1
|
Mishra S, Stany B, Das A, Kanagavel D, Vijayan M. A Comprehensive Review of Membrane Transporters and MicroRNA Regulation in Alzheimer's Disease. Mol Neurobiol 2024; 61:8739-8758. [PMID: 38558361 DOI: 10.1007/s12035-024-04135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a distressing neurodegenerative condition characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles within the brain. The interconnectedness between membrane transporters (SLCs) and microRNAs (miRNAs) in AD pathogenesis has gained increasing attention. This review explores the localization, substrates, and functions of SLC transporters in the brain, emphasizing the roles of transporters for glutamate, glucose, nucleosides, and other essential compounds. The examination delves into the significance of SLCs in AD, their potential for drug development, and the intricate realm of miRNAs, encompassing their transcription, processing, functions, and regulation. MiRNAs have emerged as significant players in AD, including those associated with mitochondria and synapses. Furthermore, this review discusses the intriguing nexus of miRNAs targeting SLC transporters and their potential as therapeutic targets in AD. Finally, the review underscores the interaction between SLC transporters and miRNA regulation within the context of Alzheimer's disease, underscoring the need for further research in this area. This comprehensive review aims to shed light on the complex mechanisms underlying the causation of AD and provides insights into potential therapeutic approaches.
Collapse
Affiliation(s)
- Shatakshi Mishra
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - B Stany
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Anushka Das
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Deepankumar Kanagavel
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
2
|
Cui J, Wen Z, Huang H, Qin S, Luo Y, Zhang W, Wu W. The Pharmacokinetics and Liver-Targeting Evaluation of Silybin Liposomes Mediated by the NTCP/OCTN2 Dual Receptors. Mol Pharm 2024; 21:4912-4923. [PMID: 39370820 DOI: 10.1021/acs.molpharmaceut.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The disadvantage of a traditional dosage regimen is the inability to deliver a sufficient drug concentration to the lesion site, which can result in adverse side effects due to nonspecific drug delivery. Actively targeting hepatic cells is a promising therapeutic strategy for liver disease. In this study, l-carnitine and a targeting peptide derived from the hepatitis B virus large envelope protein were used to modify liposomes for drug delivery to the liver through the sodium taurocholate cotransporting polypeptide (NTCP) and the organic cation/carnitine transporter 2 (OCTN2) receptors. Silybin was selected as the model drug. The solubility of silybin can reach 0.3 mg/mL after encapsulation in liposomes. The NTCP-specific and OCTN2-accelerated Myrcludex B and l-carnitine dual-modified liposomes were validated in vitro. The uptake of coumarin-6 in dual ligand-modified liposomes by hepatocytes was up to 2.36 μg/mg compared with unmodified liposomes (1.05 μg/mg). The pharmacokinetics and targeting abilities of various liposome formulations were evaluated in Kunming mice. Targeted liposomes increased the concentration of silybin and prolonged the drug's retention time in the liver. The area under the liver's pharmacokinetic curve of targeted liposomes was twice that of silybin injection, suggesting the promising application potential of silybin-loaded hepatotropic nanovesicles.
Collapse
Affiliation(s)
- Jian Cui
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Zhiwei Wen
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Huajie Huang
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Shuilin Qin
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yanjie Luo
- Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541002, China
| | - Wei Zhang
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| |
Collapse
|
3
|
Pernecker M, Ciarimboli G. Regulation of renal organic cation transporters. FEBS Lett 2024; 598:2328-2347. [PMID: 38831380 DOI: 10.1002/1873-3468.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Transporters for organic cations (OCs) facilitate exchange of positively charged molecules through the plasma membrane. Substrates for these transporters encompass neurotransmitters, metabolic byproducts, drugs, and xenobiotics. Consequently, these transporters actively contribute to the regulation of neurotransmission, cellular penetration and elimination process for metabolic products, drugs, and xenobiotics. Therefore, these transporters have significant physiological, pharmacological, and toxicological implications. In cells of renal proximal tubules, the vectorial secretion pathways for OCs involve expression of organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) on basolateral and apical membrane domains, respectively. This review provides an overview of documented regulatory mechanisms governing OCTs and MATEs. Additionally, regulation of these transporters under various pathological conditions is summarized. The expression and functionality of OCTs and MATEs are subject to diverse pre- and post-translational modifications, providing insights into their regulation in various pathological conditions. Typically, in diseases, downregulation of transporter expression is observed, probably as a protective mechanism to prevent additional damage to kidney tissue. This regulation may be attributed to the intricate network of modifications these transporters undergo, shedding light on their dynamic responses in pathological contexts.
Collapse
Affiliation(s)
- Moritz Pernecker
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| |
Collapse
|
4
|
Duan M, Cao R, Yang Y, Chen X, Liu L, Ren B, Wang L, Goh BC. Blood-Brain Barrier Conquest in Glioblastoma Nanomedicine: Strategies, Clinical Advances, and Emerging Challenges. Cancers (Basel) 2024; 16:3300. [PMID: 39409919 PMCID: PMC11475686 DOI: 10.3390/cancers16193300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is a prevalent type of malignancy within the central nervous system (CNS) that is associated with a poor prognosis. The standard treatment for GBM includes the surgical resection of the tumor, followed by radiotherapy and chemotherapy; yet, despite these interventions, overall treatment outcomes remain suboptimal. The blood-brain barrier (BBB), which plays a crucial role in maintaining the stability of brain tissue under normal physiological conditions of the CNS, also poses a significant obstacle to the effective delivery of therapeutic agents to GBMs. Recent preclinical studies have demonstrated that nanomedicine delivery systems (NDDSs) offer promising results, demonstrating both effective GBM targeting and safety, thereby presenting a potential solution for targeted drug delivery. In this review, we first explore the various strategies employed in preclinical studies to overcome the BBB for drug delivery. Subsequently, the results of the clinical translation of NDDSs are summarized, highlighting the progress made. Finally, we discuss potential strategies for advancing the development of NDDSs and accelerating their translational research through well-designed clinical trials in GBM therapy.
Collapse
Affiliation(s)
- Mengyun Duan
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Ruina Cao
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China;
| | - Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Xiaoguang Chen
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou 434023, China;
| | - Boxu Ren
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Boon-Cher Goh
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| |
Collapse
|
5
|
Wang X, Yang C, Huang C, Wang W. Dysfunction of the carnitine cycle in tumor progression. Heliyon 2024; 10:e35961. [PMID: 39211923 PMCID: PMC11357771 DOI: 10.1016/j.heliyon.2024.e35961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The carnitine cycle is responsible for the transport of cytoplasmic fatty acids to the mitochondria for subsequent β-oxidation to maintain intracellular energy homeostasis. Recent studies have identified abnormalities in the carnitine cycle in various types of tumors; these abnormalities include the altered expression levels of carnitine cycle-related metabolic enzymes and transport proteins. Dysfunction of the carnitine cycle has been shown to influence tumorigenesis and progression by altering intracellular oxidative and inflammatory status or regulating tumor metabolic flexibility. Many therapeutic strategies targeting the carnitine cycle are actively being explored to modify the dysfunction of the carnitine cycle in patients with malignant tumors; such approaches include carnitine cycle-related enzyme inhibitors and exogenous carnitine supplementation. Therefore, here, we review the studies of carnitine in tumors, aiming to scientifically illustrate the dysfunction of the carnitine cycle in tumor progression and provide new ideas for further research.
Collapse
Affiliation(s)
- Xiangjun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
6
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kang HC. Beyond Nanoparticle-Based Intracellular Drug Delivery: Cytosol/Organelle-Targeted Drug Release and Therapeutic Synergism. Macromol Biosci 2024; 24:e2300590. [PMID: 38488862 DOI: 10.1002/mabi.202300590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/07/2024] [Indexed: 07/16/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
7
|
Tang B, Wang Q, Zhang G, Zhang A, Zhu L, Zhao R, Gu H, Meng J, Zhang J, Fang G. OCTN2- and ATB 0,+-targeted nanoemulsions for improving ocular drug delivery. J Nanobiotechnology 2024; 22:130. [PMID: 38532399 DOI: 10.1186/s12951-024-02402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Traditional eye drops are administered via topical instillation. However, frequent dosing is needed due to their relatively rapid precorneal removal and low ocular bioavailability. To address these issues, stearoyl L-carnitine-modified nanoemulsions (SC-NEs) were fabricated. The physicochemical properties of SC-NEs in terms of size, morphology, zeta potential, encapsulation efficiency, and in vitro drug release behavior were characterized. The cellular uptake and mechanisms of SC-NEs were comprehensively studied in human corneal epithelial cells and the stearoyl L-carnitine ratio in SC-NEs was optimized. The optimized SC-NEs could target the novel organic cation/carnitine transporter 2 (OCTN2) and amino acid transporter B (0 +) (ATB0,+) on the corneal epithelium, which led to superior corneal permeation, ocular surface retention ability, ocular bioavailability. Furthermore, SC-NEs showed excellent in vivo anti-inflammatory efficacy in a rabbit model of endotoxin-induced uveitis. The ocular safety test indicated that the SC-NEs were biocompatible. In general, the current study demonstrated that OCTN2 and ATB0,+-targeted nanoemulsions were promising ophthalmologic drug delivery systems that can improve ocular drug bioavailability and boost the therapeutic effects of drugs for eye diseases.
Collapse
Affiliation(s)
- Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Qiuxiang Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Aiwen Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Lu Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Rongrong Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Hongwei Gu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jie Meng
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Junfang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
8
|
Farahzadi R, Hejazi MS, Molavi O, Pishgahzadeh E, Montazersaheb S, Jafari S. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9328344. [PMID: 37600065 PMCID: PMC10435298 DOI: 10.1155/2023/9328344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 08/22/2023]
Abstract
Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for β-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Vorrius B, Qiao Z, Ge J, Chen Q. Smart Strategies to Overcome Drug Delivery Challenges in the Musculoskeletal System. Pharmaceuticals (Basel) 2023; 16:967. [PMID: 37513879 PMCID: PMC10383421 DOI: 10.3390/ph16070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
The musculoskeletal system (MSKS) is composed of specialized connective tissues including bone, muscle, cartilage, tendon, ligament, and their subtypes. The primary function of the MSKS is to provide protection, structure, mobility, and mechanical properties to the body. In the process of fulfilling these functions, the MSKS is subject to wear and tear during aging and after injury and requires subsequent repair. MSKS diseases are a growing burden due to the increasing population age. The World Health Organization estimates that 1.71 billon people suffer from MSKS diseases worldwide. MSKS diseases usually involve various dysfunctions in bones, muscles, and joints, which often result in pain, disability, and a decrease in quality of life. The most common MSKS diseases are osteoporosis (loss of bone), osteoarthritis (loss of cartilage), and sarcopenia (loss of skeletal muscle). Because of the disease burden and the need for treatment, regenerative drug therapies for MSKS disorders are increasingly in demand. However, the difficulty of effective drug delivery in the MSKS has become a bottleneck for developing MSKS therapeutics. The abundance of extracellular matrix and its small pore size in the MSKS present a formidable barrier to drug delivery. Differences of vascularity among various MSKS tissues pose complications for drug delivery. Novel strategies are necessary to achieve successful drug delivery in different tissues composing the MSKS. Those considerations include the route of administration, mechanics of surrounding fluids, and biomolecular interactions, such as the size and charge of the particles and targeting motifs. This review focuses on recent advances in challenges to deliver drugs to each tissue of the MSKS, current strategies of drug delivery, and future ideas of how to overcome drug delivery challenges in the MSKS.
Collapse
Affiliation(s)
| | | | | | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA; (B.V.); (Z.Q.); (J.G.)
| |
Collapse
|
10
|
L-Carnitine Functionalization to Increase Skeletal Muscle Tropism of PLGA Nanoparticles. Int J Mol Sci 2022; 24:ijms24010294. [PMID: 36613739 PMCID: PMC9820419 DOI: 10.3390/ijms24010294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Muscular dystrophies are a group of rare genetic pathologies, encompassing a variety of clinical phenotypes and mechanisms of disease. Several compounds have been proposed to treat compromised muscles, but it is known that pharmacokinetics and pharmacodynamics problems could occur. To solve these issues, it has been suggested that nanocarriers could be used to allow controlled and targeted drug release. Therefore, the aim of this study was to prepare actively targeted poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) for the treatment of muscular pathologies. By taking advantage of the high affinity for carnitine of skeletal muscle cells due to the expression of Na+-coupled carnitine transporter (OCTN), NPs have been actively targeted via association to an amphiphilic derivative of L-carnitine. Furthermore, pentamidine, an old drug repurposed for its positive effects on myotonic dystrophy type I, was incorporated into NPs. We obtained monodispersed targeted NPs, with a mean diameter of about 100 nm and a negative zeta potential. To assess the targeting ability of the NPs, cell uptake studies were performed on C2C12 myoblasts and myotubes using confocal and transmission electron microscopy. The results showed an increased uptake of carnitine-functionalized NPs compared to nontargeted carriers in myotubes, which was probably due to the interaction with OCTN receptors occurring in large amounts in these differentiated muscle cells.
Collapse
|
11
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022; 39:1415-1455. [PMID: 35359241 PMCID: PMC9246765 DOI: 10.1007/s11095-022-03241-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood–brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.
Collapse
|
13
|
Cysteine Donor-Based Brain-Targeting Prodrug: Opportunities and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4834117. [PMID: 35251474 PMCID: PMC8894025 DOI: 10.1155/2022/4834117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Overcoming blood-brain barrier (BBB) to improve brain bioavailability of therapeutic drug remains an ongoing concern. Prodrug is one of the most reliable approaches for delivering agents with low-level BBB permeability into the brain. The well-known antioxidant capacities of cysteine (Cys) and its vital role in glutathione (GSH) synthesis indicate that Cys-based prodrug could potentiate therapeutic drugs against oxidative stress-related neurodegenerative disorders. Moreover, prodrug with Cys moiety could be recognized by the excitatory amino acid transporter 3 (EAAT3) that is highly expressed at the BBB and transports drug into the brain. In this review, we summarized the strategies of crossing BBB, properties of EAAT3 and its natural substrates, Cys and its donors, and Cys donor-based brain-targeting prodrugs by referring to recent investigations. Moreover, the challenges that we are faced with and future research orientations were also addressed and proposed. It is hoped that present review will provide evidence for the pursuit of novel Cys donor-based brain-targeting prodrug.
Collapse
|
14
|
Comprehensive assessment of the effectiveness of l-carnitine and transresveratrol in rats with diet-induced obesity. Nutrition 2021; 95:111561. [PMID: 34999386 DOI: 10.1016/j.nut.2021.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/05/2021] [Accepted: 11/28/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Transresveratrol (Res) and l-carnitine (l-Car) are proposed to alleviate metabolic and immune disorders and increase physical activity in obese individuals. This study aims to estimate the effect of Res and l-Car in rats with diet-induced obesity. METHODS Male Wistar rats were fed a diet with excess fat and fructose (high-fat high-carbohydrate diet [HFCD]) supplemented with Res and l-Car at doses of 25 and 300 mg/kg of body weight, respectively, for 63 d. An assessment of grip strength, behavioral reactions, as well as biochemical, morphological, and immunological parameters, was performed. RESULTS Res supplementation did not affect energy consumption, but l-Car increased when animals had free access to feed. Body weight gains were the highest in animals fed the HFCD, lowest in rats receiving the control balanced diet, and intermediate in animals receiving Res and l-Car. Feeding with Res and l-Car canceled the decrease in long-term memory in rats fed the HFCD, as well as reduced anxiety and increased mobility. With both supplements, bilirubin, triglycerides, and low-density lipoprotein levels in the blood plasma returned to normal values, but only l-Car increased the ratio of aspartic and alanine transaminases. In addition, l-Car lowered the levels of leptin and ghrelin and increased transforming growth factor beta 1 in the blood plasma, and consumption of Res was accompanied by a decrease in interleukin-17A and increase in interferon gamma in spleen lysates. Moreover, l-Car reduced the number of cells with lipid inclusions in the liver. CONCLUSIONS The consumption of Res and l-Car leads to a significant reduction in dyslipidemia and inflammation with potentially favorable changes in behavioral responses.
Collapse
|
15
|
Zahednezhad F, Shahbazi Mojarrad J, Zakeri-Milani P, Baradaran B, Mahmoudian M, Sarfraz M, Valizadeh H. Surface modification with cholesteryl acetyl carnitine, a novel cationic agent, elevates cancer cell uptake of the PEGylated liposomes. Int J Pharm 2021; 609:121148. [PMID: 34600054 DOI: 10.1016/j.ijpharm.2021.121148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
The present study aimed to synthesize cholesteryl acetyl carnitine (CAC), and surface modify the PEGylated liposomes with the intention of enhanced cancer cell uptake. For this, CAC synthesis was performed in amine-free esterification conditions and then four liposomal formulations of unmodified, CAC/PEG, and CAC + PEG-modified were prepared by ethanol injection method. Cytotoxicity of the liposomes was investigated in A549 cells, followed by cellular uptake assessments of coumarin 6 (C6)-loaded liposomes. The results of ATR-FTIR, 1HNMR, and 13CNMR demonstrated successful formation of CAC. A molecular docking study showed efficient binding affinities rather than carnitine to the active site of four carnitine transporters. Liposomal formulations possessed spherical morphology with a mean particle size range of 112-138 nm, narrow size distribution, and negative surface charge. All formulations had low cytotoxicity at 0.5 mg/ml, but high cytotoxicity at around 2.5 mg/ml. The lowest IC50 was obtained for CAC modified liposomes. CAC + PEG-modified liposomes had the highest cellular uptake. In conclusion, CAC + PEG modification of liposomes is an effective approach for increasing A549 cellular uptake, with low cytotoxicity at commonly applied liposome concentrations. The elevated uptake may be due to the involvement of the organic cation transporter, cationic structure, and the metabolic preference of CAC in cancer cells.
Collapse
Affiliation(s)
- Fahimeh Zahednezhad
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mahmoudian
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
16
|
Li N, Zhao H. Role of Carnitine in Non-alcoholic Fatty Liver Disease and Other Related Diseases: An Update. Front Med (Lausanne) 2021; 8:689042. [PMID: 34434943 PMCID: PMC8381051 DOI: 10.3389/fmed.2021.689042] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Carnitine is an amino acid-derived substance that coordinates a wide range of biological processes. Such functions include transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix, regulation of acetyl-CoA/CoA, control of inter-organellar acyl traffic, and protection against oxidative stress. Recent studies have found that carnitine plays an important role in several diseases, including non-alcoholic fatty liver disease (NAFLD). However, its effect is still controversial, and its mechanism is not clear. Herein, this review provides current knowledge on the biological functions of carnitine, the “multiple hit” impact of carnitine on the NAFLD progression, and the downstream mechanisms. Based on the “multiple hit” hypothesis, carnitine inhibits β-oxidation, improves mitochondrial dysfunction, and reduces insulin resistance to ameliorate NAFLD. L-carnitine may have therapeutic role in liver diseases including non-alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, alcoholic fatty liver disease, and viral hepatitis. We also discuss the prospects of L-carnitine supplementation as a therapeutic strategy in NAFLD and related diseases, and the factors limiting its widespread use.
Collapse
Affiliation(s)
- Na Li
- Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of General Practice, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Hui Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
Kou L, Jiang X, Lin X, Huang H, Wang J, Yao Q, Chen R. Matrix Metalloproteinase Inspired Therapeutic Strategies for Bone Diseases. Curr Pharm Biotechnol 2021; 22:451-467. [PMID: 32603279 DOI: 10.2174/1389201021666200630140735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023]
Abstract
Matrix Metalloproteinases (MMPs), as a family of zinc-containing enzymes, show the function of decomposing Extracellular Matrix (ECM) and participate in the physiological processes of cell migration, growth, inflammation, and metabolism. Clinical and experimental studies have indicated that MMPs play an essential role in tissue injury and repair as well as tumor diagnosis, metastasis, and prognosis. An increasing number of researchers have paid attention to their functions and mechanisms in bone health and diseases. The present review focuses on MMPs-inspired therapeutic strategies for the treatment of bone-related diseases. We introduce the role of MMPs in bone diseases, highlight the MMPs-inspired therapeutic options, and posit MMPs as a trigger for smart cell/drug delivery.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
19
|
Lou D, Lou Z, Lin Y, Shangguan H, Lin Y, Luo Q, Zhang H, Lin G, Chen R, Kou L, Bao S. ATB 0,+-targeted delivery of triptolide prodrugs for safer and more effective pancreatic cancer therapy. Bioorg Med Chem Lett 2020; 33:127728. [PMID: 33346010 DOI: 10.1016/j.bmcl.2020.127728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Triptolide (TP) is a diterpene epoxide component extracted from Tripterygium wilfordii and has been shown to possess an impressive anticancer effect. However, TP has not yet entered any clinic trials due to the severe adverse effects that resulted from the off-target absorption and distribution found in animal studies. In this study, we designed and synthesized three amino acids (tryptophan, valine, and lysine) based TP prodrugs to target ATB0,+ which are highly expressed in pancreatic cancer cells for more effective pancreatic cancer therapy. The stability, uptake profiles, uptake mechanism, and cancer-killing ability were studied in vitro. All three prodrugs showed increased uptake and enhanced cytotoxicity in pancreatic cancer cells, but not in normal pancreatic cells. The difference in killing effect on normal and cancer cells was attributed to pancreatic cancer over-expressed ATB0,+-mediated uptake. Specifically, tryptophan-conjugated TP prodrug (TP-Trp) showed the highest uptake and the best cancer cell killing effect, considered as the best candidate. The present study provided the proof-of-concept of exploiting TP prodrug to target ATB0,+ for pancreatic cancer-selective delivery and treatment.
Collapse
Affiliation(s)
- Dan Lou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China
| | - Zijian Lou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuanzhen Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Shangguan
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Yujie Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China; Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Guangyong Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China.
| | - Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou 325027, China.
| |
Collapse
|
20
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
21
|
Yao Q, Chen R, Ganapathy V, Kou L. Therapeutic application and construction of bilirubin incorporated nanoparticles. J Control Release 2020; 328:407-424. [DOI: 10.1016/j.jconrel.2020.08.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
|
22
|
Kou L, Sun R, Xiao S, Cui X, Sun J, Ganapathy V, Yao Q, Chen R. OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo. Drug Deliv 2020; 27:170-179. [PMID: 31913724 PMCID: PMC6968687 DOI: 10.1080/10717544.2019.1710623] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Targeted nanocarriers have shown great promise in drug delivery because of optimized drug
behavior and improved therapeutic efficacy. How to improve the targeting efficiency of
nanocarriers for the maximum possible drug delivery is a critical issue. Here we developed
L-carnitine-conjugated nanoparticles targeting the carnitine transporter OCTN2 on
enterocytes for improved oral absorption. As a variable, we introduced various lengths of
the polyethylene glycol linker (0, 500, 1000, and 2000) between the nanoparticle surface
and the ligand (CNP, C5NP, C10NP and C20NP) to improve the ligand flexibility, and
consequently for more efficient interaction with the transporter, to enhance the oral
delivery of the cargo load into cells. An increased absorption was observed in cellular
uptake in vitro and in intestinal perfusion assay in
situ when the polyethylene glycol was introduced to link L-carnitine to the
nanoparticles; the highest absorption was achieved with C10NP. In contrast, the linker
decreased the absorption efficiency in vivo. As the presence or absence
of the mucus layer was the primary difference between in vitro/in
situ versus in vivo, the presence of this layer was the likely
reason for this differential effect. In summary, the size of the polyethylene glycol
linker improved the absorption in vitro and in situ, but
interfered with the absorption in vivo. Even though this strategy of
increasing the ligand flexibility with the variable size of the polyethylene glycol failed
to increase oral absorption in vivo, this approach is likely to be useful
for enhanced cellular uptake following intravenous administration of the nanocarriers.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuyi Xiao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Cui
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Kou L, Yao Q, Zhang H, Chu M, Bhutia YD, Chen R, Ganapathy V. Transporter-Targeted Nano-Sized Vehicles for Enhanced and Site-Specific Drug Delivery. Cancers (Basel) 2020; 12:E2837. [PMID: 33019627 PMCID: PMC7599460 DOI: 10.3390/cancers12102837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Nano-devices are recognized as increasingly attractive to deliver therapeutics to target cells. The specificity of this approach can be improved by modifying the surface of the delivery vehicles such that they are recognized by the target cells. In the past, cell-surface receptors were exploited for this purpose, but plasma membrane transporters also hold similar potential. Selective transporters are often highly expressed in biological barriers (e.g., intestinal barrier, blood-brain barrier, and blood-retinal barrier) in a site-specific manner, and play a key role in the vectorial transfer of nutrients. Similarly, selective transporters are also overexpressed in the plasma membrane of specific cell types under pathological states to meet the biological needs demanded by such conditions. Nano-drug delivery systems could be strategically modified to make them recognizable by these transporters to enhance the transfer of drugs across the biological barriers or to selectively expose specific cell types to therapeutic drugs. Here, we provide a comprehensive review and detailed evaluation of the recent advances in the field of transporter-targeted nano-drug delivery systems. We specifically focus on areas related to intestinal absorption, transfer across blood-brain barrier, tumor-cell selective targeting, ocular drug delivery, identification of the transporters appropriate for this purpose, and details of the rationale for the approach.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Maoping Chu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
| | - Vadivel Ganapathy
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
24
|
Chen Y, Li C, Yi Y, Du W, Jiang H, Zeng S, Zhou H. Organic Cation Transporter 1 and 3 Contribute to the High Accumulation of Dehydrocorydaline in the Heart. Drug Metab Dispos 2020; 48:1074-1083. [PMID: 32723846 DOI: 10.1124/dmd.120.000025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Dehydrocorydaline (DHC), one of the main active components of Corydalis yanhusuo, is an important remedy for the treatment of coronary heart disease. Our previous study revealed a higher unbound concentration of DHC in the heart than plasma of mice after oral administration of C. yanhusuo extract or DHC, but the underlying uptake mechanism remains unelucidated. In our investigations, we studied the transport mechanism of DHC in transgenic cells, primary neonatal rat cardiomyocytes, and animal experiments. Using quantitative real-time polymerase chain reaction and Western blotting, we found that uptake transporters expressed in the mouse heart include organic cation transporter 1/3 (OCT1/3) and carnitine/organic cation transporter 1/2 (OCTN1/2). The accumulation experiments in transfected cells showed that DHC was a substrate of OCT1 and OCT3, with K m of 11.29 ± 3.3 and 8.96 ± 3.7 μM, respectively, but not a substrate of OCTN1/2. Additionally, a higher efflux level (1.71-fold of MDCK-mock) of DHC was observed in MDCK-MDR1 cells than in MDCK-mock cells. Therefore, DHC is a weak substrate for MDR1. Studies using primary neonatal rat cardiomyocytes showed that OCT1/3 inhibitors (quinidine, decynium-22, and levo-tetrahydropalmatine) prevented the accumulation of DHC, whereas OCTN2 inhibitors (mildronate and l-carnitine) did not affect its accumulation. Moreover, the coadministration of OCT1/3 inhibitors (levo-tetrahydropalmatine, THP) decreased the concentration of DHC in the mouse heart. Based on these findings, DHC may be accumulated partly by OCT1/3 transporters and excreted by MDR1 in the heart. THP could alter the distribution of DHC in the mouse heart. SIGNIFICANCE STATEMENT: We reported the cardiac transport mechanism of dehydrocorydaline, highly distributed to the heart after oral administration of Corydalis yanhusuo extract or dehydrocorydaline only. Dehydrocorydaline (an OCT1/3 and MDR1 substrate) accumulation in primary cardiomyocytes may be related to the transport activity of OCT1/3. This ability, hampered by selective inhibitors (levo-tetrahydropalmatine, an inhibitor of OCT1/3), causes a nearly 40% reduction in exposure of the heart to dehydrocorydaline. These results suggest that OCT1/3 may contribute to the uptake of dehydrocorydaline in the heart.
Collapse
Affiliation(s)
- Yingchun Chen
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cui Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yaodong Yi
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Weijuan Du
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Kou L, Sun R, Jiang X, Lin X, Huang H, Bao S, Zhang Y, Li C, Chen R, Yao Q. Tumor Microenvironment-Responsive, Multistaged Liposome Induces Apoptosis and Ferroptosis by Amplifying Oxidative Stress for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30031-30043. [PMID: 32459093 DOI: 10.1021/acsami.0c03564] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor cells usually display metabolic, genetic, and microenvironment-related alterations, which are beneficial to tumor proliferation, tumor development, and resistance occurrence. Many transporters and enzymes, including ATB0,+, xCT, and matrix metalloproteinases (MMPs), are involved in the altered cell metabolism and tumor microenvironment and often abnormally upregulated in malignant tumors. Meanwhile, these dysregulated transporters and enzymes provide targets not only for a pharmacological blockage to suppress tumor progress but also for tumor-specific delivery. Although transporters and MMPs have been widely reported for antitumor drug delivery, the feasibility of utilizing two strategies has never been elucidated yet. Herein, we developed an MMP2-activated and ATB0,+-targeted liposome with doxorubicin and sorafenib (DS@MA-LS) loaded for optimal tumor drug delivery for cancer therapy. DS@MA-LS was designed to prolong blood circulation and deshield the PEG shell from MMP2 cleavage to expose lysine and target overexpressed ATB0,+ for enhanced tumor distribution and cancer cellular uptake. Besides the anticancer effects of loaded drugs, the endocytosed liposomes could further increase ROS production and suppress the antioxidant system to amplify oxidative stress. As expected, DS@MA-LS displayed enhanced targeted drug delivery to tumor sites with the MMP2-controlled ligand exposure and ATB0,+-mediated uptake. More importantly, DS@MA-LS successfully inhibited the tumor growth and cancer cell proliferation both in vitro and in vivo by enhancing apoptosis and ferroptosis, which thanks to the increased ROS generation and impaired GSH synthesis synergistically amplified oxidative stress. Our results suggested that the tumor microenvironment-responsive, multistaged nanoplatform, DS@MA-LS, has excellent potential for optimal drug delivery and enhanced cancer treatment.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Youting Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Chao Li
- Scientific Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
26
|
Peng Y, Chen L, Ye S, Kang Y, Liu J, Zeng S, Yu L. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 2020; 15:220-236. [PMID: 32373201 PMCID: PMC7193453 DOI: 10.1016/j.ajps.2020.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the continuous occurrence of multi-drug resistance in the clinic has made people pay more attention to the transporter. Changes in the expression and activity of transporters can cause corresponding changes in drug pharmacokinetics and pharmacodynamics. The drug-drug interactions (DDI) caused by transporters can seriously affect drug effectiveness and toxicity. In the development of pharmaceutical preparations, people have increasingly concerned about the effects and regulation of transporters in drug effects. To improve the targeting and physicochemical properties of drugs, the development of targeted agents is very rapid. Among them, novel nano-formulations are the best. With the continuous innovation and development of nano-formulation, its application has become more and more extensive. Nano-formulation has exerted certain advantages in the drug development based on transporters, and is also involved in the combination of targeted transporters. This review focuses on the application of novel nano-agents targeting transporters and the introduction of drug-transporter-based nano-formulations.
Collapse
Affiliation(s)
- Yi Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Kou L, Jiang X, Huang H, Lin X, Zhang Y, Yao Q, Chen R. The role of transporters in cancer redox homeostasis and cross-talk with nanomedicines. Asian J Pharm Sci 2020; 15:145-157. [PMID: 32373196 PMCID: PMC7193452 DOI: 10.1016/j.ajps.2020.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor cell usually exhibits high levels of reactive oxygen species and adaptive antioxidant system due to the metabolic, genetic, and microenvironment-associated alterations. The altered redox homeostasis can promote tumor progression, development, and treatment resistance. Several membrane transporters are involved in the resetting redox homeostasis and play important roles in tumor progression. Therefore, targeting the involved transporters to disrupt the altered redox balance emerges as a viable strategy for cancer therapy. In addition, nanomedicines have drawn much attention in the past decades. Using nanomedicines to target or reset the redox homeostasis alone or combined with other therapies has brought convincing data in cancer treatment. In this review, we will introduce the altered redox balance in cancer metabolism and involved transporters, and highlight the recent advancements of redox-modulating nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Youting Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan, Wenzhou 325035, China
- Corresponding author. Wenzhou Medical University, University Town, Wenzhou 325035, China. Tel: +86 18958969225
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Corresponding author. Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, China. Tel: +86 13806890233
| |
Collapse
|
28
|
Elsharawy K, Abou-Dobara M, El-Gammal H, Hyder A. Chitosan coating does not prevent the effect of the transfer of green silver nanoparticles biosynthesized by Streptomyces malachitus into fetuses via the placenta. Reprod Biol 2020; 20:97-105. [PMID: 32044208 DOI: 10.1016/j.repbio.2020.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Green synthesized nanoparticles are more advantageous over conventionally prepared ones due to less toxicity, production cost, and environmental hazards. With the widespread of the utilization of nanoparticles, little is known about the maternal-fetal transplacental transfer of green nanoparticles. We have biosynthesized silver nanoparticles using metabolites of Streptomyces malachitus and sunlight then coated them with chitosan. These nanoparticles have been characterized and intraperitoneally administered at doses of 100 mg/kg on the 6th, 8th, and 10th gestational days. On the 18th day of pregnancy, both coated and non-coted NPs were detected in different maternal tissues, placenta, and in fetuses, as determined by estimation of silver content and observation by electron microscopy. Chitosan coating decreased the silver content in different tissues, maybe due to the larger size of coated nanoparticles that retards the transfer. The toxic effects on maternal and fetal tissues were proportional to their silver content, as determined by the liver and kidney functional analysis of pregnant rats and the ultrastructural and histopathological examination of the maternal liver, placenta and fetal liver. The present data suggest that green silver nanoparticles biosynthesized by Streptomyces malachitus cross the placenta and have toxic effects on maternal tissues, placenta, and fetus. Chitosan coating of these nanoparticles decreases the transfer, and consequently, the toxicity. However, it does not prevent this toxicity.
Collapse
Affiliation(s)
- Khloud Elsharawy
- Departments of Zoology, Faculty of Science, Damietta University, Egypt
| | - Mohamed Abou-Dobara
- Departments of Botany & Microbiology, Faculty of Science, Damietta University, Egypt
| | - Hekmat El-Gammal
- Departments of Zoology, Faculty of Science, Damietta University, Egypt
| | - Ayman Hyder
- Departments of Zoology, Faculty of Science, Damietta University, Egypt.
| |
Collapse
|
29
|
Functional analysis of OCTN2 and ATB0,+ in normal human airway epithelial cells. PLoS One 2020; 15:e0228568. [PMID: 32027707 PMCID: PMC7004352 DOI: 10.1371/journal.pone.0228568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
In human, OCTN2 (SLC22A5) and ATB0,+ (SLC6A14) transporters mediate the uptake of L-carnitine, essential for the transport of fatty acids into mitochondria and the subsequent degradation by β-oxidation. Aim of the present study was to characterize L-carnitine transport in EpiAirway™, a 3D organotypic in vitro model of primary human tracheal-bronchial epithelial cells that form a fully differentiated, pseudostratified columnar epithelium at air-liquid interface (ALI) condition. In parallel, Calu-3 monolayers grown at ALI for different times (8d or 21d of culture) were used as comparison. OCTN2 transporter was equally expressed in both models and functional at the basolateral side. ATB0,+ was, instead, highly expressed and active on the apical membrane of EpiAirway™ and only in early-cultures of Calu-3 (8d but not 21d ALI). In both cell models, L-carnitine uptake on the apical side was significantly inhibited by the bronchodilators glycopyrrolate and tiotropium, that hence can be considered substrates of ATB0,+; ipratropium was instead effective on the basolateral side, indicating its interaction with OCTN2. Inflammatory stimuli, such as LPS or TNFα, caused an induction of SLC6A14/ATB0,+ expression in Calu-3 cells, along with a 2-fold increase of L-carnitine uptake only at the apical side; on the contrary SLC22A5/OCTN2 was not affected. As both OCTN2 and ATB0,+, beyond transporting L-carnitine, have a significant potential as delivery systems for drugs, the identification of these transporters in EpiAirway™ can open new fields of investigation in the study of drug inhalation and pulmonary delivery.
Collapse
|
30
|
Kou L, Huang H, Lin X, Jiang X, Wang Y, Luo Q, Sun J, Yao Q, Ganapathy V, Chen R. Endocytosis of ATB0,+(SLC6A14)-targeted liposomes for drug delivery and its therapeutic application for pancreatic cancer. Expert Opin Drug Deliv 2020; 17:395-405. [PMID: 31990587 DOI: 10.1080/17425247.2020.1723544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Juraszek B, Nałęcz KA. SLC22A5 (OCTN2) Carnitine Transporter-Indispensable for Cell Metabolism, a Jekyll and Hyde of Human Cancer. Molecules 2019; 25:molecules25010014. [PMID: 31861504 PMCID: PMC6982704 DOI: 10.3390/molecules25010014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidation of fatty acids uses l-carnitine to transport acyl moieties to mitochondria in a so-called carnitine shuttle. The process of β-oxidation also takes place in cancer cells. The majority of carnitine comes from the diet and is transported to the cell by ubiquitously expressed organic cation transporter novel family member 2 (OCTN2)/solute carrier family 22 member 5 (SLC22A5). The expression of SLC22A5 is regulated by transcription factors peroxisome proliferator-activated receptors (PPARs) and estrogen receptor. Transporter delivery to the cell surface, as well as transport activity are controlled by OCTN2 interaction with other proteins, such as PDZ-domain containing proteins, protein phosphatase PP2A, caveolin-1, protein kinase C. SLC22A5 expression is altered in many types of cancer, giving an advantage to some of them by supplying carnitine for β-oxidation, thus providing an alternative to glucose source of energy for growth and proliferation. On the other hand, SLC22A5 can also transport several chemotherapeutics used in clinics, leading to cancer cell death.
Collapse
|
32
|
Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther 2019; 206:107451. [PMID: 31836453 DOI: 10.1016/j.pharmthera.2019.107451] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Abstract
Reprogramming of biochemical pathways is a hallmark of cancer cells, and generation of lactic acid from glucose/glutamine represents one of the consequences of such metabolic alterations. Cancer cells export lactic acid out to prevent intracellular acidification, not only increasing lactate levels but also creating an acidic pH in extracellular milieu. Lactate and protons in tumor microenvironment are not innocuous bystander metabolites but have special roles in promoting tumor-cell proliferation and growth. Lactate functions as a signaling molecule by serving as an agonist for the G-protein-coupled receptor GPR81, involving both autocrine and paracrine mechanisms. In the autocrine pathway, cancer cell-generated lactate activates GPR81 on cancer cells; in the paracrine pathway, cancer cell-generated lactate activates GPR81 on immune cells, endothelial cells, and adipocytes present in tumor stroma. The end result of GPR81 activation is promotion of angiogenesis, immune evasion, and chemoresistance. The acidic pH creates an inwardly directed proton gradient across the cancer-cell plasma membrane, which provides driving force for proton-coupled transporters in cancer cells to enhance supply of selective nutrients. There are several molecular targets in the pathways involved in the generation of lactic acid by cancer cells and its role in tumor promotion for potential development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Timothy P Brown
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
33
|
Kou L, Jiang X, Xiao S, Zhao YZ, Yao Q, Chen R. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. J Control Release 2019; 318:25-37. [PMID: 31830539 DOI: 10.1016/j.jconrel.2019.12.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Intrauterine adhesions (IUAs) are bands of fibrous tissue that form in the endometrial cavity and associated with the increased risk of abnormal menstruation, recurrent pregnancy loss, secondary infertility, and pregnancy complications. Physical barriers, including intrauterine device and hydrogel, were clinical available to prevent the post-operational IUAs. But physically separation of the injured endometrium relies on the own limited healing power and often ends with recurrence. In recent years, the mechanisms driving IUAs treatment has validated the application of hormones, and further stem cell therapy has also led to the development of novel therapeutic agents with promising efficacy in pre-clinical and initial clinical studies. Still, it is challenging to delivery the therpaeutic factors to the injured uterus. Herein, in this review, we discuss the traditional intervention methods for the prevention of IUAs, as well as novel therapeutics and delivery strategies that will most likely change the treatment paradigms for better clinical outcomes. The combination strategy that using physical barriers as the delivery carriers for therapeutics might provide new alternatives for the prevention of IUAs.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xue Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shuyi Xiao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
34
|
Kou L, Xiao S, Sun R, Bao S, Yao Q, Chen R. Biomaterial-engineered intra-articular drug delivery systems for osteoarthritis therapy. Drug Deliv 2019; 26:870-885. [PMID: 31524006 PMCID: PMC6758706 DOI: 10.1080/10717544.2019.1660434] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a progressive and degenerative disease, which is no longer confined to the elderly. So far, current treatments are limited to symptom relief, and no valid OA disease-modifying drugs are available. Additionally, OA relative joint is challenging for drug delivery, since the drugs experience rapid clearance in joint, showing a poor bioavailability. Existing therapeutic drugs, like non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, are not conducive for long-term use due to adverse effects. Though supplementations, including chondroitin sulfate and glucosamine, have shown beneficial effects on joint tissues in OA, their therapeutic use is still debatable. New emerging agents, like Kartogenin (KGN) and Interleukin-1 receptor antagonist (IL-1 ra), without a proper formulation, still will not work. Therefore, it is urgent to establish a suitable and efficient drug delivery system for OA therapy. In this review, we pay attention to various types of drug delivery systems and potential therapeutic drugs that may escalate OA treatments.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuyi Xiao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci 2019; 15:131-144. [PMID: 32373195 PMCID: PMC7193445 DOI: 10.1016/j.ajps.2019.09.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/17/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023] Open
Abstract
Solute carriers (SLCs) are the largest family of transmembrane transporters that determine the exchange of various substances, including nutrients, ions, metabolites, and drugs across biological membranes. To date, the presence of about 287 SLC genes have been identified in the brain, among which mutations or the resultant dysfunctions of 71 SLC genes have been reported to be correlated with human brain disorders. Although increasing interest in SLCs have focused on drug development, SLCs are currently still under-explored as drug targets, especially in the brain. We summarize the main substrates and functions of SLCs that are expressed in the brain, with an emphasis on selected SLCs that are important physiologically, pathologically, and pharmacologically in the blood-brain barrier, astrocytes, and neurons. Evidence suggests that a fraction of SLCs are regulated along with the occurrences of brain disorders, among which epilepsy, neurodegenerative diseases, and autism are representative. Given the review of SLCs involved in the onset and procession of brain disorders, we hope these SLCs will be screened as promising drug targets to improve drug delivery to the brain.
Collapse
|
36
|
Yao Q, Zheng YW, Lan QH, Kou L, Xu HL, Zhao YZ. Recent development and biomedical applications of decellularized extracellular matrix biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109942. [PMID: 31499951 DOI: 10.1016/j.msec.2019.109942] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022]
Abstract
Decellularized matrix (dECM) is isolated extracellular matrix of tissues from its original inhabiting cells, which has emerged as a promising natural biomaterial for tissue engineering, aiming at support, replacement or regeneration of damaged tissues. The dECM can be easily obtained from tissues/organs of various species by adequate decellularization methods, and mimics the structure and composition of the native extracellular matrix, providing a favorable cellular environment. In this review, we summarize the recent developments in the preparation of dECM materials, including decellularization, crosslinking and sterilization. Also, we cover the advances in the utilization of dECM biomaterials in regeneration medicine in pre-clinic and clinical trials. Moreover, we highlight those emerging medical benefits of dECM beyond tissue engineering, such as cell transplantation, in vitro/in vivo model and therapeutic cues delivery. With the advances in the preparation and broader application, the dECM biomaterials could become the gold scaffold and pharmaceutical excipients in medical sciences.
Collapse
Affiliation(s)
- Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ya-Wen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing-Hua Lan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
37
|
Pochini L, Galluccio M, Scalise M, Console L, Indiveri C. OCTN: A Small Transporter Subfamily with Great Relevance to Human Pathophysiology, Drug Discovery, and Diagnostics. SLAS DISCOVERY 2018; 24:89-110. [PMID: 30523710 DOI: 10.1177/2472555218812821] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OCTN is a small subfamily of membrane transport proteins that belongs to the larger SLC22 family. Two of the three members of the subfamily, namely, OCTN2 and OCTN1, are present in humans. OCTN2 plays a crucial role in the absorption of carnitine from diet and in its distribution to tissues, as demonstrated by the occurrence of severe pathologies caused by malfunctioning or altered expression of this transporter. These findings suggest avoiding a strict vegetarian diet during pregnancy and in childhood. Other roles of OCTN2 are related to the traffic of carnitine derivatives in many tissues. The role of OCTN1 is still unclear, despite the identification of some substrates such as ergothioneine, acetylcholine, and choline. Plausibly, the transporter acts on the control of inflammation and oxidative stress, even though knockout mice do not display phenotypes. A clear role of both transporters has been revealed in drug interaction and delivery. The polyspecificity of the OCTNs is at the base of the interactions with drugs. Interestingly, OCTN2 has been recently exploited in the prodrug approach and in diagnostics. A promising application derives from the localization of OCTN2 in exosomes that represent a noninvasive diagnostic tool.
Collapse
Affiliation(s)
- Lorena Pochini
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,2 CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|