1
|
Alammari F, Al-Hujaily EM, Alshareeda A, Albarakati N, Al-Sowayan BS. Hidden regulators: the emerging roles of lncRNAs in brain development and disease. Front Neurosci 2024; 18:1392688. [PMID: 38841098 PMCID: PMC11150811 DOI: 10.3389/fnins.2024.1392688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical players in brain development and disease. These non-coding transcripts, which once considered as "transcriptional junk," are now known for their regulatory roles in gene expression. In brain development, lncRNAs participate in many processes, including neurogenesis, neuronal differentiation, and synaptogenesis. They employ their effect through a wide variety of transcriptional and post-transcriptional regulatory mechanisms through interactions with chromatin modifiers, transcription factors, and other regulatory molecules. Dysregulation of lncRNAs has been associated with certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders. Altered expression and function of specific lncRNAs have been implicated with disrupted neuronal connectivity, impaired synaptic plasticity, and aberrant gene expression pattern, highlighting the functional importance of this subclass of brain-enriched RNAs. Moreover, lncRNAs have been identified as potential biomarkers and therapeutic targets for neurological diseases. Here, we give a comprehensive review of the existing knowledge of lncRNAs. Our aim is to provide a better understanding of the diversity of lncRNA structure and functions in brain development and disease. This holds promise for unravelling the complexity of neurodevelopmental and neurodegenerative disorders, paving the way for the development of novel biomarkers and therapeutic targets for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Farah Alammari
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ensaf M. Al-Hujaily
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Alshareeda
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Saudi Biobank Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Nada Albarakati
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Batla S. Al-Sowayan
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Zhu L, Xin YJ, He M, Bian J, Cheng XL, Li R, Li JJ, Wang J, Liu JY, Yang L. Downregulation of miR-337-3p in hypoxia/reoxygenation neuroblastoma cells increases KCTD11 expression. J Biochem Mol Toxicol 2024; 38:e23685. [PMID: 38495002 DOI: 10.1002/jbt.23685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/18/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Neurodegeneration is linked to the progressive loss of neural function and is associated with several diseases. Hypoxia is a hallmark in many of these diseases, and several therapies have been developed to treat this disease, including gene expression therapies that should be tightly controlled to avoid side effects. Cells experiencing hypoxia undergo a series of physiological responses that are induced by the activation of various transcription factors. Modulation of microRNA (miRNA) expression to alter transcriptional regulation has been demonstrated to be beneficial in treating multiple diseases, and in this study, we therefore explored potential miRNA candidates that could influence hypoxia-induced nerve cell death. Our data suggest that in mouse neuroblasts Neuro-2a cells with hypoxia/reoxygenation (H/R), miR-337-3p is downregulated to increase the expression of Potassium channel tetramerization domain containing 11 (KCTD11) and subsequently promote apoptosis. Here, we demonstrate for the first time that KCTD11 plays a role in the cellular response to hypoxia, and we also provide a possible regulatory mechanism by identifying the axis of miR-337-3p/KCTD11 as a promising candidate modulator of nerve cell survival after H/R exposure.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yi-Juan Xin
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Mu He
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jun Bian
- Department of General Surgery, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, Shaanxi, China
| | - Xiao-Li Cheng
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Rui Li
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin-Jie Li
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Juan Wang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jia-Yun Liu
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Liu Yang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Zhang L, Li X, Feng X, Berkman T, Ma R, Du S, Wu S, Huang C, Amponsah A, Bekker A, Tao YX. E74-like factor 1 contributes to nerve trauma-induced nociceptive hypersensitivity through transcriptionally activating matrix metalloprotein-9 in dorsal root ganglion neurons. Pain 2023; 164:119-131. [PMID: 35507368 PMCID: PMC9633582 DOI: 10.1097/j.pain.0000000000002673] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/20/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Nerve trauma-induced alternations of gene expression in the neurons of dorsal root ganglion (DRG) participate in nerve trauma-caused nociceptive hypersensitivity. Transcription factors regulate gene expression. Whether the transcription factor E74-like factor 1 (ELF1) in the DRG contributes to neuropathic pain is unknown. We report here that peripheral nerve trauma caused by chronic constriction injury (CCI) of unilateral sciatic nerve or unilateral fourth lumbar spinal nerve ligation led to the time-dependent increases in the levels of Elf1 mRNA and ELF1 protein in injured DRG, but not in the spinal cord. Preventing this increase through DRG microinjection of adeno-associated virus 5 expressing Elf1 shRNA attenuated the CCI-induced upregulation of matrix metallopeptidase 9 (MMP9) in injured DRG and induction and maintenance of nociceptive hypersensitivities, without changing locomotor functions and basal responses to acute mechanical, heat, and cold stimuli. Mimicking this increase through DRG microinjection of AAV5 expressing full-length Elf1 upregulated DRG MMP9 and produced enhanced responses to mechanical, heat, and cold stimuli in naive mice. Mechanistically, more ELF1 directly bond to and activated Mmp9 promoter in injured DRG neurons after CCI. Our data indicate that ELF1 participates in nerve trauma-caused nociceptive hypersensitivity likely through upregulating MMP9 in injured DRG. E74-like factor 1 may be a new target for management of neuropathic pain.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xiang Li
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xiaozhou Feng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Tolga Berkman
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ruining Ma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Congcong Huang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Akwasi Amponsah
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Departments of Cell Biology & Molecular Medicine and Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Sadekar SS, Bowen M, Cai H, Jamalian S, Rafidi H, Shatz‐Binder W, Lafrance‐Vanasse J, Chan P, Meilandt WJ, Oldendorp A, Sreedhara A, Daugherty A, Crowell S, Wildsmith KR, Atwal J, Fuji RN, Horvath J. Translational approaches for brain delivery of biologics via cerebrospinal fluid. Clin Pharmacol Ther 2022; 111:826-834. [PMID: 35064573 PMCID: PMC9305158 DOI: 10.1002/cpt.2531] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022]
Abstract
Delivery of biologics via cerebrospinal fluid (CSF) has demonstrated potential to access the tissues of the central nervous system (CNS) by circumventing the blood‐brain barrier and blood‐CSF barrier. Developing an effective CSF drug delivery strategy requires optimization of multiple parameters, including choice of CSF access point, delivery device technology, and delivery kinetics to achieve effective therapeutic concentrations in the target brain region, whereas also considering the biologic modality, mechanism of action, disease indication, and patient population. This review discusses key preclinical and clinical examples of CSF delivery for different biologic modalities (antibodies, nucleic acid‐based therapeutics, and gene therapy) to the brain via CSF or CNS access routes (intracerebroventricular, intrathecal‐cisterna magna, intrathecal‐lumbar, intraparenchymal, and intranasal), including the use of novel device technologies. This review also discusses quantitative models of CSF flow that provide insight into the effect of fluid dynamics in CSF on drug delivery and CNS distribution. Such models can facilitate delivery device design and pharmacokinetic/pharmacodynamic translation from preclinical species to humans in order to optimize CSF drug delivery to brain regions of interest.
Collapse
Affiliation(s)
- Shraddha S Sadekar
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Mayumi Bowen
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Hao Cai
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Samira Jamalian
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Hanine Rafidi
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Whitney Shatz‐Binder
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Julien Lafrance‐Vanasse
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Pamela Chan
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - William J. Meilandt
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Amy Oldendorp
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Alavattam Sreedhara
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Ann Daugherty
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Susan Crowell
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Kristin R. Wildsmith
- Clinical pharmacology and translational medicine Neurology business Eisai, Nutley NJ 07110 USA
| | - Jasvinder Atwal
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Reina N. Fuji
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Josh Horvath
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
5
|
Zhang Z, Zhang HJ. Glycometabolic rearrangements-aerobic glycolysis in pancreatic ductal adenocarcinoma (PDAC): roles, regulatory networks, and therapeutic potential. Expert Opin Ther Targets 2021; 25:1077-1093. [PMID: 34874212 DOI: 10.1080/14728222.2021.2015321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Glycometabolic rearrangements (aerobic glycolysis) is a hallmark of pancreatic ductal adenocarcinoma (PDAC) and contributes to tumorigenesis and progression through numerous mechanisms. The targeting of aerobic glycolysis is recognized as a potential therapeutic strategy which offers the possibility of improving treatment outcomes for PDAC patients. AREAS COVERED In this review, the role of aerobic glycolysis and its regulatory networks in PDAC are discussed. The targeting of aerobic glycolysis in PDAC is examined, and its therapeutic potential is evaluated. The relevant literature published from 2001 to 2021 was searched in databases including PubMed, Scopus, and Embase. EXPERT OPINION Regulatory networks of aerobic glycolysis in PDAC are based on key factors such as c-Myc, hypoxia-inducible factor 1α, the mammalian target of rapamycin pathway, and non-coding RNAs. Experimental evidence suggests that modulators or inhibitors of aerobic glycolysis promote therapeutic effects in preclinical tumor models. Nevertheless, successful clinical translation of drugs that target aerobic glycolysis in PDAC is an obstacle. Moreover, it is necessary to identify the potential targets for future interventions from regulatory networks to design efficacious and safer agents.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| | - Hai-Jun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Islam MR, Kaurani L, Berulava T, Heilbronner U, Budde M, Centeno TP, Elerdashvili V, Zafieriou M, Benito E, Sertel SM, Goldberg M, Senner F, Kalman JL, Burkhardt S, Oepen AS, Sakib MS, Kerimoglu C, Wirths O, Bickeböller H, Bartels C, Brosseron F, Buerger K, Cosma N, Fliessbach K, Heneka MT, Janowitz D, Kilimann I, Kleinedam L, Laske C, Metzger CD, Munk MH, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Schneider A, Spottke A, Spruth EJ, Teipel S, Tscheuschler M, Wagner M, Wiltfang J, Düzel E, Jessen F, Rizzoli SO, Zimmermann W, Schulze TG, Falkai P, Sananbenesi F, Fischer A. A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med 2021; 13:e13659. [PMID: 34633146 PMCID: PMC8573587 DOI: 10.15252/emmm.202013659] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies. In this study, we use an integrative approach combining the analysis of human data and mechanistic studies in model systems to identify a circulating 3-microRNA signature that reflects key processes linked to neural homeostasis and inform about cognitive status. We furthermore provide evidence that expression changes in this signature represent multiple mechanisms deregulated in the aging and diseased brain and are a suitable target for RNA therapeutics.
Collapse
|
7
|
Policarpo R, Sierksma A, De Strooper B, d'Ydewalle C. From Junk to Function: LncRNAs in CNS Health and Disease. Front Mol Neurosci 2021; 14:714768. [PMID: 34349622 PMCID: PMC8327212 DOI: 10.3389/fnmol.2021.714768] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in RNA sequencing technologies helped to uncover the existence of tens of thousands of long non-coding RNAs (lncRNAs) that arise from the dark matter of the genome. These lncRNAs were originally thought to be transcriptional noise but an increasing number of studies demonstrate that these transcripts can modulate protein-coding gene expression by a wide variety of transcriptional and post-transcriptional mechanisms. The spatiotemporal regulation of lncRNA expression is particularly evident in the central nervous system, suggesting that they may directly contribute to specific brain processes, including neurogenesis and cellular homeostasis. Not surprisingly, lncRNAs are therefore gaining attention as putative novel therapeutic targets for disorders of the brain. In this review, we summarize the recent insights into the functions of lncRNAs in the brain, their role in neuronal maintenance, and their potential contribution to disease. We conclude this review by postulating how these RNA molecules can be targeted for the treatment of yet incurable neurological disorders.
Collapse
Affiliation(s)
- Rafaela Policarpo
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,UK Dementia Research Institute, University College London, London, United Kingdom
| | - Constantin d'Ydewalle
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| |
Collapse
|
8
|
Cai Q, He B, Wang S, Fletcher S, Niu D, Mitter N, Birch PRJ, Jin H. Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:497-524. [PMID: 34143650 PMCID: PMC8369896 DOI: 10.1146/annurev-arplant-081720-010616] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Communication between plant cells and interacting microorganisms requires the secretion and uptake of functional molecules to and from the extracellular environment and is essential for the survival of both plants and their pathogens. Extracellular vesicles (EVs) are lipid bilayer-enclosed spheres that deliver RNA, protein, and metabolite cargos from donor to recipient cells and participate in many cellular processes. Emerging evidencehas shown that both plant and microbial EVs play important roles in cross-kingdom molecular exchange between hosts and interacting microbes to modulate host immunity and pathogen virulence. Recent studies revealed that plant EVs function as a defense system by encasing and delivering small RNAs (sRNAs) into pathogens, thereby mediating cross-species and cross-kingdom RNA interference to silence virulence-related genes. This review focuses on the latest advances in our understanding of plant and microbial EVs and their roles in transporting regulatory molecules, especially sRNAs, between hosts and pathogens. EV biogenesis and secretion are also discussed, as EV function relies on these important processes.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Baoye He
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| | - Shumei Wang
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| | - Stephen Fletcher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Hailing Jin
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA;
| |
Collapse
|
9
|
Alexander MS, Hightower RM, Reid AL, Bennett AH, Iyer L, Slonim DK, Saha M, Kawahara G, Kunkel LM, Kopin AS, Gupta VA, Kang PB, Draper I. hnRNP L is essential for myogenic differentiation and modulates myotonic dystrophy pathologies. Muscle Nerve 2021; 63:928-940. [PMID: 33651408 DOI: 10.1002/mus.27216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1. Herein we sought to evaluate the functional role of the splicing factor hnRNP L in normal and DM1 muscle cells. METHODS Co-immunoprecipitation assays using hnRNPL and MBNL1 expression constructs and splicing profiling in normal and DM1 muscle cell lines were performed. Zebrafish morpholinos targeting hnrpl and hnrnpl2 were injected into one-cell zebrafish for developmental and muscle analysis. In human myoblasts downregulation of hnRNP L was achieved with shRNAi. Ascochlorin administration to DM1 myoblasts was performed and expression of the CUG repeats, DM1 splicing biomarkers, and hnRNP L expression levels were evaluated. RESULTS Using DM1 patient myoblast cell lines we observed the formation of abnormal hnRNP L nuclear foci within and outside the expanded CUG repeats, suggesting a role for this factor in DM1 pathology. We showed that the antiviral and antitumorigenic isoprenoid compound ascochlorin increased MBNL1 and hnRNP L expression levels. Drug treatment of DM1 muscle cells with ascochlorin partially rescued missplicing of established early biomarkers of DM1 and improved the defective myotube formation displayed by DM1 muscle cells. DISCUSSION Together, these studies revealed that hnRNP L can modulate DM1 pathologies and is a potential therapeutic target.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rylie M Hightower
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrea L Reid
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA
| | - Alexis H Bennett
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lakshmanan Iyer
- Department of Neuroscience, Tufts University, Boston, Massachusetts, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA
| | - Madhurima Saha
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alan S Kopin
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, USA.,Genetics Institute and Myology Institute, University of Florida, Gainesville, Florida, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Neurology Department, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Isabelle Draper
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Mendonça MCP, Kont A, Aburto MR, Cryan JF, O'Driscoll CM. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System. Mol Pharm 2021; 18:1491-1506. [PMID: 33734715 PMCID: PMC8824433 DOI: 10.1021/acs.molpharmaceut.0c01238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
RNA-based therapeutics have emerged
as one of the most powerful
therapeutic options used for the modulation of gene/protein expression
and gene editing with the potential to treat neurodegenerative diseases.
However, the delivery of nucleic acids to the central nervous system
(CNS), in particular by the systemic route, remains a major hurdle.
This review will focus on the strategies for systemic delivery of
therapeutic nucleic acids designed to overcome these barriers. Pathways
and mechanisms of transport across the blood–brain barrier
which could be exploited for delivery are described, focusing in particular
on smaller nucleic acids including antisense oligonucleotides (ASOs)
and small interfering RNA (siRNA). Approaches used to enhance delivery
including chemical modifications, nanocarrier systems, and target
selection (cell-specific delivery) are critically analyzed. Learnings
achieved from a comparison of the successes and failures reported
for CNS delivery of ASOs versus siRNA will help identify opportunities
for a wider range of nucleic acids and accelerate the clinical translation
of these innovative therapies.
Collapse
Affiliation(s)
- Monique C P Mendonça
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Ayse Kont
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
11
|
Meisler MH. SCN8A encephalopathy: Mechanisms and models. Epilepsia 2020; 60 Suppl 3:S86-S91. [PMID: 31904118 DOI: 10.1111/epi.14703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
De novo mutations of the neuronal sodium channel SCN8A have been identified in approximately 2% of individuals with epileptic encephalopathy. These missense mutations alter the biophysical properties of sodium channel Nav1.6 in ways that lead to neuronal hyperexcitability. We generated two mouse models carrying patient mutations N1768D and R1872W to examine the effects on neuronal function in vivo. The conditional R1872W mutation is activated by expression of CRE recombinase, permitting characterization of the effects of the mutation on different classes of neurons and at different points in postnatal development. Preclinical drug testing in these mouse models provides support for several new therapies for this devastating disorder. In contrast with the gain-of-function mutations in epilepsy, mutations of SCN8A that result in partial or complete loss of function are associated with intellectual disability and other disorders.
Collapse
Affiliation(s)
- Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Kessler T, Latzer P, Schmid D, Warnken U, Saffari A, Ziegler A, Kollmer J, Möhlenbruch M, Ulfert C, Herweh C, Wildemann B, Wick W, Weiler M. Cerebrospinal fluid proteomic profiling in nusinersen-treated patients with spinal muscular atrophy. J Neurochem 2020; 153:650-661. [PMID: 31903607 DOI: 10.1111/jnc.14953] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Promising results from recent clinical trials on the approved antisense oligonucleotide nusinersen in pediatric patients with 5q-linked spinal muscular atrophy (SMA) still have to be confirmed in adult patients but are hindered by a lack of sensitive biomarkers that indicate an early therapeutic response. Changes in the overall neurochemical composition of cerebrospinal fluid (CSF) under therapy may yield additive diagnostic and predictive information. With this prospective proof-of-concept and feasibility study, we evaluated non-targeted CSF proteomic profiles by mass spectrometry along with basic CSF parameters of 10 adult patients with SMA types 2 or 3 before and after 10 months of nusinersen therapy, in comparison with 10 age- and gender-matched controls. These data were analyzed by bioinformatics and correlated with clinical outcomes assessed by the Hammersmith Functional Rating Scale Expanded (HFMSE). CSF proteomic profiles of SMA patients differed from controls. Two groups of SMA patients were identified based on unsupervised clustering. These groups differed in age and expression of proteins related to neurodegeneration and neuroregeneration. Intraindividual CSF differences in response to nusinersen treatment varied between patients who clinically improved and those who did not. Data are available via ProteomeXchange with identifier PXD016757. Comparative CSF proteomic analysis in adult SMA patients before and after treatment with nusinersen-identified subgroups and treatment-related changes and may therefore be suitable for diagnostic and predictive analyses.
Collapse
Affiliation(s)
- Tobias Kessler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pauline Latzer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Schmid
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteomic Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Afshin Saffari
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Ziegler
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Möhlenbruch
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Ulfert
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Herweh
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Brigitte Wildemann
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
13
|
Ernst C. A roadmap for neurodevelopmental disease modeling for non-stem cell biologists. Stem Cells Transl Med 2020; 9:567-574. [PMID: 32052596 PMCID: PMC7180294 DOI: 10.1002/sctm.19-0344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Stem and derivative cells induced from somatic tissues are a critical tool for disease modeling but significant technical hurdles hamper their use. The purpose of this review is to provide an overview of pitfalls and mitigation strategies for the nonstem cell biologist using induced pluripotent stem cells and investigating neurodevelopmental disorders. What sample sizes are reasonable? What derivation and purification protocols should be used to make human neurons? In what way should gene editing technologies be used to support discoveries? What kinds of preclinical studies are the most feasible? It is hoped that this roadmap will provide the necessary details for experimental planning and execution for those less familiar in the area of stem cell disease modeling. High-quality human preclinical models will allow for the discovery of molecular and cellular phenotypes specific to different neurodevelopmental disorders, and may provide the assays to advance translational medicine for unmet medical needs.
Collapse
Affiliation(s)
- Carl Ernst
- Department of Human Genetics, McGill University and Douglas Hospital Research Institute, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University and Douglas Hospital Research Institute, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University and Douglas Hospital Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Lenk GM, Jafar-Nejad P, Hill SF, Huffman LD, Smolen CE, Wagnon JL, Petit H, Yu W, Ziobro J, Bhatia K, Parent J, Giger RJ, Rigo F, Meisler MH. Scn8a Antisense Oligonucleotide Is Protective in Mouse Models of SCN8A Encephalopathy and Dravet Syndrome. Ann Neurol 2020; 87:339-346. [PMID: 31943325 PMCID: PMC7064908 DOI: 10.1002/ana.25676] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
Objective SCN8A encephalopathy is a developmental and epileptic encephalopathy (DEE) caused by de novo gain‐of‐function mutations of sodium channel Nav1.6 that result in neuronal hyperactivity. Affected individuals exhibit early onset drug‐resistant seizures, developmental delay, and cognitive impairment. This study was carried out to determine whether reducing the abundance of the Scn8a transcript with an antisense oligonucleotide (ASO) would delay seizure onset and prolong survival in a mouse model of SCN8A encephalopathy. Methods ASO treatment was tested in a conditional mouse model with Cre‐dependent expression of the pathogenic patient SCN8A mutation p.Arg1872Trp (R1872W). This model exhibits early onset of seizures, rapid progression, and 100% penetrance. An Scn1a+/− haploinsufficient mouse model of Dravet syndrome was also treated. ASO was administered by intracerebroventricular injection at postnatal day 2, followed in some cases by stereotactic injection at postnatal day 30. Results We observed a dose‐dependent increase in length of survival from 15 to 65 days in the Scn8a‐R1872W/+ mice treated with ASO. Electroencephalographic recordings were normal prior to seizure onset. Weight gain and activity in an open field were unaffected, but treated mice were less active in a wheel running assay. A single treatment with Scn8a ASO extended survival of Dravet syndrome mice from 3 weeks to >5 months. Interpretation Reduction of Scn8a transcript by 25 to 50% delayed seizure onset and lethality in mouse models of SCN8A encephalopathy and Dravet syndrome. Reduction of SCN8A transcript is a promising approach to treatment of intractable childhood epilepsies. Ann Neurol 2020;87:339–346
Collapse
Affiliation(s)
- Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | | | - Sophie F Hill
- Department of Human Genetics, University of Michigan, Ann Arbor, MI.,Neuroscience Program, Ann Arbor, MI
| | - Lucas D Huffman
- Neuroscience Program, Ann Arbor, MI.,Department of Cell and Developmental Biology, Ann Arbor, MI
| | - Corrine E Smolen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Hayley Petit
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Julie Ziobro
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Kritika Bhatia
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Jack Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Roman J Giger
- Neuroscience Program, Ann Arbor, MI.,Department of Cell and Developmental Biology, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI
| | | | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI.,Neuroscience Program, Ann Arbor, MI.,Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Pandit R, Chen L, Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev 2019; 165-166:1-14. [PMID: 31790711 DOI: 10.1016/j.addr.2019.11.009] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that functions as a gatekeeper, reflecting the unique requirements of the brain. In this review, following a brief historical overview of how the concepts of the BBB and the neurovascular unit (NVU) developed, we describe its physiology and architecture, which pose a particular challenge to therapeutic intervention. We then discuss how the restrictive nature of this barrier can be overcome for the delivery of therapeutic agents. Alterations to drug formulation offer one option, in part by utilizing distinct transport modes; another is invasive or non-invasive strategies to bypass the BBB. An emerging non-invasive technology for targeted drug delivery is focused ultrasound that allows for the safe and reversible disruption of the BBB. We discuss the underlying mechanisms and provide an outlook, emphasizing the need for more research into the NVU and investment in innovative technologies to overcome the BBB for drug delivery.
Collapse
Affiliation(s)
- Rucha Pandit
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Liyu Chen
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
16
|
Mironova NL, Kupryushkin MS, Khlusevitch YA, Matveev AL, Tikunova NV, Pyshnyi DV, Zenkova MA. Algorithm for Searching and Testing the Activity of Antisense Oligonucleotides Exemplified by the mRNA of the rpoD Gene Encoding Staphylococcus aureus RNA Polymerase Sigma Factor. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s106816201906027x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Møller RS, Hammer TB, Rubboli G, Lemke JR, Johannesen KM. From next-generation sequencing to targeted treatment of non-acquired epilepsies. Expert Rev Mol Diagn 2019; 19:217-228. [DOI: 10.1080/14737159.2019.1573144] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rikke S. Møller
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Trine B. Hammer
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Katrine M. Johannesen
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| |
Collapse
|