1
|
Zeng J, Tong S, Liu J, Liu S, Mungur R, Chen S. MiR-433 inhibits cell invasion of glioblastoma via direct targeting TRPM8 based on bioinformatic analysis and experimental validation. Gene 2025; 936:149121. [PMID: 39581355 DOI: 10.1016/j.gene.2024.149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Understanding the essential role of miRNA in regulating cell invasion in glioblastoma opens up new avenues for targeted therapeutic interventions in the future. By screening out eligible miRNA expression data sets from the GEO database, the WGCNA package based on the R language is further used to construct a co-expression network model of the chip data set, to identify modules related to disease states and perform pivotal miRNA screening on the related modules. The target relationship between miRNA and TRPM8 was verified by bioinformatics and luciferase gene report, and the effect of miRNA overexpression on TRPM8 protein level was analyzed by Western blot. The result of miR-433 overexpression on the invasion ability of glioblastoma cells in vitro was examined by scratch test and Transwell invasion test. The results of this study indicate that the selected target miR-433 has a strong binding relationship with TRPM8 and can effectively regulate its expression. Furthermore, overexpression of miR-433 was found to inhibit the invasion ability of glioblastoma cells by targeting TRPM8. These data demonstrate that miR-433 can target TRPM8 to inhibit glioblastoma cell invasion.
Collapse
Affiliation(s)
- Jianping Zeng
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China.
| | - Shoufang Tong
- Department of Transfusion Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital) Hangzhou Medical College, Taizhou, Zhejiang, PR China
| | - Jing Liu
- Department of Pharmacy, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China
| | - Shuai Liu
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China
| | - Rajneesh Mungur
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, Zhejiang Province, PR China
| | - Shangshi Chen
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
2
|
Huang Z, Wang M, Chen Y, Tang H, Tang K, Zhao M, Yang W, Zhou Z, Tian J, Xiang W, Li S, Luo Q, Liu L, Zhao Y, Li T, Zhou J, Chen L. Glioblastoma-derived migrasomes promote migration and invasion by releasing PAK4 and LAMA4. Commun Biol 2025; 8:91. [PMID: 39833606 PMCID: PMC11747271 DOI: 10.1038/s42003-025-07526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Almost all high-grade gliomas, particularly glioblastoma (GBM), are highly migratory and aggressive. Migrasomes are organelles produced by highly migratory cells capable of mediating intercellular communication. Thus, GBM cells may produce migrasomes during migration. However, it remains unclear whether migrasomes can influence GBM migration and invasion. In this study, we observed the presence and formation of migrasomes in GBM cells. We found that expression levels of key migrasome formation factor, tetraspanin 4 (TSPAN4), correlated positively with pathological grade and poor prognosis of GBM based on the databases and clinical samples analysis. Subsequently, we knocked down TSPAN4 and found that GBM cell migration and invasion were significantly inhibited due to the reduced formation of migrasomes. We further confirmed that migrasomes are enriched in extracellular matrix (ECM)-related proteins such as p21-activating kinase 4 (PAK4) and laminin alpha 4 (LAMA4). Our experimental results suggest that migrasomes promote GBM cells migration by releasing such proteins into the extracellular space. Overall, we identified migrasomes in GBM and the molecular mechanisms by which they regulate them, providing potential targets for treating GBM.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Yitian Chen
- Faculty of Health Sciences, University of Macau, Macau, 999078, PR China
| | - Hua Tang
- Department of Neurosurgery, The People's Hospital of Jianyang City, Chengdu, 641400, PR China
| | - Kuo Tang
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Mingkuan Zhao
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Wei Yang
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Junjie Tian
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Qinglian Luo
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Luotong Liu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Yanru Zhao
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Tao Li
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China.
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Sichuan Clinical Medical Research Center for Neurosurgery, Luzhou, 646000, PR China.
- Neurological diseases and brain function laboratory, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
3
|
Rusak A, Wiatrak B, Krawczyńska K, Górnicki T, Zagórski K, Zadka Ł, Fortuna W. Starting points for the development of new targeted therapies for glioblastoma multiforme. Transl Oncol 2025; 51:102187. [PMID: 39531784 PMCID: PMC11585793 DOI: 10.1016/j.tranon.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and lethal brain tumors, characterized by rapid growth, invasiveness, and resistance to standard therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in treatment, GBM remains highly resistant due to its complex molecular mechanisms, including angiogenesis, invasion, immune modulation, and lipid metabolism dysregulation. This review explores recent breakthroughs in targeted therapies, focusing on innovative drug carriers such as nanoparticles and liposomes, and their potential to overcome GBM's chemo- and radioresistant phenotypes. We also discuss the molecular pathways involved in GBM progression and the latest therapeutic strategies, including immunotherapy and precision medicine approaches, which hold promise for improving clinical outcomes. The review highlights the importance of understanding GBM's genetic and molecular heterogeneity to develop more effective, personalized treatment protocols aimed at increasing survival rates and enhancing the quality of life for GBM patients.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, Wroclaw 50-345, Poland.
| | - Klaudia Krawczyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Karol Zagórski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland; Department of Clinical Pharmacology, Wroclaw Medical University, Borowska 211a, Wroclaw 50-556, Poland.
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213St, Wroclaw 50-556, Poland.
| |
Collapse
|
4
|
Zhang H, Hu J, Zhao X, Zheng B, Han Y, Luo G, Dou D. Ginsenoside RK3 inhibits glioblastoma by modulating macrophage M2 polarization via the PPARG/CCL2 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156271. [PMID: 39616731 DOI: 10.1016/j.phymed.2024.156271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 11/16/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Glioblastoma is recognized as the most aggressive form of intracranial tumor, presenting significant challenges in treatment. Recent emphasis has been placed on the potential of traditional Chinese medicine (TCM) as an adjuvant treatment for cancer. METHODS We employed a series of assays-including CCK8, EdU, Transwell, and neurosphere formation-to evaluate the impact of ginsenoside RK3 on the phenotype of GBM. The modulation of macrophage M2 polarization by ginsenoside RK3 was assessed through flow cytometry, immunohistochemistry, and Western blot analysis. Furthermore, we utilized sequencing analysis and network pharmacology to identify potential therapeutic targets. RESULTS Our findings reveal that ginsenoside RK3 not only inhibits the phenotype of glioblastoma cells but also suppresses tumor progression in vivo while attenuating macrophage M2 polarization within the tumor immune microenvironment. Notably, ginsenoside RK3 down-regulates PPARG expression in tumor cells, leading to decreased secretion of CCL2, which subsequently diminishes macrophage M2 polarization. Additionally, we demonstrated that combining ginsenoside RK3 with temozolomide significantly enhances the inhibition of glioblastoma's malignant characteristics and progression. CONCLUSIONS This study innovatively highlights the dual mechanism of ginsenoside RK3 in glioblastoma treatment: it impedes tumor progression by modulating the PPARG/CCL2 pathway and enhances the efficacy of temozolomide. Our research underscores the promising role of herbal medicine in the management of glioblastoma, paving the way for novel therapeutic strategies that integrate traditional approaches with conventional treatments.
Collapse
Affiliation(s)
- Haiying Zhang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110042 China
| | - Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001 China
| | - Xiang Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001 China
| | - Bohao Zheng
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110042 China
| | - Ying Han
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110042 China
| | - Gang Luo
- Liaoning Maternal and Child Health Hospital, No. 240 Shayang Road, Shenyang 110005, China.
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, China.
| |
Collapse
|
5
|
Caro C, Paez-Muñoz JM, Pernía Leal M, Carayol M, Feijoo-Cuaresma M, García-Martín ML. Metabolically-Driven Active Targeting of Magnetic Nanoparticles Functionalized with Glucuronic Acid to Glioblastoma: Application to MRI-Tracked Magnetic Hyperthermia Therapy. Adv Healthc Mater 2025; 14:e2404391. [PMID: 39578332 DOI: 10.1002/adhm.202404391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Glioblastoma continues to pose a major global health challenge due to its incurable nature. The need for new strategies to combat this devastating tumor is therefore paramount. Nanotechnology offers unique opportunities to develop innovative and more effective therapeutic approaches. However, most nanosystems developed to treat glioblastomas, especially those based on metallic nanoparticles (NPs), have proven unsuccessful due to their inability to efficiently target these tumors, which are particularly inaccessible due to the restrictions imposed by the blood-brain tumor barrier (BBTB). Here, an innovative strategy is presented to efficiently target metallic NPs to glioblastomas through glucose transporters (GLUT) overexpressed on the endothelial cells of glioblastoma microvasculature, particularly GLUT1. Specifically, Iron Oxide Nanoparticles (IONPs) are functionalized with glucuronic acid to promote GLUT-mediated transcytosis which is drastically boosted by inducing mild hypoglycemia. This metabolically-driven active targeting strategy has yielded unprecedented efficacy in targeting metallic NPs to glioblastomas. Moreover, these IONPs, designed to act as magnetic hyperthermia (MH) mediators, are used to conduct a proof-of-concept preclinical study on MRI-tracked MH therapy following intravenous administration, resulting in significant tumor growth delay. These findings demonstrate unparalleled efficiency in glioblastoma targeting and lay the ground for developing alternative therapeutic strategies to combat glioblastoma.
Collapse
Affiliation(s)
- Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - José M Paez-Muñoz
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Manuel Pernía Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, Seville, 41012, Spain
| | - Marta Carayol
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Mónica Feijoo-Cuaresma
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - María L García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA-BIONAND Platform), University of Malaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
6
|
Liu X, Shi Z, Liu X, Cao Y, Yang X, Liu J, Xu T, Yang W, Chen L, Zou Z, Jia Q, Li M. The role of PDCD6 in stemness maintenance of Glioblastoma. Pathol Res Pract 2024; 264:155727. [PMID: 39561536 DOI: 10.1016/j.prp.2024.155727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Glioblastoma (GBM) poses formidable challenges due to its high malignancy and therapeutic resistance and still exhibits dismal 5-year survival rates, high recurrence propensity, and limited treatment modalities. There is an acute need for innovative treatments for recurrent glioblastoma due to the lack of established protocols. This necessity is driving research into the cellular underpinnings that initiate and drive the disease forward, aiming to discover groundbreaking targets for therapy that could enhance the efficacy of medical interventions. METHODS Patient-derived glioblastoma stem cells (GSCs) were harvested and isolated. Subsequently, PDCD6 expression was quantified through both western blotting (WB) and real-time PCR (RT-PCR) techniques. The stem-like properties of the GSCs were evaluated using sphere-forming assays. All gathered data, inclusive of TCGA datasets, were analyzed using SPSS (IBM) version 23.0. RESULTS Elevated PDCD6 expression characterized classical GBM tumor tissues. PDCD6 overexpression significantly correlated with diminished overall survival in GBM patients, emerging as an independent prognostic indicator. Notably, primary GBM cells exhibited heightened PDCD6 levels in GSCs compared to NSTCs. Moreover, alterations in stemness markers paralleled PDCD6 modulation, where PDCD6 knockdown attenuated tumor size in GSCs. CONCLUSION Our findings illuminate PDCD6's role in fostering stemness within classical GBM, hinting at its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiyu Liu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zuolin Shi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xuantong Liu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuan Cao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Jiaming Liu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Tianqi Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Weiyi Yang
- Department of Neurology, Xi'an Daxing Hospital, Xi'an, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zheng Zou
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
7
|
Tataranu LG, Turliuc S, Kamel A, Rizea RE, Dricu A, Staicu GA, Baloi SC, Rodriguez SMB, Manole AIM. Glioblastoma Tumor Microenvironment: An Important Modulator for Tumoral Progression and Therapy Resistance. Curr Issues Mol Biol 2024; 46:9881-9894. [PMID: 39329940 PMCID: PMC11430601 DOI: 10.3390/cimb46090588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The race to find an effective treatment for glioblastoma (GBM) remains a critical topic, because of its high aggressivity and impact on survival and the quality of life. Currently, due to GBM's high heterogeneity, the conventional treatment success rate and response to therapy are relatively low, with a median survival rate of less than 20 months. A new point of view can be provided by the comprehension of the tumor microenvironment (TME) in pursuance of the development of new therapeutic strategies to aim for a longer survival rate with an improved quality of life and longer disease-free interval (DFI). The main components of the GBM TME are represented by the extracellular matrix (ECM), glioma cells and glioma stem cells (GSCs), immune cells (microglia, macrophages, neutrophils, lymphocytes), neuronal cells, all of them having dynamic interactions and being able to influence the tumoral growth, progression, and drug resistance thus being a potential therapeutic target. This paper will review the latest research on the GBM TME and the potential therapeutic targets to form an up-to-date strategy.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy "G. T. Popa", 700115 Iasi, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anica Dricu
- Biochemistry Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | | | - Stefania Carina Baloi
- Biochemistry Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | | | | |
Collapse
|
8
|
Hu J, Li X, Xu K, Chen J, Zong S, Zhang H, Li H, Zhang G, Guo Z, Zhao X, Jiang Y, Jing Z. CircVPS8 promotes the malignant phenotype and inhibits ferroptosis of glioma stem cells by acting as a scaffold for MKRN1, SOX15 and HNF4A. Oncogene 2024; 43:2679-2695. [PMID: 39098847 DOI: 10.1038/s41388-024-03116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Exciting breakthroughs have been achieved in the field of glioblastoma with therapeutic interventions targeting specific ferroptosis targets. Nonetheless, the precise mechanisms through which circRNAs regulate the ferroptosis pathway have yet to be fully elucidated. Here we have identified a novel circRNA, circVPS8, which is highly expressed in glioblastoma. Our findings demonstrated that circVPS8 enhances glioma stem cells' viability, proliferation, sphere-forming ability, and stemness. Additionally, it inhibits ferroptosis in GSCs. In vivo, experiments further supported the promotion of glioblastoma growth by circVPS8. Mechanistically, circVPS8 acts as a scaffold, binding to both MKRN1 and SOX15, thus facilitating the ubiquitination of MKRN1 and subsequent degradation of SOX15. Due to competitive binding, the ubiquitination ability of MKRN1 towards HNF4A is reduced, leading to elevated HNF4A expression. Increased HNF4A expression, along with decreased SOX15 expression, synergistically inhibits ferroptosis in glioblastoma. Overall, our study highlights circVPS8 as a promising therapeutic target and provides valuable insights for clinically targeted therapy of glioblastoma.
Collapse
Affiliation(s)
- Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Kai Xu
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
- Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, Liaoning, 116000, China
| | - Junhua Chen
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Shengliang Zong
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, NO. 79 Chongshan East Road, Shenyang, Liaoning, 110042, China
| | - Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Guoqing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Zhengting Guo
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Xiang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
9
|
Zhang G, Hu J, Li A, Zhang H, Guo Z, Li X, You Z, Wang Y, Jing Z. Ginsenoside Rg5 inhibits glioblastoma by activating ferroptosis via NR3C1/HSPB1/NCOA4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155631. [PMID: 38640858 DOI: 10.1016/j.phymed.2024.155631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/02/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND The utilization of Chinese medicine as an adjunctive therapy for cancer has recently gained significant attention. Ferroptosis, a newly regulated cell death process depending on the ferrous ions, has been proved to be participated in glioma stem cells inactivation. PURPOSE We aim to study whether ginsenoside Rg5 exerted inhibitory effects on crucial aspects of glioma stem cells, including cell viability, tumor initiation, invasion, self-renewal ability, neurosphere formation, and stemness. METHODS Through comprehensive sequencing analysis, we identified a compelling association between ginsenoside Rg5 and the ferroptosis pathway, which was further validated through subsequent experiments demonstrating its ability to activate this pathway. RESULTS To elucidate the precise molecular targets affected by ginsenoside Rg5 in gliomas, we conducted an intersection analysis between differentially expressed genes obtained from sequencing and a database-predicted list of transcription factors and potential targets of ginsenoside Rg5. This rigorous approach led us to unequivocally confirm NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1) as a direct target of ginsenoside Rg5, a finding consistently supported by subsequent experimental investigations. Moreover, we uncovered NR3C1's capacity to transcriptionally regulate ferroptosis -related genes HSPB1 and NCOA4. Strikingly, ginsenoside Rg5 induced notable alterations in the expression levels of both HSPB1 (Heat Shock Protein Family B Member 1) and NCOA4 (Nuclear Receptor Coactivator 4). Finally, our intracranial xenograft assays served to reaffirm the inhibitory effect of ginsenoside Rg5 on the malignant progression of glioblastoma. CONCLUSION These collective findings strongly suggest that ginsenoside Rg5 hampers glioblastoma progression by activating ferroptosis through NR3C1, which subsequently modulates HSPB1 and NCOA4. Importantly, this novel therapeutic direction holds promise for advancing the treatment of glioblastoma.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jinpeng Hu
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Ao Li
- Emergency department, Liaoning Provincial People Hospital, Shenyang, 110016, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, Liaoning, 110042, China
| | - Zhengting Guo
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Xinqiao Li
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Zinan You
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Yongfeng Wang
- Department of Radiology, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, PR China.
| | - Zhitao Jing
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
10
|
Mosca L, Pagano C, Tranchese RV, Grillo R, Cadoni F, Navarra G, Coppola L, Pagano M, Mele L, Cacciapuoti G, Laezza C, Porcelli M. Antitumoral Activity of the Universal Methyl Donor S-Adenosylmethionine in Glioblastoma Cells. Molecules 2024; 29:1708. [PMID: 38675528 PMCID: PMC11052366 DOI: 10.3390/molecules29081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.
Collapse
Affiliation(s)
- Laura Mosca
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Roberta Veglia Tranchese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Roberta Grillo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Francesca Cadoni
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Martina Pagano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via Pansini 5, 80131 Naples, Italy;
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| |
Collapse
|
11
|
Cosenza-Contreras M, Schäfer A, Sing J, Cook L, Stillger MN, Chen CY, Villacorta Hidalgo J, Pinter N, Meyer L, Werner T, Bug D, Haberl Z, Kübeck O, Zhao K, Stei S, Gafencu AV, Ionita R, Brehar FM, Ferrer-Lozano J, Ribas G, Cerdá-Alberich L, Martí-Bonmatí L, Nimsky C, Van Straaten A, Biniossek ML, Föll M, Cabezas-Wallscheid N, Büscher J, Röst H, Arnoux A, Bartsch JW, Schilling O. Proteometabolomics of initial and recurrent glioblastoma highlights an increased immune cell signature with altered lipid metabolism. Neuro Oncol 2024; 26:488-502. [PMID: 37882631 PMCID: PMC10912002 DOI: 10.1093/neuonc/noad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND There is an urgent need to better understand the mechanisms associated with the development, progression, and onset of recurrence after initial surgery in glioblastoma (GBM). The use of integrative phenotype-focused -omics technologies such as proteomics and lipidomics provides an unbiased approach to explore the molecular evolution of the tumor and its associated environment. METHODS We assembled a cohort of patient-matched initial (iGBM) and recurrent (rGBM) specimens of resected GBM. Proteome and metabolome composition were determined by mass spectrometry-based techniques. We performed neutrophil-GBM cell coculture experiments to evaluate the behavior of rGBM-enriched proteins in the tumor microenvironment. ELISA-based quantitation of candidate proteins was performed to test the association of their plasma concentrations in iGBM with the onset of recurrence. RESULTS Proteomic profiles reflect increased immune cell infiltration and extracellular matrix reorganization in rGBM. ASAH1, SYMN, and GPNMB were highly enriched proteins in rGBM. Lipidomics indicates the downregulation of ceramides in rGBM. Cell analyses suggest a role for ASAH1 in neutrophils and its localization in extracellular traps. Plasma concentrations of ASAH1 and SYNM show an association with time to recurrence. CONCLUSIONS We describe the potential importance of ASAH1 in tumor progression and development of rGBM via metabolic rearrangement and showcase the feedback from the tumor microenvironment to plasma proteome profiles. We report the potential of ASAH1 and SYNM as plasma markers of rGBM progression. The published datasets can be considered as a resource for further functional and biomarker studies involving additional -omics technologies.
Collapse
Affiliation(s)
- Miguel Cosenza-Contreras
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Agnes Schäfer
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Justin Sing
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Maren N Stillger
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chia-Yi Chen
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jose Villacorta Hidalgo
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Niko Pinter
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Larissa Meyer
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Tilman Werner
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Darleen Bug
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Zeno Haberl
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Oliver Kübeck
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Susanne Stei
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology “ Nicolae Simionescu,”Bucharest, Romania
| | - Radu Ionita
- Institute of Cellular Biology and Pathology “ Nicolae Simionescu,”Bucharest, Romania
| | - Felix M Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Bagdasar-Arseni” Emergency Clinical Hospital, Bucharest, Romania
| | - Jaime Ferrer-Lozano
- Department of Pathology Hospital Universitari i Politècnic La Fe, València, Spain
| | - Gloria Ribas
- Biomedical Imaging Research Group (GIBI230) Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Leo Cerdá-Alberich
- Biomedical Imaging Research Group (GIBI230) Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Luis Martí-Bonmatí
- Department of Pathology Hospital Universitari i Politècnic La Fe, València, Spain
- Department of Radiology Hospital Universitari i Politècnic La Fe, València, Spain
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Alexis Van Straaten
- Department of medical informatics and evaluation of practices, Assistance Publique-Hôpitaux de Paris Centre, Paris University & European Hospital Georges Pompidou, Paris, France
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Melanie Föll
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| | | | - Jörg Büscher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Armelle Arnoux
- Clinical Epidemiology INSERM & Clinical Research Unit, Assistance Publique-Hôpitaux de Paris Centre, Paris University & European Hospital Georges Pompidou, Paris, France
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Squalli Houssaini A, Lamrabet S, Senhaji N, Sekal M, Nshizirungu JP, Mahfoudi H, Elfakir S, Karkouri M, Bennis S. Prognostic Value of ATRX and p53 Status in High-Grade Glioma Patients in Morocco. Cureus 2024; 16:e56361. [PMID: 38633919 PMCID: PMC11022269 DOI: 10.7759/cureus.56361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION Glioblastoma and astrocytoma, grade 4, are the most common and aggressive brain tumors. Several biomarkers, such as the isocitrate dehydrogenase mutation (IDH-1), alpha-thalassemia/mental retardation, and the X-linked mutation (ATRX), enable more accurate glioma classification and facilitate patient management. This study aimed to determine the prognostic value of clinical and molecular factors (IDH, TP53, and ATRX mutations). We also studied the relationship between these molecular markers and the overall survival (OS) of 126 patients with grade 4 glioblastoma/astrocytoma. METHODS The immunohistochemical study was conducted using antibodies namely, IDH1, R132H, p53, and ATRX. Statistical tests were used to investigate factors that might influence overall survival using IBM SPSS Statistics, version 25.0 (IBM Corp., Armonk, NY). RESULTS The median age at diagnosis was 51.5 years. Patients with a Karnofsky performance score (KPS) <70 presented less favorable survival outcomes compared to those with a KPS ≥70. The median OS for patients was found to be 11.17 months. Expression of IDH1 R132H was found in 13.5% of patients, p53 overexpression was identified in 55.6% of cases, and loss of ATRX expression was detected in 11.9%. The group of patients with IDH mutant/ATRX mutant/p53 wild-type had the best prognosis (OS = 27.393 months; p = 0.015). Our results were in line with previous studies. CONCLUSION The clinical value of IDH and ATRX mutations in prognostic assessment was confirmed (p ≤0.05). The overexpression of p53 had no significant impact on OS (p = 0.726). Therefore, p53 alone cannot predict survival in glioblastoma patients. Based on the results, these biomarkers may be a potential therapeutic target to prolong patient survival, hence the need for further investigations.
Collapse
Affiliation(s)
- Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, MAR
| | - Mohammed Sekal
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Jean Paul Nshizirungu
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Kigali, RWA
| | - Hajar Mahfoudi
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Samira Elfakir
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Mehdi Karkouri
- Department of Pathology, Ibn Rochd University Hospital Center, Casablanca, MAR
- Department of Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, MAR
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, MAR
| |
Collapse
|
13
|
Wang Q, Liu H, Wang Z, Chen Y, Zhou S, Hu X, Xu Y, Zhang X, Wang Y, Gao Y, Li S. Circadian gene Per3 promotes astroblastoma progression through the P53/BCL2/BAX signalling pathway. Gene 2024; 895:147978. [PMID: 37951372 DOI: 10.1016/j.gene.2023.147978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
The key circadian genes, Period1(Per1), Period2(Per2), and Period3(Per3), constitute the mammalian Period gene family. The abnormal expression of Per1 and Per2 is closely related to tumor development, but there are few reports on Per3 and tumorigenesis. This study was conducted to determine whether the abnormal expression of Per3 could influence the progression of astroblastoma. The results indicated that the expression level of Per3 was increased in astroblastoma cells, and the high expression of Per3 was correlated with the poor overall survival time of glioma patients. The role of Per3 in astroblastoma cells was then investigated using two approaches: interference and overexpression. The interference of Per3 inhibited astroblastoma cell proliferation by inducing the cell cycle at the S phase. The interference of Per3 inhibited the migration and invasion of astroblastoma cells, while promoted the astroblastoma cell apoptosis and the expression of the apoptosis genes Cleaved-CASP3, P53, and BAX. The overexpression of Per3 promoted proliferation by affecting the S phase distribution of the astroblastoma cell cycle. The overexpression of Per3 promoted the migration and invasion of astroblastoma cells, while inhibited the astroblastoma cell apoptosis and the expression of apoptosis genes Cleaved-CASP3, P53, and BAX. RNA-seq analysis showed that the interference of Per3 in astrocytoma cells resulted in significant changes in the expression levels of 764 genes. Among the differentially expressed genes enriched in apoptosis-related pathways, the interference of Per3 resulted in significant upregulation of MARCKSL1 expression, in contrast to significant downregulation of SFRP4, EPB41L3, and GPC5 expression. Taken together, our results suggest that Per3 appears to be a pro-cancer gene by altering the proliferation, migration, invasion, and apoptosis of astroblastoma cells. As a result, the Per3 gene may be a promising therapeutic target in the treatment of astroblastoma.
Collapse
Affiliation(s)
- Qingqing Wang
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Huaifeng Liu
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Zhiheng Wang
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Yuxin Chen
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Shujing Zhou
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Xinyi Hu
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Yangfei Xu
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Xinxin Zhang
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China
| | - Yuanyuan Wang
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu City, Anhui Province, PR China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu City, Anhui Province, PR China.
| | - Shujing Li
- School of Life Science, Bengbu Medical College, 233030 Bengbu City, Anhui Province, PR China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu City, Anhui Province, PR China.
| |
Collapse
|
14
|
Fernandes S, Vieira M, Prudêncio C, Ferraz R. Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives. Int J Mol Sci 2024; 25:2108. [PMID: 38396785 PMCID: PMC10889789 DOI: 10.3390/ijms25042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Betulinic acid is a naturally occurring compound that can be obtained through methanolic or ethanolic extraction from plant sources, as well as through chemical synthesis or microbial biotransformation. Betulinic acid has been investigated for its potential therapeutic properties, and exhibits anti-inflammatory, antiviral, antimalarial, and antioxidant activities. Notably, its ability to cross the blood-brain barrier addresses a significant challenge in treating neurological pathologies. This review aims to compile information about the impact of betulinic acid as an antitumor agent, particularly in the context of glioblastoma. Importantly, betulinic acid demonstrates selective antitumor activity against glioblastoma cells by inhibiting proliferation and inducing apoptosis, consistent with observations in other cancer types. Compelling evidence published highlights the acid's therapeutic action in suppressing the Akt/NFκB-p65 signaling cascade and enhancing the cytotoxic effects of the chemotherapeutic agent temozolomide. Interesting findings with betulinic acid also suggest a focus on researching the reduction of glioblastoma's invasiveness and aggressiveness profile. This involves modulation of extracellular matrix components, remodeling of the cytoskeleton, and secretion of proteolytic proteins. Drawing from a comprehensive review, we conclude that betulinic acid formulations as nanoparticles and/or ionic liquids are promising drug delivery approaches with the potential for translation into clinical applications for the treatment and management of glioblastoma.
Collapse
Affiliation(s)
- Sílvia Fernandes
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Center for Research on Health and Environment (CISA), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Mariana Vieira
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
| | - Cristina Prudêncio
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Ricardo Ferraz
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
15
|
Huang R, Lu X, Sun X, Wu H. A novel immune cell signature for predicting glioblastoma after radiotherapy prognosis and guiding therapy. Int J Immunopathol Pharmacol 2024; 38:3946320241249395. [PMID: 38687369 PMCID: PMC11062235 DOI: 10.1177/03946320241249395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Background: Glioblastoma, a highly aggressive brain tumor, poses a significant clinical challenge, particularly in the context of radiotherapy. In this study, we aimed to explore infiltrating immune cells and identify immune-related genes associated with glioblastoma radiotherapy prognosis. Subsequently, we constructed a signature based on these genes to discern differences in molecular and tumor microenvironment immune characteristics, ultimately informing potential therapeutic strategies for patients with varying risk profiles. Methods: We leveraged UCSC Xena and CGGA gene expression profiles from post-radiotherapy glioblastoma as verification cohorts. Infiltration ratios were stratified into high and low groups based on the median value. Differential gene expression was determined through Limma differential analysis. A signature comprising four genes was constructed, guided by Gene Ontology (GO) functional enrichment results and Kaplan-Meier survival analysis. We evaluated differences in cell infiltration levels, Immune Score, Stromal Score, and ESTIMATE Score and their Pearson correlations with the signature. Spearman's correlation was computed between the signature and patient drug sensitivity (IC50), predicted using Genomics of Drug Sensitivity in Cancer (GDSC) and CCLE databases. Results: Notably, the infiltration of central memory CD8+T cells exhibited a significant correlation with glioblastoma radiotherapy prognosis. Samples were dichotomized into high- and low-risk groups based on the optimal signature threshold (2.466642). Kaplan-Meier (K-M) survival analysis revealed that the high-risk group experienced a significantly poorer prognosis (p = .0068), with AUC values exceeding 0.82 at 1, 3, and 5 years, underscoring the robust predictive potential of the signature scoring system. Independent validation sets substantiated the validity of the signature. Statistically significant differences in tumor microenvironments (p < .05) were observed between high- and low-risk groups, and these differences were significantly correlated with the signature (p < .05). Furthermore, there were significant correlations between high and low-risk groups regarding immune checkpoint expressions, Immune Prognostic Score (IPS), and Tumor Immune Dysfunction and Exclusion (TIDE) scores. Conclusion: The immune cell signature, comprising SDC-1, PLAUR, FN1, and CXCL13, holds promise as a predictive tool for assessing glioblastoma prognosis following radiotherapy. This signature also offers valuable guidance for tailoring treatment strategies, emphasizing its potential clinical relevance in improving patient outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoxu Lu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xueming Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hui Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Sipos TC, Kövecsi A, Ovidiu-Ioan Ș, Zsuzsánna P. General Clinico-Pathological Characteristics in Glioblastomas in Correlation with p53 and Ki67. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1918. [PMID: 38003967 PMCID: PMC10672788 DOI: 10.3390/medicina59111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Introduction: A glioblastoma is an intra-axial brain tumour of glial origin that belongs to the category of diffuse gliomas and is the most common malignant neoplasia of the central nervous system. The rate of survival at 5 years, from the moment of diagnosis, is not higher than 10%. Materials and methods: In this retrospective study, fifty-four patients diagnosed with glioblastoma, from the Pathology Department of the County Emergency Clinical Hospital of Târgu Mureș, between 2014 and 2017 were included. We studied the clinico-pathological data (age, gender, location, and laterality) and, respectively, the immunoexpression of p53, Ki67, ATRX, and IDH-1 proteins. Results: We observed a statistically significant association between the laterality of the tumour according to the age groups, with the localization on the right side being more frequent in the age group below 65 years of age, while the involvement of the left hemisphere was more prevalent in those over 65 years. Out of the total 54 cases, 87.04% were found to be primary glioblastomas; more than 70% of the cases were ATRX immunopositive; almost 80% of the glioblastomas studied had wild-type p53 profile; and 35% of the cases were found to have a Ki67 index greater than 20%. A statistically significant association between gender and ATRX mutation was found; female cases were ATRX immunopositive in 92% of the cases. Almost 70% of the cases were both IDH-1 and p53 wild-type, and we observed the presence of both mutations in only 3.7% of the cases. Approximately 83% of primary glioblastomas were ATRX positive, respectively, and all IDH-1 mutant cases were ATRX negative. Conclusions: Glioblastomas still represent a multidisciplinary challenge considering their reserved prognosis. In this study, we described the most common clinico-pathological characteristics and IHC marker expression profiles, highlighting a variety of percentage ranges in primary and secondary glioblastomas. Given the small number of studied cases, further prospective studies on larger cohorts are needed in the future to evaluate the role of these immunohistochemical markers as prognostic factors for survival or recurrence.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania; (T.-C.S.); (P.Z.)
| | - Attila Kövecsi
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania;
| | - Șușu Ovidiu-Ioan
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania; (T.-C.S.); (P.Z.)
| | - Pap Zsuzsánna
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania; (T.-C.S.); (P.Z.)
| |
Collapse
|
17
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
18
|
Yan T, Yang H, Xu C, Liu J, Meng Y, Jiang Q, Li J, Kang G, Zhou L, Xiao S, Xue Y, Xu J, Chen X, Che F. Inhibition of hyaluronic acid degradation pathway suppresses glioma progression by inducing apoptosis and cell cycle arrest. Cancer Cell Int 2023; 23:163. [PMID: 37568202 PMCID: PMC10422813 DOI: 10.1186/s12935-023-02998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Abnormal hyaluronic acid (HA) metabolism is a major factor in tumor progression, and the metabolic regulation of HA mainly includes HA biosynthesis and catabolism. In glioma, abnormal HA biosynthesis is intimately involved in glioma malignant biological properties and the formation of immunosuppressive microenvironment; however, the role of abnormal HA catabolism in glioma remains unclear. METHODS HA catabolism is dependent on hyaluronidase. In TCGA and GEPIA databases, we found that among the 6 human hyaluronidases (HYAL1, HYAL2, HYAL3, HYAL4, HYALP1, SPAM1), only HYAL2 expression was highest in glioma. Next, TCGA and CGGA database were further used to explore the correlation of HYAL2 expression with glioma prognosis. Then, the mRNA expression and protein level of HYAL2 was determined by qRT-PCR, Western blot and Immunohistochemical staining in glioma cells and glioma tissues, respectively. The MTT, EdU and Colony formation assay were used to measure the effect of HYAL2 knockdown on glioma. The GSEA enrichment analysis was performed to explore the potential pathway regulated by HYAL2 in glioma, in addition, the HYAL2-regulated signaling pathways were detected by flow cytometry and Western blot. Finally, small molecule compounds targeting HYAL2 in glioma were screened by Cmap analysis. RESULTS In the present study, we confirmed that Hyaluronidase 2 (HYAL2) is abnormally overexpressed in glioma. Moreover, we found that HYAL2 overexpression is associated with multiple glioma clinical traits and acts as a key indicator for glioma prognosis. Targeting HYAL2 could inhibit glioma progression by inducing glioma cell apoptosis and cell cycle arrest. CONCLUSION Collectively, these observations suggest that HYAL2 overexpression could promote glioma progression. Thus, treatments that disrupt HA catabolism by altering HYAL2 expression may serve as effective strategies for glioma treatment.
Collapse
Affiliation(s)
- Tao Yan
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - He Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Caixia Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Junsi Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Yun Meng
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Qing Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Jinxing Li
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Guiqiong Kang
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Liangjian Zhou
- Scientific Research Management Office, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Shuai Xiao
- Scientific Research Management Office, Linyi People's Hospital, Linyi, 276000, Shandong Province, China
| | - Yanpeng Xue
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Jiayi Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, 150001, Heilongjiang Province, China.
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
| | - Fengyuan Che
- Central Laboratory, Linyi People's Hospital, Guangzhou University of Chinese Medicine, Linyi, 276000, Shandong Province, China.
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China.
- Department of Neurology, Linyi People's Hospital, Linyi, 276000, Shandong Province, China.
| |
Collapse
|
19
|
Zhang X, Ning L, Wu H, Yang S, Hu Z, Wang W, Cao Y, Xin H, You C, Lin F. Targeting CDK4/6 in glioblastoma via in situ injection of a cellulose-based hydrogel. NANOSCALE 2023; 15:12518-12529. [PMID: 37278298 DOI: 10.1039/d3nr00378g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite aggressive treatments, including surgery, chemotherapy and radiotherapy, the prognosis of glioblastoma (GBM) remains poor, and tumor recurrence is inevitable. The FDA-approved CDK4/6 inhibitor palbociclib (PB) showed interesting anti-GBM effects, but its brain penetration is limited by the blood-brain barrier. The aim of this project is to find whether the cellulose-based hydrogel via in situ injection could provide an alternative route to PB brain delivery and generate sufficient drug exposure in orthotopic GBM. In brief, PB was encapsulated in a cellulose nanocrystal network structure crosslinked by polydopamine via divalent Cu2+ and hexadecylamine. The formed hydrogel (PB@PH/Cu-CNCs) exhibited sustained drug retention and acid-responsive network de-polymerization for controlled release in vivo. Specifically, the released Cu2+ catalyzed a Fenton-like reaction to generate reactive oxygen species (ROS), which was further enhanced by PB, and consequently, irreversible senescence and apoptosis were induced in GBM cells. Finally, PB@PH/Cu-CNCs demonstrated a more potent anti-GBM effect than those treated with free PB or PH/Cu-CNCs (drug-free hydrogel) in cultured cells or in an orthotopic glioma model. These results prove that the injection of the PB-loaded hydrogel in situ is an effective strategy to deliver the CDK4/6 inhibitor into the brain and its anti-GBM effect can be further enhanced by combining Cu2+-mediated Fenton-like reaction.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Like Ning
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hongshuai Wu
- Department of Central Laboratory, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - Suisui Yang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ziyi Hu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenhong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Chaoqun You
- Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors & Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
20
|
Barbosa HFG, Piva HL, Matsuo FS, de Lima SCG, de Souza LEB, Osako MK, Tedesco AC. Hybrid lipid-biopolymer nanocarrier as a strategy for GBM photodynamic therapy (PDT). Int J Biol Macromol 2023; 242:124647. [PMID: 37146851 DOI: 10.1016/j.ijbiomac.2023.124647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Glioblastoma (GBM) is the most common brain cancer characterized by aggressive and infiltrated tumors. For this, hybrid biopolymer-lipid nanoparticles coated with biopolymers such-as chitosan and lipidic nanocarriers (LN) loaded with a photosensitizer (AlClPc) can be used for GBM photodynamic therapy. The chitosan-coated LN exhibited stable physicochemical characteristics and presented as an excellent lipid nanocarrier with highly efficiently encapsulated photosensitizer chloro-aluminum phthalocyanine (AlClPc). LN(AlClPc)Ct0.1 % in the presence of light produced more reactive oxygen species and reduced brain tumor cell viability and proliferation. Confirm the effects in vivo LN applications with photodynamic therapy confirmed that the total brain tumor area decreased without systemic toxicity in mice. These results suggest a promising strategy for future clinical applications to improve brain cancer treatment.
Collapse
Affiliation(s)
- Hellen Franciane Gonçalves Barbosa
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Henrique Luis Piva
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Flavia Sayuri Matsuo
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Sarah Caroline Gomes de Lima
- Gene Transfer Laboratory - Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, 14040-901, Brazil
| | - Lucas Eduardo Botelho de Souza
- Gene Transfer Laboratory - Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, 14040-901, Brazil
| | - Mariana Kiomy Osako
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, 14049-900, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
21
|
Liu X, Xiao X, Han X, Yao L, Lan W. Natural flavonoids alleviate glioblastoma multiforme by regulating long non-coding RNA. Biomed Pharmacother 2023; 161:114477. [PMID: 36931030 DOI: 10.1016/j.biopha.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors in adults. Due to the poor prognosis of patients, the median survival time of GBM is often less than 1 year. Therefore, it is very necessary to find novel treatment options with a good prognosis for the treatment or prevention of GBM. In recent years, flavonoids are frequently used to treat cancer. It is a new attractive molecule that may achieve this promising treatment option. Flavonoids have been proved to have many biological functions, such as antioxidation, prevention of angiogenesis, anti-inflammation, inhibition of cancer cell proliferation, and protection of nerve cells. It has also shown the ability to regulate long non-coding RNA (LncRNA). Studies have confirmed that flavonoids can regulate epigenetic modification, transcription, and change microRNA (miRNA) expression of GBM through lncRNA at the gene level. It also found that flavonoids can induce apoptosis and autophagy of GBM cells by regulating lncRNA. Moreover, it can improve the metabolic abnormalities of GBM, interfere with the tumor microenvironment and related signaling pathways, and inhibit the angiogenesis of GBM cells. Eventually, flavonoids can block the tumor initiation, growth, proliferation, differentiation, invasion, and metastasis. In this review, we highlight the role of lncRNA in GBM cancer progression and the influence of flavonoids on lncRNA regulation. And emphasize their expected role in the prevention and treatment of GBM.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
22
|
Han S, Zhang Z, Ma W, Gao J, Li Y. Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptor Subfamily C (NLRC) as a Prognostic Biomarker for Glioblastoma Multiforme Linked to Tumor Microenvironment: A Bioinformatics, Immunohistochemistry, and Machine Learning-Based Study. J Inflamm Res 2023; 16:523-537. [PMID: 36798872 PMCID: PMC9926983 DOI: 10.2147/jir.s397305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Purpose Glioblastoma multiforme (GBM) remains the deadliest primary brain tumor. We aimed to illuminate the role of nucleotide-binding oligomerization domain (NOD)-like receptor subfamily C (NLRC) in GBM. Patients and Methods Based on public database data (mainly The Cancer Genome Atlas [TCGA]), we performed bioinformatics analysis to visually evaluate the role and mechanism of NLRCs in GBM. Then, we validated our findings in a glioma tissue microarray (TMA) by immunohistochemistry (IHC), and the prognostic value of NOD1 was assessed via random forest (RF) models. Results In GBM tissues, the expression of NLRC members was significantly increased, which was related to the low survival rate of GBM. Additionally, Cox regression analysis revealed that the expression of NOD1 (among NLRCs) served as an independent prognostic marker. A nomogram based on multivariate analysis proved the effective predictive performance of NOD1 in GBM. Enrichment analysis showed that high expression of NOD1 could regulate extracellular structure, cell adhesion, and immune response to promote tumor progression. Then, immune infiltration analysis showed that NOD1 overexpression correlated with an enhanced immune response. Then, in a glioma TMA, the results of IHC revealed that the increase in NOD1 expression indicated high recurrence and poor prognosis of human glioma. Furthermore, the expression level of NOD1 showed good prognostic value in the TMA cohort via RF. Conclusion The value of NOD1 as a biomarker for GBM was demonstrated. The possible mechanisms may lie in the regulatory role of NLRC-related pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Shiyuan Han
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Zimu Zhang
- Department of General Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Wenbin Ma
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Jun Gao
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China
| | - Yongning Li
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, People’s Republic of China,Department of International Medical Service, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), Beijing, People’s Republic of China,Correspondence: Yongning Li, Department of Neurosurgery and Department of International Medical Service, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, People’s Republic of China, Tel +86 13901074129, Fax +86 1069152530, Email
| |
Collapse
|
23
|
Qi Z, Zhao J, Li Y, Zhang B, Hu S, Chen Y, Ma J, Shu Y, Wang Y, Cheng P. Live-attenuated Japanese encephalitis virus inhibits glioblastoma growth and elicits potent antitumor immunity. Front Immunol 2023; 14:982180. [PMID: 37114043 PMCID: PMC10126305 DOI: 10.3389/fimmu.2023.982180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastomas (GBMs) are highly aggressive brain tumors that have developed resistance to currently available conventional therapies, including surgery, radiation, and systemic chemotherapy. In this study, we investigated the safety of a live attenuated Japanese encephalitis vaccine strain (JEV-LAV) virus as an oncolytic virus for intracerebral injection in mice. We infected different GBM cell lines with JEV-LAV to investigate whether it had growth inhibitory effects on GBM cell lines in vitro. We used two models for evaluating the effect of JEV-LAV on GBM growth in mice. We investigated the antitumor immune mechanism of JEV-LAV through flow cytometry and immunohistochemistry. We explored the possibility of combining JEV-LAV with PD-L1 blocking therapy. This work suggested that JEV-LAV had oncolytic activity against GBM tumor cells in vitro and inhibited their growth in vivo. Mechanistically, JEV-LAV increased CD8+ T cell infiltration into tumor tissues and remodeled the immunosuppressive GBM microenvironment that is non-conducive to immunotherapy. Consequently, the results of combining JEV-LAV with immune checkpoint inhibitors indicated that JEV-LAV therapy improved the response of aPD-L1 blockade therapy against GBM. The safety of intracerebrally injected JEV-LAV in animals further supported the clinical use of JEV-LAV for GBM treatment.
Collapse
Affiliation(s)
- Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuhua Li
- Department of Arboviruses Vaccine, National Institute for Food and Drug Control, Beijing, China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yunmeng Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ping Cheng,
| |
Collapse
|
24
|
Kim YJ, Ahn KH, Lee KH, Moon KS. Case report: Fulminant extraneural metastasis of glioblastoma through venous sinus. Front Oncol 2022; 12:1034944. [PMID: 36338688 PMCID: PMC9633940 DOI: 10.3389/fonc.2022.1034944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Extraneural metastasis (ENM) of glioblastoma are rare. However, as patient overall survival improves, the incidence of ENM has gradually increased. Although several risk factors have been proposed, venous sinus invasion was regarded as a very exceptional route for ENM. Case description We report a 60-year-old man with glioblastoma in the temporal lobe, invading the transverse and sigmoid venous sinus. After gross total tumor resection, the patient received the standard chemoradiation therapy. Systemic evaluation for persistent shoulder and back pain revealed widespread metastasis to lymph nodes and multiple bones 9 months after surgery. Despite spine radiation therapy, the patient became paraplegic and died 1 year after surgery. Conclusions Venous sinus invasion should be kept in mind by physicians, as a risk factor for glioblastoma ENM. Systemic evaluation of these patients with extracranial symptoms should be performed without hesitation.
Collapse
Affiliation(s)
- Yeong Jin Kim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanam-do, South Korea
| | - Kang Hee Ahn
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanam-do, South Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanam-do, South Korea
- *Correspondence: Kyung-Sub Moon, ; Kyung-Hwa Lee,
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanam-do, South Korea
- *Correspondence: Kyung-Sub Moon, ; Kyung-Hwa Lee,
| |
Collapse
|
25
|
Cheng B, Wang Y, Ayanlaja AA, Zhu J, Kambey PA, Qiu Z, Zhang C, Hu W. Glutathione S-Transferases S1, Z1 and A1 Serve as Prognostic Factors in Glioblastoma and Promote Drug Resistance through Antioxidant Pathways. Cells 2022; 11:3232. [PMID: 36291099 PMCID: PMC9600210 DOI: 10.3390/cells11203232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The glutathione S-transferase (GST) family of detoxification enzymes can regulate the malignant progression and drug resistance of various tumors. Hematopoietic prostaglandin D synthase (HPGDS, also referred to as GSTS1), GSTZ1, and GSTA1 are abnormally expressed in multiple cancers, but their roles in tumorigenesis and development remain unclear. In this study, we used bioinformatics tools to analyze the connections of HPGDS, GSTZ1, and GSTA1 to a variety of tumors in genetic databases. Then, we performed biochemical assays in GBM cell lines to investigate the involvement of HPGDS in proliferation and drug resistance. We found that HPGDS, GSTZ1, and GSTA1 are abnormally expressed in a variety of tumors and are associated with prognoses. The expression level of HPGDS was significantly positively correlated with the grade of glioma, and high levels of HPGDS predicted a poor prognosis. Inhibiting HPGDS significantly downregulated GBM proliferation and reduced resistance to temozolomide by disrupting the cellular redox balance and inhibiting the activation of JNK signaling. In conclusion, this study suggested that HPGDS, GSTZ1, and GSTA1 are related to the progression of multiple tumors, and HPGDS is expected to be a prognostic factor in GBM.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Tongshan Road 379, Xuzhou 221000, China
- The Key Lab of Psychiatry, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221000, China
| | - Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Guangzhou Road 264, Nanjing 220029, China
| | - Abiola Abdulrahman Ayanlaja
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Baltimore, MD 21287, USA
| | - Jing Zhu
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Tongshan Road 379, Xuzhou 221000, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Cell Biology, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221000, China
| | - Ziqiang Qiu
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Tongshan Road 379, Xuzhou 221000, China
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Tongshan Road 379, Xuzhou 221000, China
- The Key Lab of Psychiatry, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221000, China
| | - Wei Hu
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Tongshan Road 379, Xuzhou 221000, China
| |
Collapse
|
26
|
Kuang Y, Shen W, Zhu H, Huang H, Zhou Q, Yin W, Zhou Y, Cao Y, Wang L, Li X, Ren C, Jiang X. The role of lncRNA just proximal to XIST (JPX) in human disease phenotypes and RNA methylation: The novel biomarker and therapeutic target potential. Biomed Pharmacother 2022; 155:113753. [PMID: 36179492 DOI: 10.1016/j.biopha.2022.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/02/2022] Open
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) are closely related to the initialization and development of human diseases. lncRNA just proximal to XIST (JPX), as a newly identified lncRNA, has been reported to be aberrantly expressed and associated with pathophysiological traits in numerous diseases, particularly cancers. More importantly, JPX has been proven to play important roles in various biological functions, including cell proliferation, migration, invasion, apoptosis, chemoresistance, and differentiation. In addition, we discuss the diverse molecular mechanisms and correlation with RNA methylation of JPX in several cancers. In this Review, we summarize current studies on JPX's roles in diseases and its potential application as a biomarker for both diagnoses and prognoses and a therapeutic target in human diseases.
Collapse
Affiliation(s)
- Yirui Kuang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410008, China
| | - Wenyue Shen
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410008, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan Province 410205, China
| | - Haoxuan Huang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410008, China
| | - Quanwei Zhou
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410008, China
| | - Wen Yin
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410008, China
| | - Yi Zhou
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410008, China
| | - Yudong Cao
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410008, China
| | - Lei Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410008, China; The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province 410078, China
| | - Xuewen Li
- Changsha Kexin Cancer Hospital, Changsha, Hunan Province 410205, China
| | - Caiping Ren
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410008, China; The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province 410078, China.
| | - Xingjun Jiang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China.
| |
Collapse
|
27
|
Inhibition of human peptide deformylase by actinonin sensitizes glioblastoma cells to temozolomide chemotherapy. Exp Cell Res 2022; 420:113358. [PMID: 36116558 DOI: 10.1016/j.yexcr.2022.113358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
Glioblastoma multiforme (GBM) is a common intracranial primary tumor of the central nervous system with high malignancy, poor prognosis, and short survival. Studies have shown that mitochondrial energy metabolism plays an important role in GBM chemotherapy resistance, suggesting that interrupting mitochondrial oxidative phosphorylation (OXPHOS) may improve GBM treatment. Human peptide deformylase (HsPDF) is a mitochondrial deformylase that removes the formylated methionine from the N-terminus of proteins encoded by mitochondrial DNA (mtDNA), thereby contributing to correct protein folding and participating in the assembly of the electron respiratory chain complex. In this study, we found that the expression of mtDNA-encoded proteins was significantly downregulated after treatment of GBM cells U87MG and LN229 with the HsPDF inhibitor, actinonin. In combination with temozolomide, a preferred chemotherapeutic medicine for GBM, the OXPHOS level decreased, mitochondrial protein homeostasis was unbalanced, mitochondrial fission increased, and the integrated stress response was activated to promote mitochondrial apoptosis. These findings suggest that HsPDF inhibition is an important strategy for overcoming chemoresistance of GBM cells.
Collapse
|
28
|
Li J, Yang W, Yuan Y, Zuo M, Li T, Wang Z, Liu Y. Preoperative Naples prognostic score is a reliable prognostic indicator for newly diagnosed glioblastoma patients. Front Oncol 2022; 12:775430. [PMID: 36052263 PMCID: PMC9424989 DOI: 10.3389/fonc.2022.775430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Glioblastoma (GBM) accounts for approximately 80% of malignant gliomas and is characterized by considerable cellularity and mitotic activity, vascular proliferation, and necrosis. Naples prognostic score (NPS), based on inflammatory markers and nutritional status, has a prognostic ability in various cancers. In the current study, we aim to explore the prognostic value of operative NPS in GBM patients and compare the prognostic ability between NPS and controlling nutritional status (CONUT). Materials and methods The retrospective analysis was carried out on consecutive newly diagnosed GBM patients who had underwent tumor resection at West China Hospital from February 2016 to March 2019. All statistical analyses were conducted using SPSS software and R software. Results A total of 276 newly diagnosed GBM patients were enrolled in the current study. Overall survival (OS) (p < 0.001) and tumor location (p = 0.007) were significantly related to NPS. Serum albumin concentrate, cholesterol concentrate, neutrophil-to-lymphocyte ratio, lymphocyte ratio, and CONUT score were all significantly associated with NPS (p < 0.001). The Kaplan–Meier curve indicated that NPS (log-rank test, p < 0.001) and CONUT score (log-rank test, p = 0.023) were significantly associated with OS. Multivariate Cox regression revealed that both NPS and CONUT score served as independent prognostic indicators. The prognostic model with NPS had the strongest prognostic capability and best model-fitting. Conclusion In the current study, NPS is found as an independent prognostic indicator for patients with newly diagnosed GBM, and the prognostic ability of NPS is superior to CONUT score.
Collapse
|
29
|
Kou Y, Geng F, Guo D. Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage. Biomedicines 2022; 10:1943. [PMID: 36009491 PMCID: PMC9405736 DOI: 10.3390/biomedicines10081943] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor. With limited therapeutic options, novel therapies are desperately needed. Recent studies have shown that GBM acquires large amounts of lipids for rapid growth through activation of sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor that regulates fatty acid and cholesterol synthesis, and cholesterol uptake. Interestingly, GBM cells divert substantial quantities of lipids into lipid droplets (LDs), a specific storage organelle for neutral lipids, to prevent lipotoxicity by increasing the expression of diacylglycerol acyltransferase 1 (DGAT1) and sterol-O-acyltransferase 1 (SOAT1), which convert excess fatty acids and cholesterol to triacylglycerol and cholesteryl esters, respectively. In this review, we will summarize recent progress on our understanding of lipid metabolism regulation in GBM to promote tumor growth and discuss novel strategies to specifically induce lipotoxicity to tumor cells through disrupting lipid storage, a promising new avenue for treating GBM.
Collapse
Affiliation(s)
- Yongjun Kou
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
| | - Feng Geng
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
| | - Deliang Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, College of Medicine at The Ohio State University, Columbus, OH 43012, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Margaryan T, Elliott M, Sanai N, Tovmasyan A. Simultaneous determination of LY3214996, abemaciclib, and M2 and M20 metabolites in human plasma, cerebrospinal fluid, and brain tumor by LC-MS/MS. J Pharm Anal 2022; 12:601-609. [PMID: 36105156 PMCID: PMC9463526 DOI: 10.1016/j.jpha.2022.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 12/27/2022] Open
Abstract
A sensitive and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was established for the quantification of total and unbound concentrations of LY3214996, an extracellular signal-regulated kinase inhibitor; abemaciclib, a cyclin-dependent kinase 4/6 inhibitor; and abemaciclib active metabolites, M2 and M20, in human plasma, brain tumor, and cerebrospinal fluid samples. The method was validated over a concentration range of 0.2-500 nM within a total run time of 3.8 min using isocratic elution on a Kinetex™ F5 column. Detection was performed on a Sciex QTRAP 6500+ mass spectrometer employing multiple reaction monitoring mode under positive electrospray ionization. The intra- and inter-batch accuracy as well as the precision of the method for all matrices was within ±20% and ≤20% at the lower limit of quantification, and within ±15% and ≤15% for other quality control levels for all analytes. The unbound fractions of drugs and metabolites in spiked and patient samples were determined using an optimized equilibrium dialysis. The validated method was successfully applied in a phase 0/2 clinical trial to assess the central nervous system penetration of LY3214996 and abemaciclib.
Collapse
Affiliation(s)
- Tigran Margaryan
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Mackenna Elliott
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Artak Tovmasyan
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| |
Collapse
|
31
|
Montella L, Del Gaudio N, Bove G, Cuomo M, Buonaiuto M, Costabile D, Visconti R, Facchini G, Altucci L, Chiariotti L, Della Monica R. Looking Beyond the Glioblastoma Mask: Is Genomics the Right Path? Front Oncol 2022; 12:926967. [PMID: 35875139 PMCID: PMC9306486 DOI: 10.3389/fonc.2022.926967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/15/2022] Open
Abstract
Glioblastomas are the most frequent and malignant brain tumor hallmarked by an invariably poor prognosis. They have been classically differentiated into primary isocitrate dehydrogenase 1 or 2 (IDH1 -2) wild-type (wt) glioblastoma (GBM) and secondary IDH mutant GBM, with IDH wt GBMs being commonly associated with older age and poor prognosis. Recently, genetic analyses have been integrated with epigenetic investigations, strongly implementing typing and subtyping of brain tumors, including GBMs, and leading to the new WHO 2021 classification. GBM genomic and epigenomic profile influences evolution, resistance, and therapeutic responses. However, differently from other tumors, there is a wide gap between the refined GBM profiling and the limited therapeutic opportunities. In addition, the different oncogenes and tumor suppressor genes involved in glial cell transformation, the heterogeneous nature of cancer, and the restricted access of drugs due to the blood–brain barrier have limited clinical advancements. This review will summarize the more relevant genetic alterations found in GBMs and highlight their potential role as potential therapeutic targets.
Collapse
Affiliation(s)
- Liliana Montella
- Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD-, Pozzuoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Michela Buonaiuto
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Davide Costabile
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,SEMM-European School of Molecular Medicine, Milano, Italy
| | - Roberta Visconti
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Institute of Experimental Endocrinology and Oncology, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Gaetano Facchini
- Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD-, Pozzuoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy.,BIOGEM, Ariano Irpino, Italy
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
32
|
UPF1/circRPPH1/ATF3 feedback loop promotes the malignant phenotype and stemness of GSCs. Cell Death Dis 2022; 13:645. [PMID: 35871061 PMCID: PMC9308777 DOI: 10.1038/s41419-022-05102-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme (GBM) is the most lethal type of craniocerebral gliomas. Glioma stem cells (GSCs) are fundamental reasons for the malignancy and recurrence of GBM. Revealing the critical mechanism within GSCs' self-renewal ability is essential. Our study found a novel circular RNA (circRPPH1) that was up-regulated in GSCs and correlated with poor survival. The effect of circRPPH1 on the malignant phenotype and self-renewal of GSCs was detected in vitro and in vivo. Mechanistically, UPF1 can bind to circRPPH1 and maintain its stability. Therefore, more existing circRPPH1 can interact with transcription factor ATF3 to further transcribe UPF1 and Nestin expression. It formed a feedback loop to keep a stable stream for stemness biomarker Nestin to strengthen tumorigenesis of GSCs continually. Besides, ATF3 can activate the TGF-β signaling to drive GSCs for tumorigenesis. Knocking down the expression of circRPPH1 significantly inhibited the proliferation and clonogenicity of GSCs both in vitro and in vivo. The overexpression of circRPPH1 enhanced the self-renewal of GSCs. Our findings suggest that UPF1/circRPPH1/ATF3 maintains the potential self-renewal of GSCs through interacting with RNA-binding protein and activating the TGF-β signal pathway. Breaking the feedback loop against self-renewing GSCs may represent a novel therapeutic target in GBM treatment.
Collapse
|
33
|
Xiong W, Li C, Kong G, Wan B, Wang S, Fan J. Glioblastoma: two immune subtypes under the surface of the cold tumor. Aging (Albany NY) 2022; 14:4357-4375. [PMID: 35609054 PMCID: PMC9186767 DOI: 10.18632/aging.204067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/22/2022] [Indexed: 12/02/2022]
Abstract
Glioblastoma is classified as an immunocompromised tumor. The immune pattern beneath the cold tumor surface, however, has yet to be confirmed. Understanding the immune pattern of glioblastoma will aid in the development of effective treatment strategies. We performed weighted gene co-expression network analysis on all immune-related genes in TCGA-GBM transcriptional data and screened 35 prognosis-related immune genes. Unsupervised consistent clustering of these genes was used to analyze the immunological pattern of GBM. A glioblastoma immune prognostic score was developed by using 13 genes discovered by cox regression methods and verified with the GEO dataset to assess the immune profile, prognosis, and immunotherapy effects in individual patients. Glioblastoma has two immune modalities, immune tolerance and immunodeficiency, with distinct immune microenvironments, tumor-associated macrophages being one of the most promising new therapeutic targets. GIPS is a promising biomarker for assessing immune evasion mechanisms, immunotherapy responses, and prognosis in patients.
Collapse
Affiliation(s)
- Wu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guang Kong
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bowen Wan
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu, Yangzhou, Jiangsu, China
| | - Siming Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
34
|
Zhou YS, Wang W, Chen N, Wang LC, Huang JB. Research progress of anti-glioma chemotherapeutic drugs (Review). Oncol Rep 2022; 47:101. [PMID: 35362540 PMCID: PMC8990335 DOI: 10.3892/or.2022.8312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common primary intracranial malignancy in the central nervous system. At present, the most important treatment option is surgical resection of the tumor combined with radiotherapy and chemotherapy. The principle of operation is to remove the tumor to the maximal extent on the basis of preserving brain function. However, prominent invasive and infiltrative proliferation of glioma tumor cells into the surrounding normal tissues frequently reduces the efficacy of treatment. This in turn worsens the prognosis, because the tumor cannot be completely removed, which can readily relapse. Chemotherapeutic agents when applied individually have demonstrated limited efficacy for the treatment of glioma. However, multiple different chemotherapeutic agents can be used in combination with other treatment modalities to improve the efficacy while circumventing systemic toxicity and drug resistance. Therefore, it is pivotal to unravel the inhibitory mechanism mediated by the different chemotherapeutic drugs on glioma cells in preclinical studies. The aim of the present review is to provide a summary for understanding the effects of different chemotherapeutic drugs in glioma, in addition to providing a reference for the preclinical research into novel chemotherapeutic agents for future clinical application.
Collapse
Affiliation(s)
- Yi-Shu Zhou
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Wei Wang
- Department of Radiology and Research Institute for Translation Medicine on Molecular Function and Artificial Intelligence Imaging, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Na Chen
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Li-Cui Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jin-Bai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
35
|
Bona NP, Soares MSP, Pedra NS, Spohr L, da Silva Dos Santos F, de Farias AS, Alvez FL, de Moraes Meine B, Luduvico KP, Spanevello RM, Stefanello FM. Tannic Acid Attenuates Peripheral and Brain Changes in a Preclinical Rat Model of Glioblastoma by Modulating Oxidative Stress and Purinergic Signaling. Neurochem Res 2022; 47:1541-1552. [PMID: 35178643 DOI: 10.1007/s11064-022-03547-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 01/23/2023]
Abstract
Glioblastoma (GB) is a highly aggressive and invasive brain tumor; its treatment remains palliative. Tannic acid (TA) is a polyphenol widely found in foods and possesses antitumor and neuroprotective activities. This study aimed to investigate the effect of TA on oxidative stress parameters and the activity of ectonucleotidases in the serum, platelets, and lymphocytes and/or in the brain of rats with preclinical GB. Rats with GB were treated intragastrically with TA (50 mg/kg/day) for 15 days or with a vehicle. In the platelets of the animals with glioma, the adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolysis and the catalase (CAT) activity decreased. Besides, the adenosine diphosphate (ADP) hydrolysis, adenosine (Ado) deamination, and the reactive oxygen species (ROS) and nitrite levels were increased in glioma animals; however, TA reversed ROS and nitrite levels and AMP hydrolysis alterations. In lymphocytes from animals with glioma, the ATP and ADP hydrolysis, as well as Ado deamination were increased; TA treatment countered this increase. In the brain of the animals with glioma, the ROS, nitrite, and thiobarbituric acid reactive substance (TBARS) levels increased and the thiol (SH) levels and CAT and superoxide dismutase (SOD) activities were decreased; TA treatment decreased the ROS and TBARS levels and restored the SOD activity. In the serum of the animals with glioma, the ATP hydrolysis decreased; TA treatment restored this parameter. Additionally, the ROS levels increased and the SH and SOD activity decreased by glioma implant; TA treatment enhanced nitrite levels and reversed SOD activity. Altogether, our results suggest that TA is an important target in the treatment of GB, as it modulates purinergic and redox systems.
Collapse
Affiliation(s)
- Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli da Silva Dos Santos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Alana Seixas de Farias
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Fernando Lopez Alvez
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Bernardo de Moraes Meine
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP: 96010-900, Brazil.
| |
Collapse
|
36
|
Caglioti C, Palazzetti F, Monarca L, Lobello R, Ceccarini MR, Iannitti RG, Russo R, Ragonese F, Pennetta C, De Luca A, Codini M, Fioretti B. LY294002 Inhibits Intermediate Conductance Calcium-Activated Potassium (KCa3.1) Current in Human Glioblastoma Cells. Front Physiol 2022; 12:790922. [PMID: 35069252 PMCID: PMC8782274 DOI: 10.3389/fphys.2021.790922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastomas (GBs) are among the most common tumors with high malignancy and invasiveness of the central nervous system. Several alterations in protein kinase and ion channel activity are involved to maintain the malignancy. Among them, phosphatidylinositol 3-kinase (PI3K) activity and intermediate conductance calcium-activated potassium (KCa3.1) current are involved in several aspects of GB biology. By using the electrophysiological approach and noise analysis, we observed that KCa3.1 channel activity is LY294002-sensitive and Wortmannin-resistant in accordance with the involvement of PI3K class IIβ (PI3KC2β). This modulation was observed also during the endogenous activation of KCa3.1 current with histamine. The principal action of PI3KC2β regulation was the reduction of open probability in intracellular free calcium saturating concentration. An explanation based on the “three-gate” model of the KCa3.1 channel by PI3KC2β was proposed. Based on the roles of KCa3.1 and PI3KC2β in GB biology, a therapeutic implication was suggested to prevent chemo- and radioresistance mechanisms.
Collapse
Affiliation(s)
- Concetta Caglioti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy.,Department of Medicine, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Federico Palazzetti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy.,Department of Medicine, Perugia Medical School, University of Perugia, Perugia, Italy
| | | | | | | | - Roberta Russo
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Chiara Pennetta
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Antonella De Luca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| |
Collapse
|
37
|
Cui P, Chen F, Ma G, Liu W, Chen L, Wang S, Li W, Li Z, Huang G. Oxyphyllanene B overcomes temozolomide resistance in glioblastoma: Structure-activity relationship and mitochondria-associated ER membrane dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153816. [PMID: 34752969 DOI: 10.1016/j.phymed.2021.153816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The identification of novel therapeutic candidates from natural products for the development of chemoresistant glioblastoma multiforme (GBM) treatment has been a highly significant and effective strategy. PURPOSE Sesquiterpenes are a class of naturally occurring 15-carbon isoprenoid compounds, and several types of sesquiterpenes have the ability to induce growth inhibition and apoptosis in a variety of cancer cell lines. In the present study, 56 sesquiterpenes of five types, namely, eudesmane-type (I) (1-24), eremophilane-type (II) (25-32), cadinane-type (III) (33-41), guaiane-type (IV) (42-49), and oplopanone-type (V) (50-56), were screened for their antiglioma activity, structure-activity relationship analysis (SAR), and underlying mechanism based on patient-derived recurrent GBM strains, patient-derived GBM cell sphere, GBM organoid (GBO) models, and temozolomide (TMZ)-resistant GBM cell lines. RESULTS We found that compound 12 (oxyphyllanene B, OLB) showed the most potent antiglioma activity, and we confirmed that OLB could induce apoptosis in a time- and dose-dependent manner in TMZ-resistant GBM cells and GBOs. SAR announced that the presence of an α, β-unsaturated carbonyl moiety was likely to enhance cytotoxic activities. Mechanistic studies demonstrated that OLB induced abnormal changes in ER and mitochondria-associated membrane (MAM) networks, which triggered ER stress, mitochondrial dysfunction, and apoptosis. Furthermore, our findings suggested that OLB-triggered PACS2 activation might form a committed step to disrupt ER-mitochondria communication and showed for the first time that the expression levels of PACS2 might positively correlate with the progression and chemotherapy resistance of glioma. CONCLUSION Our results indicated that OLB might be a promising candidate for treating TMZ-resistant GBM cells by activating PACS2, which triggered a crucial event to promote the disruption of ER-mitochondria communication and overcome chemotherapy resistance of GBM.
Collapse
Affiliation(s)
- Ping Cui
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China; Department of pharmacy, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Wenlan Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Lei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China.
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China.
| |
Collapse
|
38
|
Cytoprotective agent troxipide-cyanine dye conjugate with cytotoxic and antiproliferative activity in patient-derived glioblastoma cell lines. Bioorg Med Chem Lett 2021; 50:128336. [PMID: 34438012 DOI: 10.1016/j.bmcl.2021.128336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Cytoprotective agents are mainly used to protect the gastrointestinal tract linings and in the treatment of gastric ulcers. These agents are devoid of appreciable cytotoxic or cytostatic effects, and medicinal chemistry efforts to modify them into anticancer agents are rare. A drug repurposing campaign initiated in our laboratory with the primary focus of discovering brain cancer drugs resulted in drug-dye conjugate 1, a combination of the cytoprotective agent troxipide and heptamethine cyanine dye MHI 148. The drug-dye conjugate 1 was evaluated in three different patient-derived adult glioblastoma cell lines, commercially available U87 glioblastoma, and one paediatric glioblastoma cell line. In all cases, the conjugate 1 showed potent cytotoxic activity with nanomolar potency (EC50: 267 nM). Interestingly, troxipide alone does not show any cytotoxic and cytostatic activity in the above cell lines. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug used for glioblastoma treatment, even though the cell lines we used in this study were resistant to TMZ treatment. Herein we disclose the synthesis and in vitro activity of drug-dye conjugate 1 for treatment of difficult-to-treat brain cancers such as glioblastoma.
Collapse
|
39
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Lodi R, Bartolini S, Brandes AA. Glioblastoma: Emerging Treatments and Novel Trial Designs. Cancers (Basel) 2021; 13:cancers13153750. [PMID: 34359651 PMCID: PMC8345198 DOI: 10.3390/cancers13153750] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Nowadays, very few systemic agents have shown clinical activity in patients with glioblastoma, making the research of novel therapeutic approaches a critical issue. Fortunately, the availability of novel compounds is increasing thanks to better biological knowledge of the disease. In this review we want to investigate more promising ongoing clinical trials in both primary and recurrent GBM. Furthermore, a great interest of the present work is focused on novel trial design strategies. Abstract Management of glioblastoma is a clinical challenge since very few systemic treatments have shown clinical efficacy in recurrent disease. Thanks to an increased knowledge of the biological and molecular mechanisms related to disease progression and growth, promising novel treatment strategies are emerging. The expanding availability of innovative compounds requires the design of a new generation of clinical trials, testing experimental compounds in a short time and tailoring the sample cohort based on molecular and clinical behaviors. In this review, we focused our attention on the assessment of promising novel treatment approaches, discussing novel trial design and possible future fields of development in this setting.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
- Correspondence: ; Tel.: +39-0516225697
| | - Enrico Franceschi
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Alicia Tosoni
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Raffaele Lodi
- Istituto delle Scienze Neurologiche di Bologna, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 40139 Bologna, Italy;
| | - Stefania Bartolini
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| | - Alba Ariela Brandes
- Department of Oncology, AUSL Bologna, Via Altura 3, 40139 Bologna, Italy; (E.F.); (A.T.); (L.G.); (S.B.); (A.A.B.)
| |
Collapse
|
40
|
Reimunde P, Pensado-López A, Carreira Crende M, Lombao Iglesias V, Sánchez L, Torrecilla-Parra M, Ramírez CM, Anfray C, Torres Andón F. Cellular and Molecular Mechanisms Underlying Glioblastoma and Zebrafish Models for the Discovery of New Treatments. Cancers (Basel) 2021; 13:1087. [PMID: 33802571 PMCID: PMC7961726 DOI: 10.3390/cancers13051087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common of all brain malignant tumors; it displays a median survival of 14.6 months with current complete standard treatment. High heterogeneity, aggressive and invasive behavior, the impossibility of completing tumor resection, limitations for drug administration and therapeutic resistance to current treatments are the main problems presented by this pathology. In recent years, our knowledge of GBM physiopathology has advanced significantly, generating relevant information on the cellular heterogeneity of GBM tumors, including cancer and immune cells such as macrophages/microglia, genetic, epigenetic and metabolic alterations, comprising changes in miRNA expression. In this scenario, the zebrafish has arisen as a promising animal model to progress further due to its unique characteristics, such as transparency, ease of genetic manipulation, ethical and economic advantages and also conservation of the major brain regions and blood-brain-barrier (BBB) which are similar to a human structure. A few papers described in this review, using genetic and xenotransplantation zebrafish models have been used to study GBM as well as to test the anti-tumoral efficacy of new drugs, their ability to interact with target cells, modulate the tumor microenvironment, cross the BBB and/or their toxicity. Prospective studies following these lines of research may lead to a better diagnosis, prognosis and treatment of patients with GBM.
Collapse
Affiliation(s)
- Pedro Reimunde
- Department of Medicine, Campus de Oza, Universidade da Coruña, 15006 A Coruña, Spain
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Martín Carreira Crende
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Vanesa Lombao Iglesias
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Marta Torrecilla-Parra
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain; (M.T.-P.); (C.M.R.)
| | - Cristina M. Ramírez
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain; (M.T.-P.); (C.M.R.)
| | - Clément Anfray
- IRCCS Istituto Clinico Humanitas, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy;
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- IRCCS Istituto Clinico Humanitas, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy;
| |
Collapse
|
41
|
Keane L, Cheray M, Saidi D, Kirby C, Friess L, Gonzalez-Rodriguez P, Gerdes ME, Grabert K, McColl BW, Joseph B. Inhibition of microglial EZH2 leads to anti-tumoral effects in pediatric diffuse midline gliomas. Neurooncol Adv 2021; 3:vdab096. [PMID: 34485907 PMCID: PMC8409254 DOI: 10.1093/noajnl/vdab096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPG), within diffuse midline gliomas are aggressive pediatric brain tumors characterized by histone H3-K27M mutation. Small-molecule inhibitors for the EZH2-H3K27 histone methyltransferase have shown promise in preclinical animal models of DIPG, despite having little effect on DIPG cells in vitro. Therefore, we hypothesized that the effect of EZH2 inhibition could be mediated through targeting of this histone modifying enzyme in tumor-associated microglia. METHODS Primary DIPG tissues, and cocultures between microglia and patient-derived DIPG or -pediatric high-grade glioma (pHGG) cell lines, were used to establish the H3-K27M status of each cell type. Antisense RNA strategies were used to target EZH2 gene expression in both microglia and glioma cells. Microglia anti-tumoral properties were assessed by gene expression profile, tumor cell invasion capacity, microglial phagocytic activity, and associated tumor cell death. RESULTS In primary DIPG tissues, microglia do not carry the H3-K27M mutation, otherwise characteristic of the cancer cells. Activation of a microglial tumor-supportive phenotype by pHGG, independently of their H3-K27M status, is associated with a transient H3K27me3 downregulation. Repression of EZH2 in DIPG cells has no impact on tumor cell survival or their ability to activate microglia. However, repression of EZH2 in microglia induces an anti-tumor phenotype resulting in decreased cancer cell invasion capability, increased microglial phagocytosis, and tumor-related cell death. CONCLUSIONS These results indicate that microglia, beyond the tumor cells, contribute to the observed response of DIPG to EZH2 inhibition. Results highlight the potential importance of microglia as a new therapeutic avenue in DIPG.
Collapse
Affiliation(s)
- Lily Keane
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dalel Saidi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Caoimhe Kirby
- UK Dementia Research Institute, Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lara Friess
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Kathleen Grabert
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Barry W McColl
- UK Dementia Research Institute, Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Lattier JM, De A, Chen Z, Morales JE, Lang FF, Huse JT, McCarty JH. Megalencephalic leukoencephalopathy with subcortical cysts 1 (MLC1) promotes glioblastoma cell invasion in the brain microenvironment. Oncogene 2020; 39:7253-7264. [PMID: 33040087 PMCID: PMC7736299 DOI: 10.1038/s41388-020-01503-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM), or grade IV astrocytoma, is a malignant brain cancer that contains subpopulations of proliferative and invasive cells that coordinately drive primary tumor growth, progression, and recurrence after therapy. Here, we have analyzed functions for megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1), an eight-transmembrane protein normally expressed in perivascular brain astrocyte end feet that is essential for neurovascular development and physiology, in the pathogenesis of GBM. We show that Mlc1 is expressed in human stem-like GBM cells (GSCs) and is linked to the development of primary and recurrent GBM. Genetically inhibiting MLC1 in GSCs using RNAi-mediated gene silencing results in diminished growth and invasion in vitro as well as impaired tumor initiation and progression in vivo. Biochemical assays identify the receptor tyrosine kinase Axl and its intracellular signaling effectors as important for MLC1 control of GSC invasive growth. Collectively, these data reveal key functions for MLC1 in promoting GSC growth and invasion, and suggest that targeting the Mlc1 protein or its associated signaling effectors may be a useful therapy for blocking tumor progression in patients with primary or recurrent GBM.
Collapse
Affiliation(s)
- John M Lattier
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Arpan De
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Zhihua Chen
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - John E Morales
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Frederick F Lang
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jason T Huse
- Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Joseph H McCarty
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|