1
|
Burrell R, Saravanos GL, Kesson A, Leung KC, Outhred AC, Wood N, Muscatello D, Britton PN. Respiratory virus detections in children presenting to an Australian paediatric referral hospital pre-COVID-19 pandemic, January 2014 to December 2019. PLoS One 2025; 20:e0313504. [PMID: 39841690 DOI: 10.1371/journal.pone.0313504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/24/2024] [Indexed: 01/24/2025] Open
Abstract
Acute respiratory infections cause significant paediatric morbidity, but for pathogens other than influenza, respiratory syncytial virus (RSV), and SARS-CoV-2, systematic monitoring is not commonly performed. This retrospective analysis of six years of routinely collected respiratory pathogen multiplex PCR testing at a major paediatric hospital in New South Wales Australia, describes the epidemiology, year-round seasonality, and co-detection patterns of 15 viral respiratory pathogens. 32,599 respiratory samples from children aged under 16 years were analysed. Most samples were associated with a hospital admission (24,149, 74.1%) and the median age of sampling was 16 months (IQR 5-53). Viruses were detected in 62.9% (20,510) of samples, with single virus detections occurring in 73.5% (15,082) of positive samples. In instances of single virus detection, rhinovirus was most frequent (5125, 40.6%), followed by RSV-B (1394, 9.2%) and RSV-A (1290, 8.6%). Moderate to strong seasonal strength was observed for most viruses with some notable exceptions. Rhinovirus and enterovirus were detected year-round and low seasonal strength was observed for adenovirus and bocavirus. Biennial seasonal patterns were observed for influenza B and parainfluenza virus 2. Co-detections occurred in 5,428 samples, predominantly with two (4284, 79.0%) or three viruses (904, 16.7%). The most common co-detections were rhinovirus-adenovirus (566, 10.4%), rhinovirus-enterovirus (357, 8.3%), and rhinovirus-RSV-B (337, 7.9%). Ongoing pan-pathogen surveillance, integrating both laboratory and clinical data, is necessary to assist in identification of key pathogens and combination of pathogens to support effective preventative public health strategies and reduce the burden of paediatric respiratory infections.
Collapse
Affiliation(s)
- Rebecca Burrell
- Sydney Medical School, University of Sydney, Sydney, New South Wales (NSW), Australia
- Centre for Paediatric and Perinatal Infection Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW, Australia
| | - Gemma L Saravanos
- Centre for Paediatric and Perinatal Infection Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW, Australia
- Susan Wakil School of Nursing and Midwifery, University of Sydney, Sydney, NSW, Australia
| | - Alison Kesson
- The University of Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Kin-Chuen Leung
- Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Alex C Outhred
- Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Nicholas Wood
- Sydney Medical School, University of Sydney, Sydney, New South Wales (NSW), Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - David Muscatello
- School of Population Health, University of New South Wales, Sydney, NSW, Australia
| | - Philip N Britton
- Sydney Medical School, University of Sydney, Sydney, New South Wales (NSW), Australia
- Centre for Paediatric and Perinatal Infection Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases & Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
2
|
Mansuy JM, Da Horta E, Bréhin C, Claudet I, Trémeaux P. Used antigenic devices as a matrix for molecular detection of respiratory viruses. THE LANCET. MICROBE 2024; 5:100880. [PMID: 38734028 DOI: 10.1016/s2666-5247(24)00103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Jean-Michel Mansuy
- Virology Department, Toulouse University Hospital, 31059 Toulouse, France.
| | - Emma Da Horta
- Virology Department, Toulouse University Hospital, 31059 Toulouse, France
| | - Camille Bréhin
- Pediatric Emergency Department, Toulouse University Hospital, Toulouse, France
| | - Isabelle Claudet
- Pediatric Emergency Department, Toulouse University Hospital, Toulouse, France
| | - Pauline Trémeaux
- Virology Department, Toulouse University Hospital, 31059 Toulouse, France
| |
Collapse
|
3
|
Pohanka M. Current trends in digital camera-based bioassays for point-of-care tests. Clin Chim Acta 2024; 552:117677. [PMID: 38000459 DOI: 10.1016/j.cca.2023.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Point-of-care and bedside tests are analytical devices suitable for a growing role in the current healthcare system and provide the opportunity to achieve an exact diagnosis by an untrained person and in various conditions and sites where it is necessary. Using a digital camera integrated into a well-accessible device like a smartphone brings a new way in which a colorimetric point-of-care diagnostic test can provide unbiased data. This review summarizes basic facts about the colorimetric point-of-care tests, principles of how to use a portable device with a camera in the assay, applications of digital cameras for the current tests, and new devices described in the recent papers. An overview of the recent literature and a discussion of recent developments and future trends are provided.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic.
| |
Collapse
|
4
|
Linares M, Larregola LS, de Yébenes PGG, Galilea JS. Primary care during COVID-19 pandemic - a survey to establish clinical needs and lessons learned in infectious respiratory diseases in Spain. BMC PRIMARY CARE 2023; 24:202. [PMID: 37789255 PMCID: PMC10546758 DOI: 10.1186/s12875-023-02160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND The COVID-19 pandemic has exposed gaps and areas of need in health care systems. General practitioners (GPs) play a crucial role in the response to COVID-19 and other respiratory infectious diseases (e.g., influenza). Knowing the current flow of these patients and the real needs of GPs is necessary to implement new therapeutic and diagnostic strategies. We sought to learn about the flow of COVID-19 and flu patients in Spanish primary health centers and understand the training needs in both the diagnosis and treatment of these diseases. METHODS A total of 451 regionally representative GPs completed an online survey between January and February 2022. RESULTS Most of the GPs had available infection containment measures (79%) and access to point-of-care (POC) rapid diagnostic testing (81%) in their centers. The availability of on-the-day diagnostic tests for COVID-19 was higher than that for influenza (80% vs. 20%). Most GPs referred 1 of 10 COVID-19 or flu patients with moderate to severe disease to the emergency department (80% and 90%, respectively). Training/knowledge was considered good regarding diagnostic tests and vaccines (85%) but null or low regarding antivirals (60%) and monoclonal antibodies (80%). CONCLUSIONS This survey identified the conditions of Spanish GPs in terms of the diagnosis and treatment of COVID-19 and flu patients. Respondents' comments suggested that quite radical system-level adjustments are needed to allow GPs to capitalize on the potential benefits of POC tests for diagnosis, reduction of referrals, and monitoring of these diseases.
Collapse
Affiliation(s)
- Manuel Linares
- Fundación iO, Calle Ortega y Gasset 60, 1D, Madrid, Spain.
- Hospital Universitario Príncipe de Asturias, Madrid, Spain.
| | | | | | | |
Collapse
|
5
|
Jiang T, Liu R, Shen J. CRISPR dual enzyme cleavage triggers DNA and RNA substrate cleavage for SARS-CoV-2 dual gene detection. J Med Virol 2023; 95:e29090. [PMID: 37695079 DOI: 10.1002/jmv.29090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
The widespread dissemination of coronavirus 2019 imposes a significant burden on society. Therefore, rapid detection facilitates the reduction of transmission risk. In this study, we proposed a multiplex diagnostic platform for the rapid, ultrasensitive, visual, and simultaneous detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) open reading frame 1ab (ORF1ab) and N genes. A visual diagnostic method was developed using a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a/Cas13a dual-enzyme digestion system integrated with multiplex reverse transcriptase-recombinase polymerase amplification (RT-RPA). Two CRISPR-Cas proteins (Cas12a and Cas13a) were introduced into the system to recognize and cleave the N gene and ORF1ab gene, respectively. We used fluorescent or CRISPR double digestion test strips to detect the digested products, with the N gene corresponding to the FAM channel in the PCR instrument or the T1 line on the test strip, and the ORF1ab gene corresponding to the ROX channel in the PCR instrument or the T2 line on the test strip. The analysis can be completed in less than 20 min. Meanwhile, we assessed the application of the platform and determined a sensitivity of up to 200 copies/mL. Additionally, dual gene validation in 105 clinical nasopharyngeal swab samples showed a 100% positive predictive value agreement and a 95.7% negative predictive value agreement between our method and quantitative reverse transcription-polymerase chain reaction. Overall, our method offered a novel insight into the rapid diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Tong Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Runde Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
6
|
Temte JL, Bell C, Goss MD, Reisdorf E, Tamerius J, Reddy S, Griesser R, Barlow S, Temte E, Wedig M, Shult PA. Adequacy of using a single nasal swab for rapid influenza diagnostic testing, PCR, and whole genome sequencing. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001422. [PMID: 37224148 DOI: 10.1371/journal.pgph.0001422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
Rapid influenza diagnostic tests (RIDT) demonstrate varying sensitivities, often necessitating reverse transcriptase polymerase chain reaction (RT-PCR) to confirm results. The two methods generally require separate specimens. Using the same anterior nasal swab for both RIDT and molecular confirmation would reduce cost and waste and increase patient comfort. The aim of this study was to determine if RIDT residual nasal swab (rNS) specimens are adequate for RT-PCR and whole genome sequencing (WGS). We performed RT-PCR and WGS on paired rNS and nasopharyngeal or oropharyngeal (NP/OP) swab specimens that were collected from primary care patients across all ages. We randomly selected 199 and 40 paired specimens for RT-PCR and WGS, respectively, from the 962 paired surveillance specimens collected during the 2014-2015 influenza season. Sensitivity and specificity for rNS specimens were 81.3% and 96.7%, respectively, as compared to NP/OP specimens. The mean cycle threshold (Ct) value for the NP/OP specimen was significantly lower when the paired specimens were both positive than when the NP/OP swab was positive and the nasal swab was negative (25.5 vs 29.5; p<0.001). Genomic information was extracted from all 40 rNS specimens and 37 of the 40 NP/OP specimens. Complete WGS reads were available for 67.5% (14 influenza A; 13 influenza B) of the rNS specimens and 59.5% (14 influenza A; 8 influenza B) of the NP/OP specimens. It is feasible to use a single anterior nasal swab for RIDT followed by RT-PCR and/or WGS. This approach may be appropriate in situations where training and supplies are limited. Additional studies are needed to determine if residual nasal swabs from other rapid diagnostic tests produce similar results.
Collapse
Affiliation(s)
- Jonathan L Temte
- Department of Family Medicine and Community Health, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cristalyne Bell
- Department of Family Medicine and Community Health, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Maureen D Goss
- Department of Family Medicine and Community Health, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Erik Reisdorf
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, United States of America
| | - John Tamerius
- Quidel Corporation, San Diego, California, United States of America
| | - Sushruth Reddy
- Quidel Corporation, San Diego, California, United States of America
| | - Richard Griesser
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, United States of America
| | - Shari Barlow
- Department of Family Medicine and Community Health, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Emily Temte
- Department of Family Medicine and Community Health, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mary Wedig
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, United States of America
| | - Peter A Shult
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Shirley JD, Bennett SA, Binnicker MJ. Current regulatory landscape for viral point-of-care testing in the United States. J Clin Virol 2023; 164:105492. [PMID: 37210882 DOI: 10.1016/j.jcv.2023.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Historically, the diagnosis of viral infections has been accomplished using a combination of laboratory-based methods, including culture, serology, antigen-based tests, and molecular (e.g., real-time PCR) assays. Although these methods provide an accurate way to detect viral pathogens, testing in a centralized laboratory may delay results, which could impact patient diagnosis and management. Point-of-care tests, including antigen- and molecular-based assays, have been developed to assist with the timely diagnosis of several viral infections, such as influenza, respiratory syncytial virus, and COVID-19. Despite the ability of point-of-care tests to provide rapid results (i.e., <30 min), there are issues to consider prior to their routine use, including test performance and specific regulatory requirements. This review will provide a summary of the regulatory landscape of point-of-care tests for viral infections in the United States, and address important considerations such as site certification, training and inspection readiness.
Collapse
Affiliation(s)
- Joshua D Shirley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Shannon A Bennett
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew J Binnicker
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States.
| |
Collapse
|
8
|
Zhao J, Xu L, Bai Y, Wang C, Guo P, Wang Z, Du G, Liu A. The efficacy and mechanism of salmeterol against influenza A virus in vitro and in vivo. Int Immunopharmacol 2023; 119:110226. [PMID: 37159964 DOI: 10.1016/j.intimp.2023.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Influenza A virus (IAV) is the most harmful pathogen to human beings among the various subtypes of influenza virus, which can lead to immune response, cause serious inflammation and damage to the lung. Salmeterol is a candidate compound with anti-IAV activity screened by virtual network proximity predication. In this paper, we further evaluated the pharmacodynamics of salmeterol against IAV in vivo and in vitro. The results showed that salmeterol could inhibit the activity of three IAV strains (H1N1, H3N2 and H1N1 strain resistant to oseltamivir and amantadine) in the MDCK cells. In vivo, salmeterol could improve the survival state of infected mice, and further mechanism studies shown that salmeterol could improve the pathological characteristics of the lungs, reduce the loads of virus and the expression of M2 and IFITM3 proteins in the lungs of mice. In addition, salmeterol could inhibit the formation of NLRP3 inflammasome, thus reducing the production of the TNF-α, IL-6 and MCP-1 and alleviating inflammatory symptoms. Further results showed that salmeterol can protect A549 cells from cytopathic effect caused by IAV and reduce the production of inflammasome by decreasing the expression of RIG-1 in A549 cells. Finally, salmeterol could improve the spleen morphology and significantly increase the ratio of lymphocyte CD4+/CD8+ to improve immune function of infected mice. In our study, it is confirmed that salmeterol has certain anti-IAV activity through pharmacodynamic study in vivo and in vitro, which lays an important research foundation for the new indication of salmeterol and discovery of new drug against IAV.
Collapse
Affiliation(s)
- Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lvjie Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yiming Bai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Pengfei Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
9
|
Hayotte A, Mariani-Kurkdjian P, Boizeau P, Dauger S, Riaud C, Lacarra B, Bourmaud A, Levy M. Viral Identification Using Multiplex Polymerase Chain Reaction Testing Does Not Reduce Antibiotic Prescribing in Paediatric Intensive Care Units. Microorganisms 2023; 11:microorganisms11040884. [PMID: 37110306 PMCID: PMC10143589 DOI: 10.3390/microorganisms11040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
PCR tests for viral identification, performed on nasopharyngeal secretions, have experienced a major boom in the last few years. Their use is very frequent, but their indications are still not well defined, especially in Paediatric Intensive Care Units (PICU). These tests are used for the microbiological diagnosis of lower respiratory infections but can be used in other situations. The aim of the study was to investigate the effect of viral identification on antibiotic therapy management. We conducted a single-centre retrospective study from 1 October 2017 to 31 December 2019. This study included all consecutive FilmArray® Respiratory Panel tests performed in patients hospitalised in a PICU. Patients were identified using the microbiology laboratory prospective database and data were extracted from the medical record. 544 tests corresponding to 408 patients were included. The main reasons for testing were pneumonia (34%) and bronchiolitis (24%). In 70% of cases, at least one virus was identified, with Human Rhinovirus (56%) and Respiratory Syncytial Virus (28%) being the two predominant. Bacterial co-infection was present in 25% of cases. Viral identification was not associated with reduced antibiotic therapy. On multivariate analysis, antibiotic management was significantly associated with clinical gravity, CRP value or radiology findings regardless of virus identification. Viral identification has an epidemiological value, but antibiotic prescription relies on other factors.
Collapse
|
10
|
Kjær N, Plejdrup Hansen M, Schou Pedersen H, Bondo Christensen M, Huibers L. Development over time in point-of-care test use in Danish daytime and out-of-hours general practice: a register-based study. Scand J Prim Health Care 2023; 41:108-115. [PMID: 36939231 DOI: 10.1080/02813432.2023.2187667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
OBJECTIVE To describe the development over time of the use of C-reactive protein (CRP) and rapid streptococcal detection test (RADT) point-of-care tests (POCT) in Danish general practice and to explore associations between patient characteristics and POCT use (i.e. CRP and RADT). DESIGN AND SETTINGS A register-based study including all general practice clinic consultations in daytime and out-of-hours (OOH) settings in Denmark between 2003 and 2018. SUBJECTS All citizens who had at least one clinic consultation in daytime or OOH general practice within the study period. MAIN OUTCOME MEASURES We estimated the total and relative use of CRP and RADT POCTs and described the development over time. Crude and adjusted proportion ratios (PRs) were calculated to explore associations between patient characteristics and POCT use. RESULTS Overall, the relative use of CRP POCTs increased. At OOH, a steep increase was noticed around 2012. The relative use of RADT decreased. Patient age 40-59 years and existing comorbidity were significantly associated with a higher use of CRP testing in both settings. A significantly lower use of CRP testing was found for patients with higher educational level. We found a significantly higher use of RADT testing for patients aged 0-19 years and with higher household educational level, whereas comorbidity was associated with a lower use of RADT testing. CONCLUSION The use of CRP POCT increased over time, whereas the use of RADT POCT decreased. Perhaps the success of implementing CRP as a tool for reducing antibiotic use has reached it limit. Future studies should focus on how and when POCT are used most optimal.Key pointsCRP POC tests and RADT POCTs are frequently used diagnostic tools in general practice, both in daytime and in the out-of-hours setting.There was an increased use of CRP POCTs, particularly in out-of-hours general practice, whereas the use of RADT POCTs declined between 2003 and 2018.CRP POCTs were associated with age of 40-59 years and co-morbidity, while the use of RADT was mostly associated with younger age.
Collapse
Affiliation(s)
- Niels Kjær
- Research Unit for General Practice, Aarhus, Denmark
| | | | | | - Morten Bondo Christensen
- Research Unit for General Practice, Aarhus, Denmark
- Institute for Public Health, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
11
|
Klivleyeva N, Lukmanova G, Glebova T, Shamenova M, Ongarbayeva N, Saktaganov N, Baimukhametova A, Baiseiit S, Ismagulova D, Kassymova G, Rachimbayeva A, Murzagaliyeva A, Xetayeva G, Isabayeva R, Sagatova M. Spread of Pathogens Causing Respiratory Viral Diseases Before and During CoVID-19 Pandemic in Kazakhstan. Indian J Microbiol 2023; 63:129-138. [PMID: 37168842 PMCID: PMC9972336 DOI: 10.1007/s12088-023-01064-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/11/2023] [Indexed: 03/06/2023] Open
Abstract
Analyze clinical samples collected and determine the etiology of viral pathogens and the dynamics of their spread. Acute respiratory viral infections remain one of the key health problems worldwide. They constitute etiologically independent diseases, with similar clinical infection manifestations and a single mechanism for the transmission of pathogens. 4712 nasopharyngeal swabs were collected from people before and during the COVID-19 pandemic with acute respiratory infections that tested negative for COVID-19 and were examined in this study. The collected samples were screened by a real-time polymerase chain reaction on a Rotor-Gene Q6 plex instrument. Statistical processing of the results, tabular, and graphical data were analyzed in the MS Excel. The largest number of the nasopharyngeal swabs were collected from children under 17 years of age (60.75%). In 702 samples (9.85%) pathogens of respiratory infections of non-influenza etiology were detected, including adenovirus, bocavirus, coronavirus, metapneumovirus, paramyxovirus types I–IV, respiratory syncytial virus, and rhinovirus. At the same time, both before and during the COVID-19 pandemic, different influenza virus variants co-circulation (A/H1N1, A/H3N2, and type B) were discovered, with a predominance of viruses with the antigenic formula A/H1N1. The results of the study indicate the need for continuous monitoring of the viral pathogens spread, which will expand the existing knowledge of the viral etiology of respiratory diseases and highlight the importance of viruses in the respiratory infections occurrence.
Collapse
Affiliation(s)
- Nailya Klivleyeva
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Galina Lukmanova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Tatyana Glebova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Mira Shamenova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Nuray Ongarbayeva
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Nurbol Saktaganov
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Assem Baimukhametova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Sagadat Baiseiit
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Dariya Ismagulova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | | | - Almagul Rachimbayeva
- The Almaty Branch of National Center for Expertise, 3 Zhibek Zholy Avenue, Almaty, Kazakhstan
| | - Ardak Murzagaliyeva
- The West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe, Kazakhstan
| | - Gulzakira Xetayeva
- The Children’s City Clinical Infectious Diseases Hospital, SOPE On REM, ChCCIDH, 299a Baizakova Street, Almaty, Kazakhstan
| | - Rauna Isabayeva
- The Communal State Enterprise Regional Region Clinical Hospital (CSE RCH) of Karaganda Regional Health Department, 41/43 Erubaev Street, Karaganda, Kazakhstan
| | - Madisha Sagatova
- The East Kazakhstan Regional Branch of National Center for Expertise, 17 Independence Avenue, Ust-Kamenogorsk, Kazakhstan
| |
Collapse
|
12
|
Diagnostic accuracy and feasibility of a rapid SARS-CoV-2 antigen test in general practice – a prospective multicenter validation and implementation study. BMC PRIMARY CARE 2022; 23:149. [PMID: 35690722 PMCID: PMC9187884 DOI: 10.1186/s12875-022-01756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
PCR testing is considered the gold standard for SARS-CoV-2 diagnosis but its results are earliest available hours to days after testing. Rapid antigen tests represent a diagnostic tool enabling testing at the point of care. Rapid antigen tests have mostly been validated by the manufacturer or in controlled laboratory settings only. External validation at the point of care, particularly in general practice where the test is frequently used, is needed. Furthermore, it is unclear how well point of care tests are accepted by the practice staff.
Methods
In this prospective multicenter validation study in primary care, general practitioners included adult individuals presenting with symptoms suggesting COVID-19. Each patient was tested by the general practitioner, first with a nasopharyngeal swab for the point of care test (Roche SARS-CoV-2 Rapid Antigen Test) and then with a second swab for PCR testing. Using the RT-PCR result as a reference, we calculated specificity, sensitivity, positive predictive value and negative predictive value, with their 95% confidence intervals. General practitioners and medical assistants completed a survey to assess feasibility and usefulness of the point of care tests.
Results
In 40 practices in Würzburg, Germany, 1518 patients were recruited between 12/2020 and 06/2021. The point of care test achieved a sensitivity of 78.3% and a specificity of 99.5% compared to RT-PCR. With a prevalence of 9.5%, the positive predictive value was 93.9% and the negative predictive value was 97.8%. General practitioners rated the point of care test as a helpful tool to support diagnostics in patients with signs and symptoms suggestive for infection, particularly in situations where decision on further care is needed at short notice.
Conclusion
The point of care test used in this study showed a sensitivity below the manufacturer’s specification (Sensitivity 96.25%) in the practice but high values for specificity and high positive predictive value and negative predictive value. Although widely accepted in the practice, measures for further patient management require a sensitive interpretation of the point of care test results.
Collapse
|
13
|
Bell C, Birstler J, Goss MD, Temte E, Barlow S, Chen G, Uzicanin A, Temte J. Factors influencing sensitivity of a rapid influenza diagnostic test in a community-based population of kindergarten through 12th-grade students: Wisconsin 2015-2020. Influenza Other Respir Viruses 2022; 17:e13064. [PMID: 36317243 PMCID: PMC9835448 DOI: 10.1111/irv.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Rapid influenza diagnostic tests (RIDTs) have variable sensitivity. In a community-based population of kindergarten through 12th-grade (K-12) students, we assessed factors that may influence RIDT performance using 2368 paired results from Sofia® influenza A + B fluorescent immunoassay and reverse transcription polymerase chain reaction (RT-PCR). RIDT sensitivity and specificity were 76.1% (95% CI: 72.8-79.1) and 97.2% (96.2-97.9), respectively. Factors associated with sensitivity included runny nose (OR = 3.0, p < 0.001), nasal congestion (1.59, p = 0.045), days from symptom onset (per day; 0.75; p < 0.001), myalgia (0.61; p = 0.014), age (per 5 years; 0.55; p = 0.001), and detection of another virus (0.50; p = 0.043). Understanding these factors can aid in interpreting negative results.
Collapse
Affiliation(s)
- Cristalyne Bell
- Department of Family Medicine and Community HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Jennifer Birstler
- Department of Biostatistics and Medical InformaticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Maureen D. Goss
- Department of Family Medicine and Community HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Emily Temte
- Department of Family Medicine and Community HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Shari Barlow
- Department of Family Medicine and Community HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Guanhua Chen
- Department of Biostatistics and Medical InformaticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Amra Uzicanin
- Division of Global Migration and QuarantineCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Jonathan Temte
- Department of Family Medicine and Community HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
14
|
Direct PCR with the CDC 2019 SARS-CoV-2 assay: optimization for limited-resource settings. Sci Rep 2022; 12:11756. [PMID: 35817781 PMCID: PMC9272867 DOI: 10.1038/s41598-022-15356-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
PCR-based diagnostics generally require nucleic acid extraction from patient specimens prior to amplification. As highlighted early in the COVID-19 pandemic, extraction steps may be difficult to scale during times of massive demand and limited reagent supply. Forgoing an extraction step, we previously reported that the N1 primer/probe-set of the widespread CDC COVID-19 assay maintains high categorical sensitivity (95%) and specificity (100%) with direct inoculation of viral transport media (VTM) into qRT-PCR reactions. In contrast, the N2 set demonstrated a prominent Ct delay and low sensitivity (33%) without extraction. In the current study, we have improved the performance of this modified CDC assay (in particular the N2 set) by incorporating N1/N2/RNase P multiplexing and dissecting the effects of annealing temperature, VTM interference, and inoculum volume. The latter two factors exerted a more prominent effect on the performance of N2 than N1, although these effects were largely overcome through elevated annealing temperature. This unextracted/multiplex protocol was evaluated with 41 SARS-CoV-2 positive and 43 negative clinical samples, demonstrating a categorical sensitivity of 92.7% and specificity of 100% versus the unmodified CDC methodology. Overall, this work offers a generalizable strategy to maximize testing capabilities for COVID-19 or other emerging pathogens when resources are constrained.
Collapse
|
15
|
Assessment of potential factors associated with the sensitivity and specificity of Sofia Influenza A+B Fluorescent Immunoassay in an ambulatory care setting. PLoS One 2022; 17:e0268279. [PMID: 35536787 PMCID: PMC9089855 DOI: 10.1371/journal.pone.0268279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background Seasonal influenza leads to an increase in outpatient clinic visits. Timely, accurate, and affordable testing could facilitate improved treatment outcomes. Rapid influenza diagnostic tests (RIDTs) provide results in as little as 15 minutes and are relatively inexpensive, but have reduced sensitivity when compared to RT-PCR. The contributions of multiple factors related to test performance are not well defined for ambulatory care settings. We assessed clinical and laboratory factors that may affect the sensitivity and specificity of Sofia Influenza A+B Fluorescence Immunoassay. Study design We performed a post-hoc assessment of surveillance data amassed over seven years from five primary care clinics. We analyzed 4,475 paired RIDT and RT-PCR results from specimens collected from patients presenting with respiratory symptoms and examined eleven potential factors with additional sub-categories that could affect RIDT sensitivity. Results In an unadjusted analysis, greater sensitivity was associated with the presence of an influenza-like illness (ILI), no other virus detected, no seasonal influenza vaccination, younger age, lower cycle threshold value, fewer days since illness onset, nasal discharge, stuffy nose, and fever. After adjustment, presence of an ILI, younger age, fewer days from onset, no co-detection, and presence of a nasal discharge maintained significance. Conclusion Clinical and laboratory factors may affect RIDT sensitivity. Identifying potential factors during point-of-care testing could aid clinicians in appropriately interpreting negative influenza RIDT results.
Collapse
|
16
|
Cassidy H, van Genne M, Lizarazo-Forero E, Niesters HGM, Gard L. Evaluation of the QIAstat-Dx RP2.0 and the BioFire FilmArray RP2.1 for the Rapid Detection of Respiratory Pathogens Including SARS-CoV-2. Front Microbiol 2022; 13:854209. [PMID: 35401449 PMCID: PMC8989387 DOI: 10.3389/fmicb.2022.854209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Point-of-care syndromic panels allow for simultaneous and rapid detection of respiratory pathogens from nasopharyngeal swabs. The clinical performance of the QIAstat-Dx Respiratory SARS-CoV-2 panel RP2.0 (QIAstat-Dx RP2.0) and the BioFire FilmArray Respiratory panel RP2.1 (BioFire RP2.1) was evaluated for the detection of SARS-CoV-2 and other common respiratory pathogens. A total of 137 patient samples were retrospectively selected based on emergency department admission, along with 33 SARS-CoV-2 positive samples tested using a WHO laboratory developed test. The limit of detection for SARS-CoV-2 was initially evaluated for both platforms. The QIAstat-Dx RP2.0 detected SARS-CoV-2 at 500 copies/mL and had a positive percent agreement (PPA) of 85%. The BioFire RP2.1 detected SARS-CoV-2 at 50 copies/mL and had a PPA of 97%. Both platforms showed a negative percent agreement of 100% for SARS-CoV-2. Evaluation of analytical specificity from a range of common respiratory targets showed a similar performance between each platform. The QIAstat-Dx RP2.0 had an overall PPA of 82% (67–100%) in clinical samples, with differences in sensitivity depending on the respiratory target. Both platforms can be used to detect acute cases of SARS-CoV-2. While the QIAstat-Dx RP2.0 is suitable for detecting respiratory viruses within a clinical range, it has less analytical and clinical sensitivity for SARS-CoV-2 compared to the BioFire RP2.1.
Collapse
|
17
|
Simultaneous detection of SARS-CoV-2 and identification of spike D614G mutation using point-of-care real-time polymerase chain reaction. J Virol Methods 2022; 304:114513. [PMID: 35257681 PMCID: PMC8897296 DOI: 10.1016/j.jviromet.2022.114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with high mortality and infectivity rates in humans since its emergence. Analysis using high-accuracy real-time polymerase chain reaction (PCR) is recommended for the detection of general respiratory viruses including SARS-CoV-2, but it takes a long time (e.g. ~ 6 h); moreover, on-site diagnosis is difficult owing to the need for skilled technicians and advanced laboratory facilities. Currently, the importance of point-of-care testing (POCT) is being emphasized for the rapid detection of SARS-CoV-2. Here, we developed a multiplex real-time reverse transcription PCR (rRT-PCR) analysis that not only detects SARS-CoV-2 but also D614G strains with higher contagiousness than wild types among SARS-CoV-2 mutants using probe-based rRT-PCR. Moreover, this method was applied to portable PCR equipment capable of POCT to confirm high detection sensitivity and specificity. Multiple assays were possible with fluorescence labeling of individual probes. Furthermore, using a microfluidic chip-based point-of-care testing rRT-PCR platform, detection time was reduced by more than half compared with the commonly used detection system. This demonstrates that our assay has 100% of high sensitivity and specificity and could thus aid in the rapid and simple screening of SARS-CoV-2 carrying the mutation. We present a rapid detection method for mutations in SARS-CoV-2.
Collapse
|
18
|
Geyer RE, Kotnik JH, Lyon V, Brandstetter E, Zigman Suchsland M, Han PD, Graham C, Ilcisin M, Kim AE, Chu HY, Nickerson DA, Starita LM, Bedford T, Lutz B, Thompson MJ. Diagnostic Accuracy of an At-Home, Rapid Self-test for Influenza: Prospective Comparative Accuracy Study. JMIR Public Health Surveill 2022; 8:e28268. [PMID: 35191852 PMCID: PMC8905479 DOI: 10.2196/28268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Rapid diagnostic tests (RDTs) for influenza used by individuals at home could potentially expand access to testing and reduce the impact of influenza on health systems. Improving access to testing could lead to earlier diagnosis following symptom onset, allowing more rapid interventions for those who test positive, including behavioral changes to minimize spread. However, the accuracy of RDTs for influenza has not been determined in self-testing populations. Objective This study aims to assess the accuracy of an influenza RDT conducted at home by lay users with acute respiratory illness compared with that of a self-collected sample by the same individual mailed to a laboratory for reference testing. Methods We conducted a comparative accuracy study of an at-home influenza RDT (Ellume) in a convenience sample of individuals experiencing acute respiratory illness symptoms. Participants were enrolled in February and March 2020 from the Greater Seattle region in Washington, United States. Participants were mailed the influenza RDT and reference sample collection materials, which they completed and returned for quantitative reverse-transcription polymerase chain reaction influenza testing in a central laboratory. We explored the impact of age, influenza type, duration, and severity of symptoms on RDT accuracy and on cycle threshold for influenza virus and ribonuclease P, a marker of human DNA. Results A total of 605 participants completed all study steps and were included in our analysis, of whom 87 (14.4%) tested positive for influenza by quantitative reverse-transcription polymerase chain reaction (70/87, 80% for influenza A and 17/87, 20% for influenza B). The overall sensitivity and specificity of the RDT compared with the reference test were 61% (95% CI 50%-71%) and 95% (95% CI 93%-97%), respectively. Among individuals with symptom onset ≤72 hours, sensitivity was 63% (95% CI 48%-76%) and specificity was 94% (95% CI 91%-97%), whereas, for those with duration >72 hours, sensitivity and specificity were 58% (95% CI 41%-74%) and 96% (95% CI 93%-98%), respectively. Viral load on reference swabs was negatively correlated with symptom onset, and quantities of the endogenous marker gene ribonuclease P did not differ among reference standard positive and negative groups, age groups, or influenza subtypes. The RDT did not have higher sensitivity or specificity among those who reported more severe illnesses. Conclusions The sensitivity and specificity of the self-test were comparable with those of influenza RDTs used in clinical settings. False-negative self-test results were more common when the test was used after 72 hours of symptom onset but were not related to inadequate swab collection or severity of illness. Therefore, the deployment of home tests may provide a valuable tool to support the management of influenza and other respiratory infections.
Collapse
Affiliation(s)
- Rachel E Geyer
- Department of Family Medicine, University of Washington, Seattle, WA, United States
| | - Jack Henry Kotnik
- Department of Family Medicine, University of Washington, Seattle, WA, United States.,Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Victoria Lyon
- Department of Family Medicine, University of Washington, Seattle, WA, United States
| | - Elisabeth Brandstetter
- Department of Medicine, University of Washington, Seattle, WA, United States.,Brotman Baty Institute, University of Washington, Seattle, WA, United States
| | | | - Peter D Han
- Brotman Baty Institute, University of Washington, Seattle, WA, United States.,Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Chelsey Graham
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Misja Ilcisin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ashley E Kim
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA, United States.,Brotman Baty Institute, University of Washington, Seattle, WA, United States
| | - Deborah A Nickerson
- Brotman Baty Institute, University of Washington, Seattle, WA, United States.,Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Lea M Starita
- Brotman Baty Institute, University of Washington, Seattle, WA, United States.,Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Trevor Bedford
- Brotman Baty Institute, University of Washington, Seattle, WA, United States.,Department of Genome Sciences, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Barry Lutz
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Brotman Baty Institute, University of Washington, Seattle, WA, United States
| | - Matthew J Thompson
- Department of Family Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Gradisteanu Pircalabioru G, Iliescu FS, Mihaescu G, Cucu AI, Ionescu ON, Popescu M, Simion M, Burlibasa L, Tica M, Chifiriuc MC, Iliescu C. Advances in the Rapid Diagnostic of Viral Respiratory Tract Infections. Front Cell Infect Microbiol 2022; 12:807253. [PMID: 35252028 PMCID: PMC8895598 DOI: 10.3389/fcimb.2022.807253] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Viral infections are a significant public health problem, primarily due to their high transmission rate, various pathological manifestations, ranging from mild to severe symptoms and subclinical onset. Laboratory diagnostic tests for infectious diseases, with a short enough turnaround time, are promising tools to improve patient care, antiviral therapeutic decisions, and infection prevention. Numerous microbiological molecular and serological diagnostic testing devices have been developed and authorised as benchtop systems, and only a few as rapid miniaturised, fully automated, portable digital platforms. Their successful implementation in virology relies on their performance and impact on patient management. This review describes the current progress and perspectives in developing micro- and nanotechnology-based solutions for rapidly detecting human viral respiratory infectious diseases. It provides a nonexhaustive overview of currently commercially available and under-study diagnostic testing methods and discusses the sampling and viral genetic trends as preanalytical components influencing the results. We describe the clinical performance of tests, focusing on alternatives such as microfluidics-, biosensors-, Internet-of-Things (IoT)-based devices for rapid and accurate viral loads and immunological responses detection. The conclusions highlight the potential impact of the newly developed devices on laboratory diagnostic and clinical outcomes.
Collapse
Affiliation(s)
| | - Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | | | | | - Octavian Narcis Ionescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
- Petroleum-Gas University of Ploiesti, Ploiesti, Romania
| | - Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | - Monica Simion
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | | | - Mihaela Tica
- Emergency University Hospital, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, Bucharest, Romania
| |
Collapse
|
20
|
Abdolhosseini M, Zandsalimi F, Moghaddam FS, Tavoosidana G. A review on colorimetric assays for DNA virus detection. J Virol Methods 2022; 301:114461. [PMID: 35031384 DOI: 10.1016/j.jviromet.2022.114461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/22/2022]
Abstract
Early detection is one of the ways to deal with DNA virus widespread prevalence, and it is necessary to know new diagnostic methods and techniques. Colorimetric assays are one of the most advantageous methods in detecting viruses. These methods are based on color change, which can be seen either with the naked eye or with special devices. The aim of this study is to introduce and evaluate effective colorimetric methods based on amplification, nanoparticle, CRISPR/Cas, and Lateral flow in the diagnosis of DNA viruses and to discuss the effectiveness of each of the updated methods. Compared to the other methods, colorimetric assays are preferred for faster detection, high efficiency, cheaper cost, and high sensitivity and specificity. It is expected that the spread of these viruses can be prevented by identifying and developing new methods.
Collapse
Affiliation(s)
- Mansoreh Abdolhosseini
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Zandsalimi
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Salasar Moghaddam
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Lee JY, Baek SH, Ahn JG, Yoon SH, Kim MK, Kim SY, Kim KW, Sohn MH, Kang JM. Delayed Influenza Treatment in Children With False-Negative Rapid Antigen Test: A Retrospective Single-Center Study in Korea 2016-2019. J Korean Med Sci 2022; 37:e3. [PMID: 34981679 PMCID: PMC8723894 DOI: 10.3346/jkms.2022.37.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND We aimed to examine the delay in antiviral initiation in rapid antigen test (RAT) false-negative children with influenza virus infection and to explore the clinical outcomes. We additionally conducted a medical cost-benefit analysis. METHODS This single-center, retrospective study included children (aged < 10 years) with influenza-like illness (ILI), hospitalized after presenting to the emergency department during three influenza seasons (2016-2019). RAT-false-negativity was defined as RAT-negative and polymerase chain reaction-positive cases. The turnaround time to antiviral treatment (TAT) was from the time when RAT was prescribed to the time when the antiviral was administered. The medical cost analysis by scenarios was also performed. RESULTS A total of 1,430 patients were included, 7.5% were RAT-positive (n = 107) and 2.4% were RAT-false-negative (n = 20). The median TAT of RAT-false-negative patients was 52.8 hours, significantly longer than that of 4 hours in RAT-positive patients (19.2-100.1, P < 0.001). In the multivariable analysis, TAT of ≥ 24 hours was associated with a risk of severe influenza infection and the need for mechanical ventilation (odds ratio [OR], 6.8, P = 0.009 and OR, 16.2, P = 0.033, respectively). The medical cost varied from $11.7-187.3/ILI patient. CONCLUSION Antiviral initiation was delayed in RAT-false-negative patients. Our findings support the guideline that children with influenza, suspected of having severe or progressive infection, should be treated immediately.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hwan Baek
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Gyun Ahn
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Korea
| | - Seo Hee Yoon
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Moon Kyu Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Man Kang
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Tan CD, Hagedoorn NN, Dewez JE, Borensztajn DM, von Both U, Carrol ED, Emonts M, van der Flier M, de Groot R, Herberg J, Kohlmaier B, Levin M, Lim E, Maconochie IK, Martinon-Torres F, Nijman RG, Pokorn M, Rivero-Calle I, Strle F, Tsolia M, Vermont CL, Yeung S, Zachariasse JM, Zenz W, Zavadska D, Moll HA. Rapid Viral Testing and Antibiotic Prescription in Febrile Children With Respiratory Symptoms Visiting Emergency Departments in Europe. Pediatr Infect Dis J 2022; 41:39-44. [PMID: 34862345 DOI: 10.1097/inf.0000000000003326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inappropriate antibiotic prescribing often occurs in children with self-limiting respiratory tract infections, contributing to antimicrobial resistance. It has been suggested that rapid viral testing can reduce inappropriate antibiotic prescribing. We aimed to assess the association between rapid viral testing at the Emergency Department (ED) and antibiotic prescription in febrile children. METHODS This study is part of the MOFICHE study, which is an observational multicenter study including routine data of febrile children (0-18 years) attending 12 European EDs. In children with respiratory symptoms visiting 6 EDs equipped with rapid viral testing, we performed multivariable logistic regression analysis regarding rapid viral testing and antibiotic prescription adjusted for patient characteristics, disease severity, diagnostic tests, focus of infection, admission, and ED. RESULTS A rapid viral test was performed in 1061 children (8%) and not performed in 11,463 children. Rapid viral test usage was not associated with antibiotic prescription (aOR 0.9, 95% CI: 0.8-1.1). A positive rapid viral test was associated with less antibiotic prescription compared with children without test performed (aOR 0.6, 95% CI: 0.5-0.8), which remained significant after adjustment for CRP and chest radiograph result. Twenty percent of the positively tested children received antibiotics. A negative rapid viral test was not associated with antibiotic prescription (aOR 1.2, 95% CI: 1.0-1.4). CONCLUSIONS Rapid viral test usage did not reduce overall antibiotic prescription, whereas a positive rapid viral test did reduce antibiotic prescription at the ED. Implementation of rapid viral testing in routine emergency care and compliance to the rapid viral test outcome will reduce inappropriate antibiotic prescribing at the ED.
Collapse
Affiliation(s)
- Chantal D Tan
- From the Department of General Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Nienke N Hagedoorn
- From the Department of General Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Juan E Dewez
- Faculty of Tropical and Infectious Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dorine M Borensztajn
- From the Department of General Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- German Centre for Infection Research, DZIF, Partner Site Munich, Munich, Germany
| | - Enitan D Carrol
- Veterinary and Ecological Sciences Liverpool, Institute of Infection, University of Liverpool, Liverpool, United Kingdom
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Marieke Emonts
- Great North Children's Hospital, Paediatric Immunology, Infectious Diseases & Allergy, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- NIHR Newcastle Biomedical Research Centre based at Newcastle upon Tyne Hospitals NHS Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michiel van der Flier
- Section of Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, RadboudUMC, Nijmegen, the Netherlands
- Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ronald de Groot
- Section of Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, RadboudUMC, Nijmegen, the Netherlands
| | - Jethro Herberg
- Section of Paediatric Infectious Diseases, Imperial College, London, United Kingdom
| | - Benno Kohlmaier
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Michael Levin
- Section of Paediatric Infectious Diseases, Imperial College, London, United Kingdom
| | - Emma Lim
- Great North Children's Hospital, Paediatric Immunology, Infectious Diseases & Allergy, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- NIHR Newcastle Biomedical Research Centre based at Newcastle upon Tyne Hospitals NHS Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian K Maconochie
- Paediatric Emergency Medicine, Imperial College Healthcare Trust NHS, London, United Kingdom
| | - Federico Martinon-Torres
- Genetics, Vaccines, Infections and Paediatrics Research group (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ruud G Nijman
- Section of Paediatric Infectious Diseases, Imperial College, London, United Kingdom
| | - Marko Pokorn
- Department of Infectious Diseases and Faculty of Medicine, University Medical Centre Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Irene Rivero-Calle
- Genetics, Vaccines, Infections and Paediatrics Research group (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Franc Strle
- Department of Infectious Diseases and Faculty of Medicine, University Medical Centre Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Maria Tsolia
- Second Department of Paediatrics, P. and A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Clementien L Vermont
- Department of Paediatric Infectious diseases and Immunology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Shunmay Yeung
- Faculty of Tropical and Infectious Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joany M Zachariasse
- From the Department of General Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Werner Zenz
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Dace Zavadska
- Rīgas Stradiņa universitāte, Department of Paediatrics, Children Clinical University Hospital, Riga, Latvia
| | - Henriette A Moll
- From the Department of General Paediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
23
|
Colagrossi L, Mattana G, Piccioni L, Cento V, Perno CF. Viral Respiratory Infections: New Tools for a Rapid Diagnosis. Semin Respir Crit Care Med 2021; 42:747-758. [PMID: 34918318 DOI: 10.1055/s-0041-1739306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Respiratory tract infection is one of the most common diseases in human worldwide. Many viruses are implicated in these infections, including emerging viruses, such as the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Identification of the causative viral pathogens of respiratory tract infections is important to select a correct management of patients, choose an appropriate treatment, and avoid unnecessary antibiotics use. Different diagnostic approaches present variable performance in terms of accuracy, sensitivity, specificity, and time-to-result, that have to be acknowledged to be able to choose the right diagnostic test at the right time, in the right patient. This review describes currently available rapid diagnostic strategies and syndromic approaches for the detection of viruses commonly responsible for respiratory diseases.
Collapse
Affiliation(s)
- Luna Colagrossi
- Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giordana Mattana
- Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Livia Piccioni
- Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Valeria Cento
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
24
|
POCT Detection of 14 Respiratory Viruses Using Multiplex RT-PCR. BIOCHIP JOURNAL 2021; 15:371-380. [PMID: 34745431 PMCID: PMC8564276 DOI: 10.1007/s13206-021-00037-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
Over the past 6 years, acute respiratory infections have constituted an average of more than 70,000 cases in South Korea. It results in a high mortality rate in infants and the elderly with weak immunity. There are several types of respiratory viruses that invade the human respiratory tract and cause infectious disease. Reverse transcription PCR (RT-PCR) is mainly used for respiratory virus detection owing to its high sensitivity and reproducibility. In response, a multiplex real-time RT-PCR (rRT-PCR) assay was developed for the detection of influenza A and B viruses, parainfluenza viruses 1–4 (PIV1-4), human metapneumovirus, adenovirus, human rhinovirus, respiratory syncytial virus (RSV), and SARS-CoV-2. Detection ability of RT-PCR assay was confirmed by applying it to a portable device capable of point-of-care testing (POCT). Amplicons were synthesized using primer pairs and probe sets designed for each target virus, and a standard curve was constructed to confirm the limit of detection. An experiment using nasopharyngeal swab samples was conducted to understand the field applicability of the rRT-PCR assay. Detection was confirmed in most samples. This study demonstrated that rapid and accurate detection results can be obtained using the multiplex rRT-PCR based POC test, and that it is possible to detect 14 types of respiratory viruses that are generally difficult to distinguish at the same time, enabling timely treatment. Furthermore, we expect that the portable PCR device can significantly reduce the processing procedure of clinical samples before testing, which is the main disadvantage of common RT-PCR tests and can help reduce costs.
Collapse
|
25
|
Mo X, Wang X, Zhu Z, Yu Y, Chang D, Zhang X, Li D, Sun F, Zhou L, Xu J, Zhang H, Gao C, Guan M, Xiao Y, Wu W. Quality Management for Point-Of-Care Testing of Pathogen Nucleic Acids: Chinese Expert Consensus. Front Cell Infect Microbiol 2021; 11:755508. [PMID: 34722341 PMCID: PMC8548827 DOI: 10.3389/fcimb.2021.755508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
COVID-19 continues to circulate globally in 2021, while under the precise policy implementation of China’s public health system, the epidemic was quickly controlled, and society and the economy have recovered. During the pandemic response, nucleic acid detection of SARS-CoV-2 has played an indispensable role in the first line of defence. In the cases of emergency operations or patients presenting at fever clinics, nucleic acid detection is required to be performed and reported quickly. Therefore, nucleic acid point-of-care testing (POCT) technology for SARS-CoV-2 identification has emerged, and has been widely carried out at all levels of medical institutions. SARS-CoV-2 POCT has served as a complementary test to conventional polymerase chain reaction (PCR) batch tests, thus forming an experimental diagnosis platform that not only guarantees medical safety but also improves quality services. However, in view of the complexity of molecular diagnosis and the biosafety requirements involved, pathogen nucleic acid POCT is different from traditional blood-based physical and chemical index detection. No guidelines currently exist for POCT quality management, and there have been inconsistencies documented in practical operation. Therefore, Shanghai Society of Molecular Diagnostics, Shanghai Society of Laboratory Medicine, Clinical Microbiology Division of Shanghai Society of Microbiology and Shanghai Center for Clinical Laboratory have cooperated with experts in laboratory medicine to generate the present expert consensus. Based on the current spectrum of major infectious diseases in China, the whole-process operation management of pathogen POCT, including its application scenarios, biosafety management, personnel qualification, performance verification, quality control, and result reporting, are described here. This expert consensus will aid in promoting the rational application and robust development of this technology in public health defence and hospital infection management.
Collapse
Affiliation(s)
- Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueliang Wang
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuetian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Chang
- Department of Laboratory Medicine, Shanghai Pudong Hospital, Fudan University Affiliated Pudong Medical Center, Shanghai, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Lin Zhou
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai, China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine Shanghai, Shanghai, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanqun Xiao
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Tsuboi I, Iinuma K. Immunochromatography-Application Example and POCT Type Genetic Testing. Chem Pharm Bull (Tokyo) 2021; 69:984-988. [PMID: 34602580 DOI: 10.1248/cpb.c21-00164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane-based rapid test reagents including immunochromatography are widely used in clinical practice. Recently, high-sensitive reagents based on the immunochromatography method, such as silver amplification method and time resolved fluorescence method for influenza testing, has been developed and early confirmation of infection can be achieved. Furthermore, genetic testing, automated all the steps from extraction till detection, is getting popular. Genetic testing of mycoplasma by Smart Gene Myco system and Coronavirus disease 2019 (COVID-19) test is a good example of membrane-based rapid test reagents. This system uses silica particle-containing membrane filter and enable to shorten the assay time by automates pre-treatment process for removing contamination substances in the sample which affect polymerase-chain-reaction amplification. We hope utilized genetic testing application will help quick confirmation of COVID-19 positive patient and prevent the collapse of medical system under COVID-19 development.
Collapse
Affiliation(s)
- Isami Tsuboi
- Pharmaceutical Affairs Department, BML Medical Works Inc
| | | |
Collapse
|
27
|
Ye H, Shen Z, Li Y. Adhesive rolling of nanoparticles in a lateral flow inspired from diagnostics of COVID-19. EXTREME MECHANICS LETTERS 2021; 44:101239. [PMID: 33644275 PMCID: PMC7897962 DOI: 10.1016/j.eml.2021.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Due to the lack of therapeutics and vaccines, diagnostics of COVID-19 emerges as one of the primary tools for controlling the spread of SARS-COV-2. Here we aim to develop a theoretical model to study the detection process of SARS-COV-2 in lateral flow device (LFD), which can achieve rapid antigen diagnostic tests. The LFD is modeled as the adhesion of a spherical nanoparticle (NP) coated with ligands on the surface, mimicking the SARS-COV-2, on an infinite substrate distributed with receptors under a simple shear flow. The adhesive behaviors of NPs in the LFD are governed by the ligand-receptor binding (LRB) and local hydrodynamics. Through energy balance analysis, three types of motion are predicted: (i) firm-adhesion (FA); (ii) adhesive-rolling (AR); and (iii) free-rolling (FR), which correspond to LRB-dominated, LRB-hydrodynamics-competed, and hydrodynamics-dominated regimes, respectively. The transitions of FA-to-AR and AR-to-FR are found to be triggered by overcoming LRB barrier and saturation of LRB torque, respectively. Most importantly, in the AR regime, the smaller NPs can move faster than their larger counterparts, induced by the LRB effect that depends on the radius R of NPs. In addition, a scaling law is found in the AR regime that v ∝ γ ˙ R α (rolling velocity v and shear rate γ ˙ ), with an approximate scaling factor α ∼ - 0 . 2 ± 0 . 05 identified through fitting both theoretical and numerical results. The scaling factor emerges from the energy-based stochastic LRB model, and is confirmed to be universal by examining selections of different LRB model parameters. This size-dependent rolling behavior under the control of flow strength may provide the theoretical guidance for designing efficient LFD in detecting infectious disease.
Collapse
Affiliation(s)
- Huilin Ye
- Department of Mechanical Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhiqiang Shen
- Department of Mechanical Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Ying Li
- Department of Mechanical Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
28
|
Mboumba Bouassa RS, Tonen-Wolyec S, Rodary J, Bélec L. Comparative practicability and analytical performances of Credo VitaPCR™ Flu A&B and Cepheid Xpert® Xpress Flu/RSV platforms. Diagn Microbiol Infect Dis 2021; 100:115381. [PMID: 33852989 DOI: 10.1016/j.diagmicrobio.2021.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
To compare the practicability (usability and satisfaction) and analytical performances of VitaPCR™ Flu A&B Assay (Credo Diagnostics Biomedical Pte. Ltd., Singapore, Republic of Singapore) and Xpert® Xpress Flu/RSV kit (Cepheid, Sunnyvale, USA), two rapid point-of-care (POC) nucleic acid amplification tests (NAATs) by reference to multiplex RT-PCR for respiratory viruses. Nasopharyngeal swabs (n=117) were collected from patients with influenza-like illness in Paris, France. Thawed specimens were further analyzed with both NAATs. The usability was comparable for both NAATs. Satisfaction questionnaire was better for the VitaPCR™ platform for the short time of test result in 20 minutes. Both NAATs showed comparable sensitivities (VitaPCRTM: 95.0%; Xpert® Xpress: 97.5%) and specificities (100%) for influenza A/B RNA detection, with excellent reliability and accuracy between both NAATs. Both VitaPCR™ and Xpert® Xpress NAATs can be implemented in hospital setting as POC NAATs to rapidly detect influenza A/B RNA in symptomatic patients.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Ecole Doctorale Régionale D'Afrique Centrale en Infectiologie Tropicale, Franceville, Gabon
| | - Serge Tonen-Wolyec
- Ecole Doctorale Régionale D'Afrique Centrale en Infectiologie Tropicale, Franceville, Gabon; Faculté de Médecine et Pharmacie, Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Julien Rodary
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurent Bélec
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Faculté de Médecine Paris Descartes, Centre Université de Paris, Université de Paris, Sorbonne Paris Cité, and INSERM, Paris, France.
| |
Collapse
|
29
|
Willis AT, Barnum S, Pusterla N. Validation of a point-of-care polymerase chain reaction assay for detection of Streptococcus equi subspecies equi in rostral nasal swabs from horses with suspected strangles. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2021; 62:51-54. [PMID: 33390599 PMCID: PMC7739398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aimed to validate a point-of-care polymerase chain reaction (PCR) assay for detection of Streptococcus equi subsp. equi (S. equi) in rostral nasal swabs from horses with suspected acute strangles and to compare the results against the molecular gold standard of quantitative polymerase chain reaction (qPCR). Two hundred thirty-two individual swabs of rostral nasal passages were characterized by qPCR as S. equi positive, S. equi subsp. zooepidemicus (S. zooepidemicus) positive, or S. equi and S. zooepidemicus negative. The specificity and sensitivity of the point-of-care PCR assay were 89% and 84%, respectively. The limits of detection of the qPCR assay and the point-of-care PCR analyzer were 3 and 277 eqbE target genes of S. equi, respectively. Overall agreement and short turnaround time make the point-of-care PCR assay a potential molecular diagnostic platform that will enhance the capability of equine veterinarians to timely support a diagnosis of strangles and institute proper biosecurity protocols.
Collapse
Affiliation(s)
- Andrew T Willis
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, 1 Garrod Drive, Davis, California, USA (Willis); Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California, USA (Barnum, Pusterla)
| | - Samantha Barnum
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, 1 Garrod Drive, Davis, California, USA (Willis); Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California, USA (Barnum, Pusterla)
| | - Nicola Pusterla
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, 1 Garrod Drive, Davis, California, USA (Willis); Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California, USA (Barnum, Pusterla)
| |
Collapse
|
30
|
Li N, Wang P, Wang X, Geng C, Chen J, Gong Y. Molecular diagnosis of COVID-19: Current situation and trend in China (Review). Exp Ther Med 2020; 20:13. [PMID: 32934678 PMCID: PMC7471877 DOI: 10.3892/etm.2020.9142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is caused by a novel coronavirus (2019-nCoV or SARS-CoV-2) and has become a global public health emergency. Rapid and accurate molecular diagnostic technologies are crucial for the screening, isolation, treatment, prevention and control of COVID-19. Currently, nucleic acid detection-based techniques and rapid diagnostic tests that detect antigens or antibodies specific to 2019-nCoV infections are the primary diagnostic tools. China National Medical Products Administration has opened a special channel for approval of new pharmaceuticals owing to urgent clinical needs, with 18 nucleic acid detection kits, 11 protein detection kits and 1 sequencing-related equipment and supporting software having been approved until April 23, 2020. The current review summarizes the application situation, advantages, disadvantages and associated technology improvement trends of molecular diagnostics for COVID-19 in China, identifies knowledge gaps and indicates future priorities for research in this field. The most effective way to prevent and control COVID-19 is early detection, diagnosis, isolation and treatment. In the clinical application of molecular diagnosis technology, it is necessary to combine pathogenic microbiology, immunology and other associated detection technologies, advocate the combination of multiple technologies, determine how they complement each other, enhance practicability and improve the ability of rapid and accurate diagnosis and differential diagnosis of COVID-19.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
- General Hospital of Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xinyue Wang
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Chenhao Geng
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Jiale Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300070, P.R. China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| |
Collapse
|
31
|
Gulholm T, Basile K, Kok J, Chen SCA, Rawlinson W. Laboratory diagnosis of severe acute respiratory syndrome coronavirus 2. Pathology 2020; 52:745-753. [PMID: 33131799 PMCID: PMC7543760 DOI: 10.1016/j.pathol.2020.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
The first laboratory confirmed case of Coronavirus disease 2019 (COVID-19) in Australia was in Victoria on 25 January 2020 in a man returning from Wuhan city, Hubei province, the People's Republic of China. This was followed by three cases in New South Wales the following day. The Australian Government activated the Australian Health Sector Emergency Response Plan for Novel Coronavirus on 27 February 2020 in anticipation of a pandemic. Subsequently, the World Health Organization declared COVID-19 to be a Public Health Emergency of International Concern followed by a pandemic on 30 January 2020 and 11 March 2020, respectively. Laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, is key in identifying infected persons to guide timely public health actions of contact tracing and patient isolation to limit transmission of infection. This article aims to provide a comprehensive overview of current laboratory diagnostic methods for SARS-CoV-2, including nucleic acid testing, serology, rapid antigen detection and antibody tests, virus isolation and whole genome sequencing. The relative advantages and disadvantages of the different diagnostic tests are presented, as well as their value in different clinical, infection control and public health contexts. We also describe the challenges in the provision of SARS-CoV-2 diagnostics in Australia, a country with a relatively low COVID-19 incidence in the first pandemic wave but in which prevalence could rapidly change.
Collapse
Affiliation(s)
- T Gulholm
- Department of Infectious Diseases, Prince of Wales Hospital, Randwick, NSW, Australia.
| | - K Basile
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - J Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW, Australia
| | - S C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney Westmead Hospital, Westmead, NSW, Australia
| | - W Rawlinson
- NSW Health Pathology, Serology and Virology Division, Prince of Wales Hospital, Randwick, NSW, Australia; Virology Research Laboratory, Prince of Wales Hospital, University of New South Wales, Randwick, NSW, Australia; School of Medical Sciences and School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
32
|
Soler M, Estevez MC, Cardenosa-Rubio M, Astua A, Lechuga LM. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens 2020; 5:2663-2678. [PMID: 32786383 PMCID: PMC7447078 DOI: 10.1021/acssensors.0c01180] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022]
Abstract
The global sanitary crisis caused by the emergence of the respiratory virus SARS-CoV-2 and the COVID-19 outbreak has revealed the urgent need for rapid, accurate, and affordable diagnostic tests to broadly and massively monitor the population in order to properly manage and control the spread of the pandemic. Current diagnostic techniques essentially rely on polymerase chain reaction (PCR) tests, which provide the required sensitivity and specificity. However, its relatively long time-to-result, including sample transport to a specialized laboratory, delays massive detection. Rapid lateral flow tests (both antigen and serological tests) are a remarkable alternative for rapid point-of-care diagnostics, but they exhibit critical limitations as they do not always achieve the required sensitivity for reliable diagnostics and surveillance. Next-generation diagnostic tools capable of overcoming all the above limitations are in demand, and optical biosensors are an excellent option to surpass such critical issues. Label-free nanophotonic biosensors offer high sensitivity and operational robustness with an enormous potential for integration in compact autonomous devices to be delivered out-of-the-lab at the point-of-care (POC). Taking the current COVID-19 pandemic as a critical case scenario, we provide an overview of the diagnostic techniques for respiratory viruses and analyze how nanophotonic biosensors can contribute to improving such diagnostics. We review the ongoing published work using this biosensor technology for intact virus detection, nucleic acid detection or serological tests, and the key factors for bringing nanophotonic POC biosensors to accurate and effective COVID-19 diagnosis on the short term.
Collapse
Affiliation(s)
| | | | - Maria Cardenosa-Rubio
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Alejandro Astua
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
33
|
Sehgal AR. Should Asymptomatic and Low-Risk Individuals be Tested for SARS-CoV-2? J Gen Intern Med 2020; 35:2810-2812. [PMID: 32583347 PMCID: PMC7314427 DOI: 10.1007/s11606-020-06000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Ashwini R Sehgal
- Center for Reducing Health Disparities, Case Western Reserve University, 2500 Metro Health Drive, Cleveland, OH, USA.
| |
Collapse
|
34
|
Davis B, Rothrock AN, Swetland S, Andris H, Davis P, Rothrock SG. Viral and atypical respiratory co-infections in COVID-19: a systematic review and meta-analysis. J Am Coll Emerg Physicians Open 2020; 1:533-548. [PMID: 32838380 PMCID: PMC7323310 DOI: 10.1002/emp2.12128] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives Respiratory co-infections have the potential to affect the diagnosis and treatment of COVID-19 patients. This meta-analysis was performed to analyze the prevalence of respiratory pathogens (viruses and atypical bacteria) in COVID-19 patients. Methods This review was consistent with Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Searched databases included: PubMed, EMBASE, Web of Science, Google Scholar, and grey literature. Studies with a series of SARS-CoV-2-positive patients with additional respiratory pathogen testing were included. Independently, 2 authors extracted data and assessed quality of evidence across all studies using Cochrane's Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology and within each study using the Newcastle Ottawa scale. Data extraction and quality assessment disagreements were settled by a third author. Pooled prevalence of co-infections was calculated using a random-effects model with univariate meta-regression performed to assess the effect of study subsets on heterogeneity. Publication bias was evaluated using funnel plot inspection, Begg's correlation, and Egger's test. Results Eighteen retrospective cohorts and 1 prospective study were included. Pooling of data (1880 subjects) showed an 11.6% (95% confidence interval [CI] = 6.9-17.4, I 2 = 0.92) pooled prevalence of respiratory co-pathogens. Studies with 100% co-pathogen testing (1210 subjects) found a pooled prevalence of 16.8% (95% CI = 8.1-27.9, I 2 = 0.95) and studies using serum antibody tests (488 subjects) found a pooled prevalence of 26.8% (95%, CI = 7.9-51.9, I 2 = 0.97). Meta-regression found no moderators affecting heterogeneity. Conclusion Co-infection with respiratory pathogens is a common and potentially important occurrence in patients with COVID-19. Knowledge of the prevalence and type of co-infections may have diagnostic and management implications.
Collapse
Affiliation(s)
- Bennett Davis
- University of QueenslandOchsner Clinical SchoolBrisbane, Australia and New OrleansNew OrleansLouisianaUSA
| | | | | | - Halle Andris
- Dr. P. Phillips HospitalOrlando HealthOrlandoFloridaUSA
| | - Phil Davis
- Dr. P. Phillips HospitalOrlando HealthOrlandoFloridaUSA
| | - Steven G. Rothrock
- Dr. P. Phillips HospitalOrlando HealthOrlandoFloridaUSA
- Florida State University College of MedicineTallahasseeFloridaUSA
| |
Collapse
|
35
|
Abstract
We discuss the current practice of point-of-care diagnostics in infectious diseases as methods transition from antigen-based to molecular, and beyond simple molecular to the next generations of point-of-care testing methods. We evaluate the role of point-of-care at different sites of care and describe and evaluate trends likely to be driven by advances in molecular methodology, emerging biomarkers, and informatics. We describe strengths, weaknesses, opportunities, and threats to the development of point-of-care diagnostics in the near (1-10 years) and more distant (10-20 years) future.
Collapse
|
36
|
Haag E, Molitor A, Gregoriano C, Müller B, Schuetz P. The value of biomarker-guided antibiotic therapy. Expert Rev Mol Diagn 2020; 20:829-840. [PMID: 32529871 DOI: 10.1080/14737159.2020.1782193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION There is an increasing interest to individualize patient management and decisions regarding antibiotic treatment. Biomarkers may provide relevant information for this purpose. AREAS COVERED Despite a growing number of clinical trials investigating several biomarkers, there remain open questions regarding the best type of biomarker, timing or frequency of testing, and optimal cutoffs among others. The most promising results in regard to diagnosis of bacterial infection and therapy monitoring are found for procalcitonin (PCT), although some recent trials were not able to validate the promising earlier findings. Furthermore, less specific markers like C-reactive protein (CRP) and new prognostic biomarkers such as proadrenomedullin (MR-proADM) may improve the prognostic assessment of patients and proteomics may help shorten time to microbiological results. The aim of this review is to summarize the current concept of biomarker-guided management and provide an outlook of promising ongoing investigations. EXPERT OPINION 'Antibiotic stewardship' is complex and needs more than just the measurement of one single biomarker. However, when integrated into the context of a thorough clinical examination, standard blood parameters and a well done risk stratification by clinical scores such as the SOFA-score, biomarkers have great potential to improve the diagnostic and prognostic assessment of patients.
Collapse
Affiliation(s)
- Ellen Haag
- University Department of Medicine, Kantonsspital Aarau , Aarau, Switzerland
| | - Alexandra Molitor
- University Department of Medicine, Kantonsspital Aarau , Aarau, Switzerland
| | - Claudia Gregoriano
- University Department of Medicine, Kantonsspital Aarau , Aarau, Switzerland
| | - Beat Müller
- University Department of Medicine, Kantonsspital Aarau , Aarau, Switzerland
| | - Philipp Schuetz
- University Department of Medicine, Kantonsspital Aarau , Aarau, Switzerland
| |
Collapse
|
37
|
Nelson PP, Rath BA, Fragkou PC, Antalis E, Tsiodras S, Skevaki C. Current and Future Point-of-Care Tests for Emerging and New Respiratory Viruses and Future Perspectives. Front Cell Infect Microbiol 2020; 10:181. [PMID: 32411619 PMCID: PMC7202255 DOI: 10.3389/fcimb.2020.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
The availability of pathogen-specific treatment options for respiratory tract infections (RTIs) increased the need for rapid diagnostic tests. Besides, retrospective studies, improved lab-based detection methods and the intensified search for new viruses since the beginning of the twenty-first century led to the discovery of several novel respiratory viruses. Among them are human bocavirus (HBoV), human coronaviruses (HCoV-HKU1, -NL63), human metapneumovirus (HMPV), rhinovirus type C (RV-C), and human polyomaviruses (KIPyV, WUPyV). Additionally, new viruses like SARS coronavirus (SARS-CoV), MERS coronavirus (MERS-CoV), novel strains of influenza virus A and B, and (most recently) SARS coronavirus 2 (SARS-CoV-2) have emerged. Although clinical presentation may be similar among different viruses, associated symptoms may range from a mild cold to a severe respiratory illness, and thus require a fast and reliable diagnosis. The increasing number of commercially available rapid point-of-care tests (POCTs) for respiratory viruses illustrates both the need for this kind of tests but also the problem, i.e., that the majority of such assays has significant limitations. In this review, we summarize recently published characteristics of POCTs and discuss their implications for the treatment of RTIs. The second key aspect of this work is a description of new and innovative diagnostic techniques, ranging from biosensors to novel portable and current lab-based nucleic acid amplification methods with the potential future use in point-of-care settings. While prototypes for some methods already exist, other ideas are still experimental, but all of them give an outlook of what can be expected as the next generation of POCTs.
Collapse
Affiliation(s)
- Philipp P Nelson
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL) Marburg, Marburg, Germany
| | - Barbara A Rath
- Vienna Vaccine Safety Initiative - Pediatric Infectious Diseases and Vaccines, Berlin, Germany.,UMR Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France.,ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Paraskevi C Fragkou
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland.,4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Antalis
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland.,4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL) Marburg, Marburg, Germany.,ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| |
Collapse
|
38
|
DeLaroche AM, Haddad R, Farooqi A, Sapién RE, Tieder JS. Outcome Prediction of Higher-Risk Brief Resolved Unexplained Events. Hosp Pediatr 2020; 10:303-310. [PMID: 32152008 DOI: 10.1542/hpeds.2019-0195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Brief resolved unexplained events (BRUEs) are classified as higher risk on the basis of patient and event characteristics, but there is limited evidence to guide management decisions. The authors of this study aim to describe patients with a higher-risk BRUE, determine the yield of diagnostic evaluation, and explore predictors of clinical outcomes. METHODS A retrospective medical record review was conducted for patients ≤365 days of age who were evaluated in a tertiary-care pediatric emergency department with a discharge diagnostic code indicative of a BRUE. Demographic and clinical characteristics, including diagnostic evaluation, are reported. Univariate and multivariate analyses were used to test the association of risk factors with clinical outcomes (serious underlying diagnosis, recurrent events, and return hospitalization). RESULTS Of 3325 patients, 98 (3%) met BRUE criteria and 88 were classified as higher risk; 0.6% of laboratory and 1.5% of ancillary tests were diagnostic, with 4 patients having a serious underlying diagnosis. Nine patients had recurrent events during hospitalization, and 2 were readmitted for a recurrent BRUE after their index visit. Prematurity was the only characteristic significantly associated with an outcome, increasing the odds of a recurrent event (odds ratio = 9.4; P = .02). CONCLUSIONS The majority of patients with a BRUE are higher risk, but the yield of diagnostic evaluation is low. Published risk criteria do not appear to be associated with adverse clinical outcomes except for prematurity and recurrent events. Future multicentered prospective studies are needed to validate risk stratification and develop management guidance for the higher-risk BRUE population.
Collapse
Affiliation(s)
- Amy M DeLaroche
- Division of Emergency Medicine, Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan;
| | - Rita Haddad
- Division of Emergency Medicine, Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan
| | - Ahmad Farooqi
- Children's Research Center of Michigan and Wayne State University, Detroit, Michigan
| | - Robert E Sapién
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and
| | - Joel S Tieder
- Divisions of General Pediatrics and Hospital Medicine, Department of Pediatrics, School of Medicine, University of Washington and Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
39
|
Emerging Designs of Electronic Devices in Biomedicine. MICROMACHINES 2020; 11:mi11020123. [PMID: 31979030 PMCID: PMC7074089 DOI: 10.3390/mi11020123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
A long-standing goal of nanoelectronics is the development of integrated systems to be used in medicine as sensor, therapeutic, or theranostic devices. In this review, we examine the phenomena of transport and the interaction between electro-active charges and the material at the nanoscale. We then demonstrate how these mechanisms can be exploited to design and fabricate devices for applications in biomedicine and bioengineering. Specifically, we present and discuss electrochemical devices based on the interaction between ions and conductive polymers, such as organic electrochemical transistors (OFETs), electrolyte gated field-effect transistors (FETs), fin field-effect transistor (FinFETs), tunnelling field-effect transistors (TFETs), electrochemical lab-on-chips (LOCs). For these systems, we comment on their use in medicine.
Collapse
|
40
|
Euliano EM, Hardcastle AN, Victoriano CM, Gabella WE, Haselton FR, Adams NM. Multiplexed Adaptive RT-PCR Based on L-DNA Hybridization Monitoring for the Detection of Zika, Dengue, and Chikungunya RNA. Sci Rep 2019; 9:11372. [PMID: 31388071 PMCID: PMC6684530 DOI: 10.1038/s41598-019-47862-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Reverse transcription polymerase chain reaction (RT-PCR) is the gold standard for the molecular diagnosis of many infectious diseases, including RNA viruses, but is generally limited to settings with access to trained personnel and laboratory resources. We have previously reported a fundamentally simpler thermal cycling platform called Adaptive PCR, which dynamically controls thermal cycling conditions during each cycle by optically monitoring the annealing and melting of mirror-image L-DNA surrogates of the PCR primers and targets. In this report, we integrate optically-controlled reverse transcription and single-channel monitoring of L-DNAs to develop a multiplexed Adaptive RT-PCR instrument and assay for the detection of Zika, dengue, and chikungunya virus RNA with high target specific and low limits of detection. The assay is demonstrated to detect as low as 5 copies/reaction of Zika or chikungunya RNA and 50 copies/reaction of dengue RNA. The multiplexed Adaptive RT-PCR instrument is robust and has many of the features required to implement diagnostic assays for RNA viruses in settings that lack traditional laboratory resources.
Collapse
Affiliation(s)
- Erin M Euliano
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Austin N Hardcastle
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Christia M Victoriano
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - William E Gabella
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
| | - Frederick R Haselton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Nicholas M Adams
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
41
|
Lenzi E, Jimenez de Aberasturi D, Liz-Marzán LM. Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection. ACS Sens 2019; 4:1126-1137. [PMID: 31046243 DOI: 10.1021/acssensors.9b00321] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have recently witnessed a major improvement in the quality of nanoparticles encoded with Raman-active molecules (SERS tags). Such progress relied mainly on a major improvement of fabrication methods for building-blocks, resulting in widespread application of this powerful tool in various fields, with the potential to replace commonly used techniques, such as those based on fluorescence. We present hereby a brief Perspective on surface enhanced Raman scattering (SERS) tags, regarding their composition, morphology, and structure, and describe our own selection from the current state-of-the-art. We then focus on the main bioimaging applications of SERS tags, showing a gradual evolution from two-dimensional studies to three-dimensional analysis. Recent improvements in sensitivity and multiplexing ability have enabled great advancements toward in vivo applications, e.g., highlighting tumor boundaries to guide surgery. In addition, the high level of biomolecule sensitivity reached by SERS tags promises an expansion toward biomarker detection in cases for which traditional methods offer limited reliability, as a consequence of the frequently low analyte concentrations.
Collapse
Affiliation(s)
- Elisa Lenzi
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | | | - Luis M. Liz-Marzán
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
42
|
Yang J, Wang K, Xu H, Yan W, Jin Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019; 202:96-110. [PMID: 31171232 DOI: 10.1016/j.talanta.2019.04.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/20/2019] [Indexed: 12/14/2022]
Abstract
Along with the considerable potential and increasing demand of the point-of-care testing (POCT), corresponding detection platforms have attracted great interest in both academic and practical fields. The first few generations of conventional detection devices tend to be costly, complicated to operate and hard to move on account of early limitations in the level of technological development and relatively high requirement of performance. Owing to the requirements for rapidity, simplicity, accuracy and cost controlling in the POCT, reader systems are urgently needed to be developed, upgraded and modified constantly, realizing on-site testing and healthcare management without a specific place or cumbersome operation. Accordingly, numerous rapid detection platforms with diverse size and performance have emerged such as bench-top apparatuses, handheld devices and intelligent detection devices. This review discusses various devices developed mainly for the detection of lateral flow test strips (LFTSs) or microfluidic strips in the POCT and summarizes these devices by size and portability. Furthermore, on the basis of various detection methods and diverse probes usually containing specific nanoparticles composites, three most common aspects of detection rationale in the POCT are selected to elaborate each kind of detection platforms in this paper: colorimetric assay, luminescent detection and magnetic signal detection. Herein, we focus on their structures, detection mechanisms and assay results, accompany with discussions and comments on the performances, costs and potential application, as well as advantages and limitations of each technique. In addition, perspectives on the future advances of detection platforms and some conclusions are proposed.
Collapse
Affiliation(s)
- Jinchuan Yang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Wenqiang Yan
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China.
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| |
Collapse
|
43
|
Uwizeyimana JD, Kim MK, Kim D, Byun JH, Yong D. Comparison of Multiplex Real-Time Polymerase Chain Reaction Assays for Detection of Respiratory Viruses in Nasopharyngeal Specimens. ANNALS OF CLINICAL MICROBIOLOGY 2019. [DOI: 10.5145/acm.2019.22.2.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jean Damascene Uwizeyimana
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
- Department of Global Health Security, Yonsei University Graduate of Public Health, Seoul, Korea
- Department of Emergency Care, Ruli Hospital, Gakenye, Rwanda
| | - Min Kyung Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Daewon Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
45
|
Paying for Point-of-Care Nucleic Acid Amplification Tests: a Micro-Comic Strip. J Clin Microbiol 2018; 56:56/6/e00526-18. [DOI: 10.1128/jcm.00526-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|