolan Chen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| | - Adriana Krizova
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Anish Kirpalani
- Department of Medical Imaging, St. Michael's Hospital (Unity Health Toronto) and University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Alex Gregorieff
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Ruoyu Ni
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Kin Chan
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Mandeep K Gill
- Donnelly Centre and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Liliana Attisano
- Donnelly Centre and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Darren A Yuen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
18
|
Kosti CN, Vaitsi PC, Pappas AG, Iliopoulou MP, Psarra KK, Magkouta SF, Kalomenidis IT. CSF1/CSF1R signaling mediates malignant pleural effusion formation. JCI Insight 2022; 7:155300. [PMID: 35315360 PMCID: PMC8986064 DOI: 10.1172/jci.insight.155300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Malignant pleural effusion (MPE) is an incurable common manifestation of many malignancies. Its formation is orchestrated by complex interactions among tumor cells, inflammatory cells, and the vasculature. Tumor-associated macrophages present the dominant inflammatory population of MPE, and M2 macrophage numbers account for dismal prognosis. M2 polarization is known to be triggered by CSF1/CSF1 receptor (CSF1R) signaling. We hypothesized that CSF1R+ M2 macrophages favor MPE formation and could be therapeutically targeted to limit MPE. We generated mice with CSF1R-deficient macrophages and induced lung and colon adenocarcinoma–associated MPE. We also examined the therapeutic potential of a clinically relevant CSF1R inhibitor (BLZ945) in lung and colon adenocarcinoma–induced experimental MPE. We showed that CSF1R+ macrophages promoted pleural fluid accumulation by enhancing vascular permeability, destabilizing tumor vessels, and favoring immune suppression. We also showed that CSF1R inhibition limited MPE in vivo by reducing vascular permeability and neoangiogenesis and impeding tumor progression. This was because apart from macrophages, CSF1R signals in cancer-associated fibroblasts leading to macrophage inflammatory protein 2 secretion triggered the manifestation of suppressive and angiogenic properties in macrophages upon CXCR2 paracrine activation. Pharmacological targeting of the CSF1/CSF1R axis can therefore be a vital strategy for limiting MPE.
Collapse
Affiliation(s)
- Chrysavgi N Kosti
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Photene C Vaitsi
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos G Pappas
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianthi P Iliopoulou
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katherina K Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Sophia F Magkouta
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis T Kalomenidis
- Marianthi Simou Laboratory, 1st Department of Critical Care and Pulmonary Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Wang Y, Liu H, Yao S, Guan Z, Li Q, Qi E, Li X, Zhang J, Tian J. Using 18F-flurodeoxyglucose and 68Ga-fibroblast activation protein inhibitor PET/CT to evaluate a new periprosthetic joint infection model of rabbit due to Staphylococcus aureus. Nucl Med Commun 2022; 43:232-241. [PMID: 35022379 DOI: 10.1097/mnm.0000000000001495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The existing periprosthetic joint infection (PJI) models have obvious limitations, and studies of PJI on animal models using PET/computed tomography (CT) for diagnosis are still lacking. Thus, the aim of this study was to establish a new PJI model and 18F-fluorodeoxyglucose (FDG) and 68Ga-fibroblast activation protein inhibitor (FAPI) were employed to study their performance. METHODS A novel PJI model of rabbit was developed by placing two screws in the tibia and femur. Based on bacteria concentration, the animals were divided into five groups, control, 104, 105, 106 and 107. 18F-FDG and 68Ga-FAPI PET/CT were performed continuously in next 2 weeks and maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic target volume (MTV) and total lesion glycolysis/total lesion fibrosis were calculated as the metrics. RESULTS As for SUVmax, all data of 18F-FDG were larger than that of 68Ga-FAPI in the same group for both weeks. For the performance of 18F-FDG, no definitive conclusion could be drawn for SUVmax and SUVmean. As for 68Ga-FAPI, the 104 group was significantly larger than 105, 106 and 107 groups for SUVmax and SUVmean in both weeks (P < 0.05). MTV of 68Ga-FAPI was found to be almost always larger than that of 18F-FDG in the same group. CONCLUSION The mechanism of 68Ga-FAPI is totally different from 18F-FDG and this unique property of 68Ga-FAPI shows a promising prospect in detecting infection boundary and may even distinguish a small number or a large number of bacterial infections.
Collapse
Affiliation(s)
- Yiqun Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital
| | | | | | | | - Qingxiao Li
- Medical School of Chinese PLA, Chinese PLA General Hospital
| | | | - Xiang Li
- Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | | | | |
Collapse
|
20
|
Rangarajan V, Choudhury S, Agrawal A, Puranik A, Shah S, Purandare N. Fibroblast activation protein inhibitors: New frontier of molecular imaging and therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Regulation of Fibroblast Activation Protein-α Expression: Focus on Intracellular Protein Interactions. J Med Chem 2021; 64:14028-14045. [PMID: 34523930 DOI: 10.1021/acs.jmedchem.1c01010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prolyl-specific peptidase fibroblast activation protein-α (FAP-α) is expressed at very low or undetectable levels in nondiseased human tissues but is selectively induced in activated (myo)fibroblasts at sites of tissue remodeling in fibrogenic processes. In normal regenerative processes involving transient fibrosis FAP-α+(myo)fibroblasts disappear from injured tissues, replaced by cells with a normal FAP-α- phenotype. In chronic uncontrolled pathological fibrosis FAP-α+(myo)fibroblasts permanently replace normal tissues. The mechanisms of regulation and elimination of FAP-α expression in(myo)fibroblasts are unknown. According to a yeast two-hybrid screen and protein databanks search, we propose that the intracellular (co)-chaperone BAG6/BAT3 can interact with FAP-α, mediated by the BAG6/BAT3 Pro-rich domain, inducing proteosomal degradation of FAP-α protein under tissue homeostasis. In this Perspective, we discuss our findings in the context of current knowledge on the regulation of FAP-α expression and comment potential therapeutic strategies for uncontrolled fibrosis, including small molecule degraders (PROTACs)-modified FAP-α targeted inhibitors.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland.,University Institute of Pathology, CHUV and UNIL, CH1011 Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters-Paris, 1 rue Pierre Fontaine, 91000 Evry, France.,Hybrigenics Corporation, Cambridge Innovation Center, 50 Milk Street, Cambridge, Massachusetts 02142, United States
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland
| |
Collapse
|
22
|
Imlimthan S, Moon ES, Rathke H, Afshar-Oromieh A, Rösch F, Rominger A, Gourni E. New Frontiers in Cancer Imaging and Therapy Based on Radiolabeled Fibroblast Activation Protein Inhibitors: A Rational Review and Current Progress. Pharmaceuticals (Basel) 2021; 14:1023. [PMID: 34681246 PMCID: PMC8540221 DOI: 10.3390/ph14101023] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, the tumor microenvironment (TME) has become a new paradigm of cancer diagnosis and therapy due to its unique biological features, mainly the interconnection between cancer and stromal cells. Within the TME, cancer-associated fibroblasts (CAFs) demonstrate as one of the most critical stromal cells that regulate tumor cell growth, progression, immunosuppression, and metastasis. CAFs are identified by various biomarkers that are expressed on their surfaces, such as fibroblast activation protein (FAP), which could be utilized as a useful target for diagnostic imaging and treatment. One of the advantages of targeting FAP-expressing CAFs is the absence of FAP expression in quiescent fibroblasts, leading to a controlled targetability of diagnostic and therapeutic compounds to the malignant tumor stromal area using radiolabeled FAP-based ligands. FAP-based radiopharmaceuticals have been investigated strenuously for the visualization of malignancies and delivery of theranostic radiopharmaceuticals to the TME. This review provides an overview of the state of the art in TME compositions, particularly CAFs and FAP, and their roles in cancer biology. Moreover, relevant reports on radiolabeled FAP inhibitors until the year 2021 are highlighted-as well as the current limitations, challenges, and requirements for those radiolabeled FAP inhibitors in clinical translation.
Collapse
Affiliation(s)
- Surachet Imlimthan
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Euy Sung Moon
- Department of Chemistry—TRIGA Site, Johannes Gutenberg—University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Hendrik Rathke
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Frank Rösch
- Department of Chemistry—TRIGA Site, Johannes Gutenberg—University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Axel Rominger
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Eleni Gourni
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| |
Collapse
|
23
|
Lin JJ, Chuang CP, Lin JY, Huang FT, Huang CW. Rational Design, Pharmacomodulation, and Synthesis of [ 68Ga]Ga-Alb-FAPtp-01, a Selective Tumor-Associated Fibroblast Activation Protein Tracer for PET Imaging of Glioma. ACS Sens 2021; 6:3424-3435. [PMID: 34415143 DOI: 10.1021/acssensors.1c01316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dynamic changes in the tumor-associated fibroblast activation protein (FAP) expression in tumors of different stages may be helpful for prognostic evaluation and treatment response monitoring, making this protein a promising surveillance biomarker for timely diagnosis of malignant tumors and effective planning of patient care. To prospectively verify the diagnostic efficacy value of the developed FAP tracers, [68Ga]Ga-FAPtp and [68Ga]Ga-Alb-FAPtp-01, dynamic/static positron emission tomography (PET)/computed tomography scans were acquired for tumor-targeting studies in vivo and in comparison with the well-established clinically used tracer [68Ga]Ga-FAPI-04. The optimized rationally designed FAP-targeting PET tracer, [68Ga]Ga-Alb-FAPtp-01, with albumin-binding capability demonstrated prominent tumor uptake over time. The mean standard uptake value (SUV) and the tumor/muscle (T/M) ratio were as high as 1.775 ± 0.179 SUV and T/M = 5.9, 1.533 ± 0.222 SUV and T/M = 6.7, and 1.425 ± 0.204 SUV and T/M = 9.5, respectively, at 1, 2, and 3 h. Its improved tumor uptake and pharmacokinetics suggest that the [68Ga]Ga-Alb-FAPtp-01 tracer can noninvasively detect FAP activation in vivo, permitting a precise definition of its roles in tumors of different stages and yielding insights regarding FAP-targeted radiotherapeutic strategies at the molecular level.
Collapse
Affiliation(s)
- Jia-Jia Lin
- Center for Advanced Molecular Imaging and Translation (CAMIT), Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Department of Nuclear Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City 236, Taiwan
| | - Chia-Pao Chuang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jia-Yu Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Feng-Ting Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation (CAMIT), Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
24
|
Warwas KM, Meyer M, Gonçalves M, Moldenhauer G, Bulbuc N, Knabe S, Luckner-Minden C, Ziegelmeier C, Heussel CP, Zörnig I, Jäger D, Momburg F. Co-Stimulatory Bispecific Antibodies Induce Enhanced T Cell Activation and Tumor Cell Killing in Breast Cancer Models. Front Immunol 2021; 12:719116. [PMID: 34484225 PMCID: PMC8415424 DOI: 10.3389/fimmu.2021.719116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Although T cell-recruiting CD3-binding bispecific antibodies (BiMAb) have been proven to be clinically effective for hematologic malignancies, the success of BiMAb targeting solid tumor-associated antigens (TAA) in carcinomas so far remains poor. We reasoned that provision of co-stimulatory BiMAb in combination with αTAA-αCD3 BiMAb would boost T cell activation and proliferative capacity, and thereby facilitate the targeting of weakly or heterogeneously expressed tumor antigens. Various αTAA-αCD3 and αTAA-αCD28 BiMAb in a tetravalent IgG1-Fc based format have been analyzed, targeting multiple breast cancer antigens including HER2, EGFR, CEA, and EpCAM. Moreover, bifunctional fusion proteins of αTAA-tumor necrosis factor ligand (TNFL) superfamily members including 4-1BBL, OX40L, CD70 and TL1A have been tested. The functional activity of BiMAb was assessed using co-cultures of tumor cell lines and purified T cells in monolayer and tumor spheroid models. Only in the presence of tumor cells, αTAA-αCD3 BiMAb activated T cells and induced cytotoxicity in vitro, indicating a strict dependence on cross-linking. Combination treatment of αTAA-αCD3 BiMAb and co-stimulatory αTAA-αCD28 or αTAA-TNFL fusion proteins drastically enhanced T cell activation in terms of proliferation, activation marker expression, cytokine secretion and tumor cytotoxicity. Furthermore, BiMAb providing co-stimulation were shown to reduce the minimally required dose to achieve T cell activation by at least tenfold. Immuno-suppressive effects of TGF-β and IL-10 on T cell activation and memory cell formation could be overcome by co-stimulation. BiMAb-mediated co-stimulation was further augmented by immune checkpoint-inhibiting antibodies. Effective co-stimulation could be achieved by targeting a second breast cancer antigen, or by targeting fibroblast activation protein (FAP) expressed on another target cell. In tumor spheroids derived from pleural effusions of breast cancer patients, co-stimulatory BiMAb were essential for the activation tumor-infiltrating lymphocytes and cytotoxic anti-tumor responses against breast cancer cells. Taken together we showed that co-stimulation significantly potentiated the tumoricidal activity of T cell-activating BiMAb while preserving the dependence on TAA recognition. This approach could provide for a more localized activation of the immune system with higher efficacy and reduced peripheral toxicities.
Collapse
Affiliation(s)
- Karsten M. Warwas
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Antigen Presentation and T/NK Cell Activation Group, DKFZ, Heidelberg, Germany
| | - Marten Meyer
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Antigen Presentation and T/NK Cell Activation Group, DKFZ, Heidelberg, Germany
| | - Márcia Gonçalves
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Antigen Presentation and T/NK Cell Activation Group, DKFZ, Heidelberg, Germany
| | | | - Nadja Bulbuc
- Antigen Presentation and T/NK Cell Activation Group, DKFZ, Heidelberg, Germany
| | - Susanne Knabe
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Luckner-Minden
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| | - Claudia Ziegelmeier
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| | - Claus Peter Heussel
- Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| |
Collapse
|
25
|
Langer LB, Hess A, Korkmaz Z, Tillmanns J, Reffert LM, Bankstahl JP, Bengel FM, Thackeray JT, Ross TL. Molecular imaging of fibroblast activation protein after myocardial infarction using the novel radiotracer [ 68Ga]MHLL1. Am J Cancer Res 2021; 11:7755-7766. [PMID: 34335962 PMCID: PMC8315078 DOI: 10.7150/thno.51419] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Myocardial infarction (MI) evokes an organized remodeling process characterized by the activation and transdifferentiation of quiescent cardiac fibroblasts to generate a stable collagen rich scar. Early fibroblast activation may be amenable to targeted therapy, but is challenging to identify in vivo. We aimed to non-invasively image active fibrosis by targeting the fibroblast activation protein (FAP) expressed by activated (myo)fibroblasts, using a novel positron emission tomography (PET) radioligand [68Ga]MHLL1 after acute MI. Methods: One-step chemical synthesis and manual as well as module-based radiolabeling yielded [68Ga]MHLL1. Binding characteristics were evaluated in murine and human FAP-transfected cells, and stability tested in human serum. Biodistribution in healthy animals was interrogated by dynamic PET imaging, and metabolites were measured in blood and urine. The temporal pattern of FAP expression was determined by serial PET imaging at 7 d and 21 d after coronary artery ligation in mice as percent injected dose per gram (%ID/g). PET measurements were validated by ex vivo autoradiography and immunostaining for FAP and inflammatory macrophages. Results: [68Ga]MHLL1 displayed specific uptake in murine and human FAP-positive cells (p = 0.0208). In healthy mice the tracer exhibited favorable imaging characteristics, with low blood pool retention and dominantly renal clearance. At 7 d after coronary artery ligation, [68Ga]MHLL1 uptake was elevated in the infarct relative to the non-infarcted remote myocardium (1.3 ± 0.3 vs. 1.0 ± 0.2 %ID/g, p < 0.001) which persisted to 21 d after MI (1.3 ± 0.4 vs. 1.1 ± 0.4 %ID/g, p = 0.013). Excess unlabeled compound blocked tracer accumulation in both infarct and non-infarct remote myocardium regions (p < 0.001). Autoradiography and histology confirmed the regional uptake of [68Ga]MHLL1 in the infarct and especially border zone regions, as identified by Masson trichrome collagen staining. Immunostaining further delineated persistent FAP expression at 7 d and 21 d post-MI in the border zone, consistent with tracer distribution in vivo. Conclusion: The simplified synthesis of [68Ga]MHLL1 bears promise for non-invasive characterization of fibroblast activation protein early in remodeling after MI.
Collapse
|
26
|
Yunna C, Mengru H, Fengling W, Lei W, Weidong C. Emerging strategies against tumor-associated fibroblast for improved the penetration of nanoparticle into desmoplastic tumor. Eur J Pharm Biopharm 2021; 165:75-83. [PMID: 33991610 DOI: 10.1016/j.ejpb.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
The therapeutic effect of nanoparticles is limited in solid tumors, especially desmoplastic tumors, because the tumor matrix hinders the delivery of nanoparticles. As the most abundant cells in the tumor stroma, tumor-associated fibroblasts (TAFs) produce a dense extracellular matrix, which leads to higher tissue fluid pressure, thereby creating a physical barrier for nanoparticle delivery. Therefore, researchers focused on eliminating TAFs to combat desmoplastic tumors. In recent years, a series of methods for TAFs have been developed. In this paper, we first introduced the biological mechanism of TAFs hindering the penetration of nanoparticles. Then, the different methods of eliminating TAFs were summarized, and the mechanism of nanomedicine in eliminating TAFs was highlighted. Finally, the problems and future development directions for TAFs treatment were discussed from the perspective of the treatment of desmoplastic tumors.
Collapse
Affiliation(s)
- Chen Yunna
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Hu Mengru
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Wang Fengling
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, Anhui 230011, China
| | - Wang Lei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China.
| | - Chen Weidong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China.
| |
Collapse
|
27
|
Oncogenesis, Microenvironment Modulation and Clinical Potentiality of FAP in Glioblastoma: Lessons Learned from Other Solid Tumors. Cells 2021; 10:cells10051142. [PMID: 34068501 PMCID: PMC8151573 DOI: 10.3390/cells10051142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, glioblastoma (GBM) is the most common malignant tumor of the central nervous system in adults. Fibroblast activation protein (FAP) is a member of the dipeptidyl peptidase family, which has catalytic activity and is engaged in protein recruitment and scaffolds. Recent studies have found that FAP expression in different types of cells within the GBM microenvironment is typically upregulated compared with that in lower grade glioma and is most pronounced in the mesenchymal subtype of GBM. As a marker of cancer-associated fibroblasts (CAFs) with tumorigenic activity, FAP has been proven to promote tumor growth and invasion via hydrolysis of molecules such as brevican in the extracellular matrix and targeting of downstream pathways and substrates, such as fibroblast growth factor 21 (FGF21). In addition, based on its ability to suppress antitumor immunity in GBM and induce temozolomide resistance, FAP may be a potential target for immunotherapy and reversing temozolomide resistance; however, current studies on therapies targeting FAP are still limited. In this review, we summarized recent progress in FAP expression profiling and the understanding of the biological function of FAP in GBM and raised the possibility of FAP as an imaging biomarker and therapeutic target.
Collapse
|
28
|
Labiano S, Roh V, Godfroid C, Hiou-Feige A, Romero J, Sum E, Rapp M, Boivin G, Wyss T, Simon C, Bourhis J, Umaña P, Trumpfheller C, Tolstonog GV, Vozenin MC, Romero P. CD40 Agonist Targeted to Fibroblast Activation Protein α Synergizes with Radiotherapy in Murine HPV-Positive Head and Neck Tumors. Clin Cancer Res 2021; 27:4054-4065. [PMID: 33903200 DOI: 10.1158/1078-0432.ccr-20-4717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The incidence of human papillomavirus-associated head and neck squamous cell carcinoma (HPV+-HNSCC) is rising worldwide and although current therapeutic modalities are efficient in the majority of patients, there is a high rate of treatment failures. Thus, novel combination approaches are urgently needed to achieve better disease control in patients with HPV+-HNSCC. We investigated the safety and therapeutic efficacy of a novel fibroblast activation protein (FAP)-targeted CD40 agonist (FAP-CD40) in combination with local hypofractionated radiation in a syngeneic HPV+-HNSCC model. EXPERIMENTAL DESIGN Using an established orthotopic model, we treated tumor-bearing mice with local hypofractionated radiotherapy (2 × 6 Gy) alone or in combination with a systemic administration of the FAP-CD40 antibody. Following up the mice, we evaluated the changes in the tumor microenvironment (TME) by immunofluorescence, FACS, and NanoString RNA analysis. RESULTS The suboptimal radiotherapy regimen chosen failed to control tumors in the treated mice. The FAP-CD40 administered in monotherapy transiently controlled tumor growth, whereas the combined therapy induced durable complete responses in more than 80% of the tumor-bearing mice. This notable efficacy relied on the radiotherapy-induced remodeling of the TME and activation of the CD8+ T-cell-cDC1 axis and was devoid of the systemic toxicity frequently associated with CD40-targeted therapy. Moreover, the robust immunologic memory developed effectively prevented tumor relapses, a common feature in patients with HNSCC. CONCLUSIONS Our study provides proof of concept, as well as mechanistic insights of the therapeutic efficacy of a bispecific FAP-CD40 combined with local radiotherapy in a FAP+-HNSCC model increasing overall survival and inducing long-term antitumor immunity.
Collapse
Affiliation(s)
- Sara Labiano
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Roh
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Godfroid
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Agnès Hiou-Feige
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jackeline Romero
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eva Sum
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Moritz Rapp
- Roche Innovation Center Munich (RICM), pRED, Penzberg, Germany
| | - Gael Boivin
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tania Wyss
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian Simon
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Bourhis
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Christine Trumpfheller
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Genrich V Tolstonog
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
29
|
Slania SL, Das D, Lisok A, Du Y, Jiang Z, Mease RC, Rowe SP, Nimmagadda S, Yang X, Pomper MG. Imaging of Fibroblast Activation Protein in Cancer Xenografts Using Novel (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine-Based Small Molecules. J Med Chem 2021; 64:4059-4070. [PMID: 33730493 PMCID: PMC8214312 DOI: 10.1021/acs.jmedchem.0c02171] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibroblast activation protein (FAP) has become a favored target for imaging and therapy of malignancy. We have synthesized and characterized two new (4-quinolinoyl)-glycyl-2-cyanopyrrolidine-based small molecules for imaging of FAP, QCP01 and [111In]QCP02, using optical and single-photon computed tomography/CT, respectively. Binding of imaging agents to FAP was assessed in six human cancer cell lines of different cancer types: glioblastoma (U87), melanoma (SKMEL24), prostate (PC3), NSCLC (NCIH2228), colorectal carcinoma (HCT116), and lung squamous cell carcinoma (NCIH226). Mouse xenograft models were developed with FAP-positive U87 and FAP-negative PC3 cells to test pharmacokinetics and binding specificity in vivo. QCP01 and [111In]QCP02 demonstrated nanomolar inhibition of FAP at Ki values of 1.26 and 16.20 nM, respectively. Both were selective for FAP over DPP-IV, a related serine protease. Both enabled imaging of FAP-expressing tumors specifically in vivo. [111In]QCP02 showed high uptake at 18.2 percent injected dose per gram in the U87 tumor at 30 min post-administration.
Collapse
Affiliation(s)
- Stephanie L Slania
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Deepankar Das
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Ala Lisok
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Yong Du
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Zirui Jiang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Sridhar Nimmagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Xing Yang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Martin G Pomper
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
30
|
Mikulová MB, Mikuš P. Advances in Development of Radiometal Labeled Amino Acid-Based Compounds for Cancer Imaging and Diagnostics. Pharmaceuticals (Basel) 2021; 14:167. [PMID: 33669938 PMCID: PMC7924883 DOI: 10.3390/ph14020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Radiolabeled biomolecules targeted at tumor-specific enzymes, receptors, and transporters in cancer cells represent an intensively investigated and promising class of molecular tools for the cancer diagnosis and therapy. High specificity of such biomolecules is a prerequisite for the treatment with a lower burden to normal cells and for the effective and targeted imaging and diagnosis. Undoubtedly, early detection is a key factor in efficient dealing with many severe tumor types. This review provides an overview and critical evaluation of novel approaches in the designing of target-specific probes labeled with metal radionuclides for the diagnosis of most common death-causing cancers, published mainly within the last three years. Advances are discussed such traditional peptide radiolabeling approaches, and click and nanoparticle chemistry. The progress of radiolabeled peptide based ligands as potential radiopharmaceuticals is illustrated via novel structure and application studies, showing how the molecular modifications reflect their binding selectivity to significant onco-receptors, toxicity, and, by that, practical utilization. The most impressive outputs in categories of newly developed structures, as well as imaging and diagnosis approaches, and the most intensively studied oncological diseases in this context, are emphasized in order to show future perspectives of radiometal labeled amino acid-based compounds in nuclear medicine.
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia;
- Toxicological and Antidoping Center (TAC), Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
31
|
Krepela E, Vanickova Z, Hrabal P, Zubal M, Chmielova B, Balaziova E, Vymola P, Matrasova I, Busek P, Sedo A. Regulation of Fibroblast Activation Protein by Transforming Growth Factor Beta-1 in Glioblastoma Microenvironment. Int J Mol Sci 2021; 22:ijms22031046. [PMID: 33494271 PMCID: PMC7864518 DOI: 10.3390/ijms22031046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The proline-specific serine protease fibroblast activation protein (FAP) can participate in the progression of malignant tumors and represents a potential diagnostic and therapeutic target. Recently, we demonstrated an increased expression of FAP in glioblastomas, particularly those of the mesenchymal subtype. Factors controlling FAP expression in glioblastomas are unknown, but evidence suggests that transforming growth factor beta (TGFbeta) can trigger mesenchymal changes in these tumors. Here, we investigated whether TGFbeta promotes FAP expression in transformed and stromal cells constituting the glioblastoma microenvironment. We found that both FAP and TGFbeta-1 are upregulated in glioblastomas and display a significant positive correlation. We detected TGFbeta-1 immunopositivity broadly in glioblastoma tissues, including tumor parenchyma regions in the immediate vicinity of FAP-immunopositive perivascular stromal cells. Wedemonstrate for the first time that TGFbeta-1 induces expression of FAP in non-stem glioma cells, pericytes, and glioblastoma-derived endothelial and FAP+ mesenchymal cells, but not in glioma stem-like cells. In glioma cells, this effect is mediated by the TGFbeta type I receptor and canonical Smad signaling and involves activation of FAP gene transcription. We further present evidence of FAP regulation by TGFbeta-1 secreted by glioma cells. Our results provide insight into the previously unrecognized regulation of FAP expression by autocrine and paracrine TGFbeta-1 signaling in a broad spectrum of cell types present in the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Evzen Krepela
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Zdislava Vanickova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Petr Hrabal
- Department of Pathology, Military University Hospital Prague, 169 02 Prague 6, Czech Republic;
| | - Michal Zubal
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Barbora Chmielova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Eva Balaziova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Petr Vymola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Ivana Matrasova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
- Correspondence: (P.B.); (A.S.); Tel.: +420-22496-5825 (P.B.); +420-22496-5735 (A.S.)
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic; (E.K.); (Z.V.); (M.Z.); (B.C.); (E.B.); (P.V.); (I.M.)
- Correspondence: (P.B.); (A.S.); Tel.: +420-22496-5825 (P.B.); +420-22496-5735 (A.S.)
| |
Collapse
|
32
|
Aloj L, Attili B, Lau D, Caraco C, Lechermann LM, Mendichovszky IA, Harper I, Cheow H, Casey RT, Sala E, Gilbert FJ, Gallagher FA. The emerging role of cell surface receptor and protein binding radiopharmaceuticals in cancer diagnostics and therapy. Nucl Med Biol 2021; 92:53-64. [PMID: 32563612 DOI: 10.1016/j.nucmedbio.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Abstract
Targeting specific cell membrane markers for both diagnostic imaging and radionuclide therapy is a rapidly evolving field in cancer research. Some of these applications have now found a role in routine clinical practice and have been shown to have a significant impact on patient management. Several molecular targets are being investigated in ongoing clinical trials and show promise for future implementation. Advancements in molecular biology have facilitated the identification of new cancer-specific targets for radiopharmaceutical development.
Collapse
Affiliation(s)
- Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom.
| | - Bala Attili
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Doreen Lau
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Corradina Caraco
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Laura M Lechermann
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Iosif A Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Ines Harper
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Heok Cheow
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| |
Collapse
|
33
|
Human Autopsy-Derived Scalp Fibroblast Biobanking for Age-Related Neurodegenerative Disease Research. Cells 2020; 9:cells9112383. [PMID: 33143239 PMCID: PMC7692621 DOI: 10.3390/cells9112383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022] Open
Abstract
The Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program at Banner Sun Health Research Institute (BSHRI) is a longitudinal clinicopathological study with a current enrollment of more than 900 living subjects for aging and neurodegenerative disease research. Annual clinical assessments are done by cognitive and movement neurologists and neuropsychologists. Brain and body tissues are collected at a median postmortem interval of 3.0 h for neuropathological diagnosis and banking. Since 2018, the program has undertaken banking of scalp fibroblasts derived from neuropathologically characterized donors with Alzheimer’s disease, Parkinson’s disease, and other neurodegenerative diseases. Here, we describe the procedure development and cell characteristics from 14 male and 15 female donors (mean ± SD of age: 83.6 ± 12.2). Fibroblasts from explant cultures were banked at passage 3. The results of mRNA analysis showed positive expression of fibroblast activation protein, vimentin, fibronectin, and THY1 cell surface antigen. We also demonstrated that the banked fibroblasts from a postmortem elderly donor were successfully reprogramed to human-induced pluripotent stem cells (hiPSCs). Taken together, we have demonstrated the successful establishment of a human autopsy-derived fibroblast banking program. The cryogenically preserved cells are available for request at the program website of the BSHRI.
Collapse
|
34
|
Schnapp G, Hoevels Y, Bakker RA, Schreiner P, Klein T, Nar H. A Single Second Shell Amino Acid Determines Affinity and Kinetics of Linagliptin Binding to Type 4 Dipeptidyl Peptidase and Fibroblast Activation Protein. ChemMedChem 2020; 16:630-639. [PMID: 33030297 PMCID: PMC7984154 DOI: 10.1002/cmdc.202000591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 01/10/2023]
Abstract
Drugs targeting type 4 dipeptidyl peptidase (DPP‐4) are beneficial for glycemic control, whereas fibroblast activation protein alpha (FAP‐α) is a potential target for cancer therapies. Unlike other gliptins, linagliptin displays FAP inhibition. We compared biophysical and structural characteristics of linagliptin binding to DPP‐4 and FAP to better understand what differentiates linagliptin from other gliptins. Linagliptin exhibited high binding affinity (KD) and a slow off‐rate (koff) when dissociating from DPP‐4 (KD 6.6 pM; koff 5.1×10−5 s−1), and weaker inhibitory potency to FAP (KD 301 nM; koff>1 s−1). Co‐structures of linagliptin with DPP‐4 or FAP were similar except for one second shell amino acid difference: Asp663 (DPP‐4) and Ala657 (FAP). pH dependence of enzymatic activities and binding of linagliptin for DPP‐4 and FAP are dependent on this single amino acid difference. While linagliptin may not display any anticancer activity at therapeutic doses, our findings may guide future studies for the development of optimized inhibitors.
Collapse
Affiliation(s)
- Gisela Schnapp
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Yvette Hoevels
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Remko A Bakker
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | | | - Thomas Klein
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Herbert Nar
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| |
Collapse
|
35
|
Claus C, Ferrara C, Xu W, Sam J, Lang S, Uhlenbrock F, Albrecht R, Herter S, Schlenker R, Hüsser T, Diggelmann S, Challier J, Mössner E, Hosse RJ, Hofer T, Brünker P, Joseph C, Benz J, Ringler P, Stahlberg H, Lauer M, Perro M, Chen S, Küttel C, Bhavani Mohan PL, Nicolini V, Birk MC, Ongaro A, Prince C, Gianotti R, Dugan G, Whitlow CT, Solingapuram Sai KK, Caudell DL, Burgos-Rodriguez AG, Cline JM, Hettich M, Ceppi M, Giusti AM, Crameri F, Driessen W, Morcos PN, Freimoser-Grundschober A, Levitsky V, Amann M, Grau-Richards S, von Hirschheydt T, Tournaviti S, Mølhøj M, Fauti T, Heinzelmann-Schwarz V, Teichgräber V, Colombetti S, Bacac M, Zippelius A, Klein C, Umaña P. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med 2020; 11:11/496/eaav5989. [PMID: 31189721 DOI: 10.1126/scitranslmed.aav5989] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/16/2019] [Indexed: 01/08/2023]
Abstract
Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti-4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor-mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP-4-1BBL (RG7826) and CD19-4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen-mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP-4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer-bearing rhesus monkey. Combination of FAP-4-1BBL with tumor antigen-targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP- or CD19-4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8+ T cells. FAP- and CD19-4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.
Collapse
Affiliation(s)
- Christina Claus
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Claudia Ferrara
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Wei Xu
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Johannes Sam
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sabine Lang
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Franziska Uhlenbrock
- University of Basel, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Rosmarie Albrecht
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sylvia Herter
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Ramona Schlenker
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Tamara Hüsser
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sarah Diggelmann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - John Challier
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Ralf J Hosse
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Thomas Hofer
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Peter Brünker
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Catherine Joseph
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jörg Benz
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philippe Ringler
- University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Henning Stahlberg
- University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Matthias Lauer
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mario Perro
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Stanford Chen
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Christine Küttel
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Preethi L Bhavani Mohan
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Valeria Nicolini
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Martina Carola Birk
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Amandine Ongaro
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Christophe Prince
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Reto Gianotti
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Gregory Dugan
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Christopher T Whitlow
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | - David L Caudell
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | - J Mark Cline
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Michael Hettich
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Maurizio Ceppi
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anna Maria Giusti
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Flavio Crameri
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Wouter Driessen
- Roche Innovation Center Basel, pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Peter N Morcos
- Roche Innovation Center New York, pRED, 430 E 29th St, New York, NY 10016, USA
| | - Anne Freimoser-Grundschober
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Victor Levitsky
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sandra Grau-Richards
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | | | - Stella Tournaviti
- Roche Innovation Center Munich, pRED, Nonnenwald 2, 82377 Penzberg, Germany
| | - Michael Mølhøj
- Roche Innovation Center Munich, pRED, Nonnenwald 2, 82377 Penzberg, Germany
| | - Tanja Fauti
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | | | - Volker Teichgräber
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Sara Colombetti
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Alfred Zippelius
- University of Basel, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland.
| |
Collapse
|
36
|
Zhang B, Liu F, Yang MF, Xu J, Wang Z, Zhang J, Wang R, Yang X. A cell-based fluorescent assay for FAP inhibitor discovery. Bioorg Med Chem Lett 2020; 30:127253. [PMID: 32527554 DOI: 10.1016/j.bmcl.2020.127253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
To facilitate the discovery of FAP inhibitors, a convenient cell-based fluorescent assay was developed by using a commonly available U87MG cell line and a FAP-specific substrate Suc-Gly-Pro-AMC. The assay enabled the fast determination of multiple IC50s by simply incubating a solution of phosphate-buffered saline in a 96-well plate within 30 min. The substrate specificity, cross-reaction and other related conditions were systematically optimized. This method was successfully applied to determine the IC50s of seven known inhibitors. The results are in consistence with the trend reported, which indicating that this practical assay is a valuable method to accelerate the discovery of FAP inhibitor.
Collapse
Affiliation(s)
- Bingye Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Futao Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Min-Fu Yang
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jianfeng Xu
- JYAMS PET Research & Development Limited., Nanjing 211100, China
| | - Zheng Wang
- JYAMS PET Research & Development Limited., Nanjing 211100, China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China; Institute of Medical Technology, Peking University, Beijing 100191, China.
| |
Collapse
|
37
|
Zhang L, Yang L, Xia ZW, Yang SC, Li WH, Liu B, Yu ZQ, Gong PF, Yang YL, Sun WZ, Mo J, Li GS, Wang TY, Wang K. The role of fibroblast activation protein in progression and development of osteosarcoma cells. Clin Exp Med 2020; 20:121-130. [PMID: 31745677 DOI: 10.1007/s10238-019-00591-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
To investigate the expression levels of fibroblast activation protein (FAP) in human osteosarcoma tissues and its possible correlations with clinical pathological characteristics of patients with osteosarcoma, and to explore the potential effects of FAP on progression and development of osteosarcoma. Immunohistochemistry (IHC) assay was initially performed to detect the expression levels of FAP in 66 tumor tissues and adjacent non-tumor tissues. Patients were sequentially divided into two groups based on different expression levels of FAP. The correlations between the expression levels of FAP and the clinical pathological characteristics were investigated, and the role of FAP in proliferation, migration, and invasion of osteosarcoma cells was assessed via colony formation, MTT, wound healing, and transwell assays, respectively. The possible effects of FAP on tumor growth and metastasis were evaluated in vivo. We further attempted to reveal the underlying mechanism of FAP involved in tumor growth through bioinformatics and IHC assays. High expression levels of FAP were noted in human osteosarcoma tissues. It also was unveiled that FAP was significantly associated with the tumor size (P = 0.005*) and clinical stage (P = 0.017*). Our data further confirmed that knockdown of FAP remarkably blocked proliferation, migration, and invasion of osteosarcoma cells in vitro, and suppressed tumor growth and metastasis in mice via AKT signaling pathway. The possible role of FAP in progression and development of osteosarcoma could be figured out. Our data may be helpful to develop a novel therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Li Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zi-Wei Xia
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shi-Chang Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wen-Hui Li
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Bin Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zi-Qi Yu
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Peng-Fei Gong
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ya-Lin Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wei-Zong Sun
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Gui-Shi Li
- Department of Joint Orthopedics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong Province, China
| | - Tian-Yi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei Province, China.
| | - Kai Wang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
38
|
Wu G, Xie B, Lu C, Chen C, Zhou J, Deng Z. microRNA-30a attenuates TGF-β1-induced activation of pulmonary fibroblast cell by targeting FAP-α. J Cell Mol Med 2020; 24:3745-3750. [PMID: 31991519 PMCID: PMC7131934 DOI: 10.1111/jcmm.15020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/20/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023] Open
Abstract
Idiopathic interstitial pulmonary fibrosis is a common diffuse interstitial lung disease and has poor prognosis. And one of the pathological features of it is persistent fibroblast activation. It was reported that microRNA‐30a was down‐regulated in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients. But whether miR‐30a is involved in fibroblast activation and its specific mechanism is unclear. In this study, we aimed to investigate the role of miR‐30a in fibroblast activation induced by TGF‐β1. We found miR‐30a could targetedly suppress FAP‐α expression. In MRC5 cells, miR‐30a was not only involved in regulating the expression of FAP‐α, col1a and α‐SMA induced by TGF‐β1 but also had a role in cell proliferation with or without TGF‐β1 treatment via regulating FAP‐α expression. Thus, the results indicated that miR‐30a alleviated fibroblast activation by regulating the expression of FAP‐α.
Collapse
Affiliation(s)
- Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Zhenghao Deng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
39
|
Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U. Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem 2019; 4:16. [PMID: 31659499 PMCID: PMC6658625 DOI: 10.1186/s41181-019-0069-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Tumors form a complex environment consisting of a variety of non-malignant cells. Especially cancer-associated fibroblasts have been shown to have an important role for different aspects of malignant tumors such as migration, metastasis, resistance to chemotherapy and immunosuppression. Therefore, a targeting of these cells may be useful for both imaging and therapy. In this respect, an interesting target is the fibroblast activation protein (FAP) which is expressed in activated fibroblasts, but not in quiescent fibroblasts, giving the opportunity to use this membrane-anchored enzyme as a target for radionuclide-based approaches for diagnosis and treatment of tumors and for the diagnosis of non-malignant disease associated with a remodelling of the extracellular matrix.
Collapse
Affiliation(s)
- Thomas Lindner
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Anastasia Loktev
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Annette Altmann
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
40
|
Kimura T, Monslow J, Klampatsa A, Leibowitz M, Sun J, Liousia M, Woodruff P, Moon E, Todd L, Puré E, Albelda SM. Loss of cells expressing fibroblast activation protein has variable effects in models of TGF-β and chronic bleomycin-induced fibrosis. Am J Physiol Lung Cell Mol Physiol 2019; 317:L271-L282. [PMID: 31188013 DOI: 10.1152/ajplung.00071.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fibroblast activation protein (FAP), a cell surface serine protease, is upregulated on a subset of activated fibroblasts (often distinct from α-smooth muscle actin-expressing myofibroblasts) associated with matrix remodeling, including fibroblasts in idiopathic pulmonary fibrosis (Acharya PS, Zukas A, Chandan V, Katzenstein AL, Puré E. Hum Pathol 37: 352-360, 2006.). As FAP+ fibroblasts could be pivotal in either breakdown and/or production of collagen and other matrix components, the goal of this study was to define the role of FAP+ cells in pulmonary fibrosis in two established, but different, mouse models of chronic lung fibrosis: repetitive doses of intratracheal bleomycin and a single dose of an adenoviral vector encoding constitutively active TGF-β1 (Ad-TGFβ). To determine their role in fibrotic remodeling, FAP-expressing cells were depleted by injection of T cells expressing a chimeric antigen receptor specific for murine FAP in mice with established fibrosis. The contribution of FAP to the function of FAP-expressing cells was assessed in FAP knockout mice. Using histological analyses, quantification of soluble collagen content, and flow cytometry, we found that loss of FAP+ cells exacerbated fibrosis in the bleomycin model, a phenotype largely recapitulated by the genetic deletion of FAP, indicating that FAP plays a role in this model. In contrast, depletion of FAP+ cells or genetic deletion of FAP had little effect in the Ad-TGFβ model highlighting the potential for distinct mechanisms driving fibrosis depending on the initiating insult. The role of FAP in human lung fibrosis will need to be well understood to guide the use of FAP-targeted therapeutics that are being developed.
Collapse
Affiliation(s)
- Toru Kimura
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - James Monslow
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Astero Klampatsa
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael Leibowitz
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jing Sun
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Maria Liousia
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Patrick Woodruff
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Edmund Moon
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Leslie Todd
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Steven M Albelda
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Blockade of fibroblast activation protein in combination with radiation treatment in murine models of pancreatic adenocarcinoma. PLoS One 2019; 14:e0211117. [PMID: 30726287 PMCID: PMC6364920 DOI: 10.1371/journal.pone.0211117] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/08/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic stroma with a poor lymphocyte infiltrate, in part driven by cancer-associated fibroblasts (CAFs). CAFs, which express fibroblast activation protein (FAP), contribute to immune escape via exclusion of anti-tumor CD8+ T cells from cancer cells, upregulation of immune checkpoint ligand expression, immunosuppressive cytokine production, and polarization of tumor infiltrating inflammatory cells. FAP is a post-proline peptidase selectively expressed during tissue remodeling and repair, such as with wound healing, and in the tumor microenvironment by cancer-associated fibroblasts. We targeted FAP function using a novel small molecule inhibitor, UAMC-1110, and mice with germline knockout of FAP and concomitant knock-in of E. coli beta-galactosidase. We depleted CAFs by adoptive transfer of anti-βgal T cells into the FAP knockout animals. Established syngeneic pancreatic tumors in immune competent mice were targeted with these 3 strategies, followed by focal radiotherapy to the tumor. FAP loss was associated with improved antigen-specific tumor T cell infiltrate and enhanced collagen deposition. However, FAP targeting alone or with tumor-directed radiation did not improve survival even when combined with anti-PD1 therapy. Targeting of CAFs alone or in combination with radiation did not improve survival. We conclude that targeting FAP and CAFs in combination with radiation is capable of enhancing anti-tumor T cell infiltrate and function, but does not result in sufficient tumor clearance to extend survival.
Collapse
|
42
|
Zhang HE, Hamson EJ, Koczorowska MM, Tholen S, Chowdhury S, Bailey CG, Lay AJ, Twigg SM, Lee Q, Roediger B, Biniossek ML, O'Rourke MB, McCaughan GW, Keane FM, Schilling O, Gorrell MD. Identification of Novel Natural Substrates of Fibroblast Activation Protein-alpha by Differential Degradomics and Proteomics. Mol Cell Proteomics 2019; 18:65-85. [PMID: 30257879 PMCID: PMC6317473 DOI: 10.1074/mcp.ra118.001046] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 01/10/2023] Open
Abstract
Fibroblast activation protein-alpha (FAP) is a cell-surface transmembrane-anchored dimeric protease. This unique, constitutively active serine protease has both dipeptidyl aminopeptidase and endopeptidase activities and can hydrolyze the post-proline bond. FAP expression is very low in adult organs but is upregulated by activated fibroblasts in sites of tissue remodeling, including fibrosis, atherosclerosis, arthritis and tumors. To identify the endogenous substrates of FAP, we immortalized primary mouse embryonic fibroblasts (MEFs) from FAP gene knockout embryos and then stably transduced them to express either enzymatically active or inactive FAP. The MEF secretomes were then analyzed using degradomic and proteomic techniques. Terminal amine isotopic labeling of substrates (TAILS)-based degradomics identified cleavage sites in collagens, many other extracellular matrix (ECM) and associated proteins, and lysyl oxidase-like-1, CXCL-5, CSF-1, and C1qT6, that were confirmed in vitro In addition, differential metabolic labeling coupled with quantitative proteomic analysis also implicated FAP in ECM-cell interactions, as well as with coagulation, metabolism and wound healing associated proteins. Plasma from FAP-deficient mice exhibited slower than wild-type clotting times. This study provides a significant expansion of the substrate repertoire of FAP and provides insight into the physiological and potential pathological roles of this enigmatic protease.
Collapse
Affiliation(s)
- Hui Emma Zhang
- From the ‡Centenary Institute, the University of Sydney, Locked Bag No.6, Newtown, New South Wales, 2042, Australia;; §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Elizabeth J Hamson
- From the ‡Centenary Institute, the University of Sydney, Locked Bag No.6, Newtown, New South Wales, 2042, Australia;; §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | | | - Stefan Tholen
- ¶Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Sumaiya Chowdhury
- From the ‡Centenary Institute, the University of Sydney, Locked Bag No.6, Newtown, New South Wales, 2042, Australia;; §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Charles G Bailey
- From the ‡Centenary Institute, the University of Sydney, Locked Bag No.6, Newtown, New South Wales, 2042, Australia;; §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Angelina J Lay
- From the ‡Centenary Institute, the University of Sydney, Locked Bag No.6, Newtown, New South Wales, 2042, Australia;; §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Stephen M Twigg
- §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia;; ‖Charles Perkins Centre, the University of Sydney, New South Wales, 2006, Australia
| | - Quintin Lee
- From the ‡Centenary Institute, the University of Sydney, Locked Bag No.6, Newtown, New South Wales, 2042, Australia;; §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Ben Roediger
- From the ‡Centenary Institute, the University of Sydney, Locked Bag No.6, Newtown, New South Wales, 2042, Australia;; §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Martin L Biniossek
- ¶Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Matthew B O'Rourke
- ‖Charles Perkins Centre, the University of Sydney, New South Wales, 2006, Australia;; **Proteomics Core Facility, University of Technology Sydney, New South Wales, 2007, Australia
| | - Geoffrey W McCaughan
- From the ‡Centenary Institute, the University of Sydney, Locked Bag No.6, Newtown, New South Wales, 2042, Australia;; §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Fiona M Keane
- From the ‡Centenary Institute, the University of Sydney, Locked Bag No.6, Newtown, New South Wales, 2042, Australia;; §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Oliver Schilling
- ‡‡Institute of Surgical Pathology, University Medical Center - University of Freiburg, Freiburg, Germany;; §§BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany;; ¶¶German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mark D Gorrell
- From the ‡Centenary Institute, the University of Sydney, Locked Bag No.6, Newtown, New South Wales, 2042, Australia;; §Sydney Medical School, the University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia;; ‖Charles Perkins Centre, the University of Sydney, New South Wales, 2006, Australia;.
| |
Collapse
|
43
|
Juillerat-Jeanneret L, Aubert JD, Mikulic J, Golshayan D. Fibrogenic Disorders in Human Diseases: From Inflammation to Organ Dysfunction. J Med Chem 2018; 61:9811-9840. [DOI: 10.1021/acs.jmedchem.8b00294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - John-David Aubert
- Pneumology Division and Transplantation Center, Centre Hospitalier Universitaire Vaudois (CHUV), CH1011 Lausanne, Switzerland
| | - Josip Mikulic
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
44
|
Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol 2018; 68-69:435-451. [PMID: 29656147 DOI: 10.1016/j.matbio.2018.04.006] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Liver fibrosis and in particular cirrhosis are the major causes of morbidity and mortality of patients with chronic liver disease. Their prevention or reversal have become major endpoints in clinical trials with novel liver specific drugs. Remarkable progress has been made with therapies that efficiently address the cause of the underlying liver disease, as in chronic hepatitis B and C. Highly effective antiviral therapy can prevent progression or even induce reversal in the majority of patients, but such treatment remains elusive for the majority of liver patients with advanced alcoholic or nonalcoholic steatohepatitis, genetic or autoimmune liver diseases. Moreover, drugs that would speed up fibrosis reversal are needed for patients with cirrhosis, since even with effective causal therapy reversal is slow or the disease may further progress. Therefore, highly efficient and specific antifibrotic agents are needed that can address advanced fibrosis, i.e., the detrimental downstream result of all chronic liver diseases. This review discusses targeted antifibrotic therapies that address molecules and mechanisms that are central to fibrogenesis or fibrolysis, including strategies that allow targeting of activated hepatic stellate cells and myofibroblasts and other fibrogenic effector cells. Focus is on collagen synthesis, integrins and cells and mechanisms specific including specific downregulation of TGFbeta signaling, major extracellular matrix (ECM) components, ECM-crosslinking, and ECM-receptors such as integrins and discoidin domain receptors, ECM-crosslinking and methods for targeted delivery of small interfering RNA, antisense oligonucleotides and small molecules to increase potency and reduce side effects. With an increased understanding of the biology of the ECM and liver fibrosis and an improved preclinical validation, the translation of these approaches to the clinic is currently ongoing. Application to patients with liver fibrosis and a personalized treatment is tightly linked to the development of noninvasive biomarkers of fibrosis, fibrogenesis and fibrolysis.
Collapse
Affiliation(s)
- Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | - Muhammad Ashfaq-Khan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Ai Ting Yang
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| |
Collapse
|
45
|
Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology 2017; 6:e1398878. [PMID: 29209575 DOI: 10.1080/2162402x.2017.1398878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
DNA-based vaccination is a promising approach to cancer immunotherapy. DNA-based vaccines specific for tumor-associated antigens (TAAs) are indeed relatively simple to produce, cost-efficient and well tolerated. However, the clinical efficacy of DNA-based vaccines for cancer therapy is considerably limited by central and peripheral tolerance. During the past decade, considerable efforts have been devoted to the development and characterization of novel DNA-based vaccines that would circumvent this obstacle. In this setting, particular attention has been dedicated to the route of administration, expression of modified TAAs, co-expression of immunostimulatory molecules, and co-delivery of immune checkpoint blockers. Here, we review preclinical and clinical progress on DNA-based vaccines for cancer therapy.
Collapse
Affiliation(s)
- Stefano Pierini
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renzo Perales-Linares
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan G Pol
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Andrea Facciabene
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|