1
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Stiede JT, Spencer SD, Onyeka O, Mangen KH, Church MJ, Goodman WK, Storch EA. Obsessive-Compulsive Disorder in Children and Adolescents. Annu Rev Clin Psychol 2024; 20:355-380. [PMID: 38100637 DOI: 10.1146/annurev-clinpsy-080822-043910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Obsessive-compulsive disorder (OCD) in children and adolescents is a neurobehavioral condition that can lead to functional impairment in multiple domains and decreased quality of life. We review the clinical presentation, diagnostic considerations, and common comorbidities of pediatric OCD. An overview of the biological and psychological models of OCD is provided along with a discussion of developmental considerations in youth. We also describe evidence-based treatments for OCD in childhood and adolescence, including cognitive behavioral therapy (CBT) with exposure and response prevention (ERP) and pharmacotherapy. Finally, research evaluating the delivery of CBT in different formats and modalities is discussed, and we conclude with suggestions for future research directions.
Collapse
Affiliation(s)
- Jordan T Stiede
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Samuel D Spencer
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Ogechi Onyeka
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Katie H Mangen
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Molly J Church
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Wayne K Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
3
|
Wan X, Lin Z, Zeng Z, Zhang Y, Duan C, Zhang C, Li D. Telemedicine in patients with obsessive-compulsive disorder after deep brain stimulation: a case series. Front Hum Neurosci 2024; 18:1296726. [PMID: 38419962 PMCID: PMC10899702 DOI: 10.3389/fnhum.2024.1296726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Background Patients suffering from refractory obsessive-compulsive disorder (OCD) who have undergone deep brain stimulation (DBS) surgery require repeated in-person programming visits. These sessions could be labor-intensive and may not always be feasible, particularly when in-person hospital visits are restricted. Telemedicine is emerging as a potential supplementary tool for post-operative care. However, its reliability and feasibility still require further validation due to the unconventional methods of interaction. Methods A study was conducted on three patients with refractory OCD who had undergone DBS. Most of their programming sessions were completed via a remote programming system. These patients were recruited and monitored for a year. Changes in their clinical symptoms were assessed using the Yale-Brown Obsessive-Compulsive Scale-Second Edition (Y-BOCS-II), the Hamilton Anxiety Scale-14 (HAMA), the Hamilton Depression Scale-17 (HAMD), and the Short Form 36 Health Survey Questionnaire (SF-36). The scores from these assessments were reported. Results At the last follow-up, two out of three patients were identified as responders, with their Y-BOCS-II scores improving by more than 35% (P1: 51%, P3: 42%). These patients also experienced some mood benefits. All patients observed a decrease in travel expenses during the study period. No severe adverse events were reported throughout the study. Conclusion The group of patients showed improvement in their OCD symptoms within a 1-year follow-up period after DBS surgery, without compromising safety or benefits. This suggests that telemedicine could be a valuable supplementary tool when in-person visits are limited.
Collapse
Affiliation(s)
- Xiaonan Wan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu Lin
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhitong Zeng
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chengcheng Duan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Acevedo N, Rossell S, Castle D, Groves C, Cook M, McNeill P, Olver J, Meyer D, Perera T, Bosanac P. Clinical outcomes of deep brain stimulation for obsessive-compulsive disorder: Insight as a predictor of symptom changes. Psychiatry Clin Neurosci 2024; 78:131-141. [PMID: 37984432 PMCID: PMC10952286 DOI: 10.1111/pcn.13619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/18/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
AIM Deep brain stimulation (DBS) is a safe and effective treatment option for people with refractory obsessive-compulsive disorder (OCD). Yet our understanding of predictors of response and prognostic factors remains rudimentary, and long-term comprehensive follow-ups are lacking. We aim to investigate the efficacy of DBS therapy for OCD patients, and predictors of clinical response. METHODS Eight OCD participants underwent DBS stimulation of the nucleus accumbens (NAc) in an open-label longitudinal trial, duration of follow-up varied between 9 months and 7 years. Post-operative care involved comprehensive fine tuning of stimulation parameters and adjunct multidisciplinary therapy. RESULTS Six participants achieved clinical response (35% improvement in obsessions and compulsions on the Yale Brown Obsessive Compulsive Scale (YBOCS)) within 6-9 weeks, response was maintained at last follow up. On average, the YBOCS improved by 45% at last follow up. Mixed linear modeling elucidated directionality of symptom changes: insight into symptoms strongly predicted (P = 0.008) changes in symptom severity during DBS therapy, likely driven by initial changes in depression and anxiety. Precise localization of DBS leads demonstrated that responders most often had their leads (and active contacts) placed dorsal compared to non-responders, relative to the Nac. CONCLUSION The clinical efficacy of DBS for OCD is demonstrated, and mediators of changes in symptoms are proposed. The symptom improvements within this cohort should be seen within the context of the adjunct psychological and biopsychosocial care that implemented a shared decision-making approach, with flexible iterative DBS programming. Further research should explore the utility of insight as a clinical correlate of response. The trial was prospectively registered with the ANZCTR (ACTRN12612001142820).
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
- St Vincent's HospitalMelbourneVictoriaAustralia
| | - Susan Rossell
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
- St Vincent's HospitalMelbourneVictoriaAustralia
| | - David Castle
- St Vincent's HospitalMelbourneVictoriaAustralia
- Centre for Addiction and Mental HealthUniversity of TorontoTorontoOntarioCanada
| | | | - Mark Cook
- St Vincent's HospitalMelbourneVictoriaAustralia
| | | | - James Olver
- Department of PsychiatryUniversity of MelbourneMelbourneVictoriaAustralia
| | - Denny Meyer
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
| | - Thushara Perera
- Bionics InstituteEast MelbourneVictoriaAustralia
- Department of Medical BionicsThe University of MelbourneMelbourneVictoriaAustralia
| | - Peter Bosanac
- St Vincent's HospitalMelbourneVictoriaAustralia
- Department of PsychiatryUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
6
|
Shofty B, Gadot R, Viswanathan A, Provenza NR, Storch EA, McKay SA, Meyers MS, Hertz AG, Avendano-Ortega M, Goodman WK, Sheth SA. Intraoperative valence testing to adjudicate between ventral capsule/ventral striatum and bed nucleus of the stria terminalis target selection in deep brain stimulation for obsessive-compulsive disorder. J Neurosurg 2023; 139:442-450. [PMID: 36681982 DOI: 10.3171/2022.10.jns221683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an accepted therapy for severe, treatment-refractory obsessive-compulsive disorder (trOCD). The optimal DBS target location within the anterior limb of the internal capsule, particularly along the anterior-posterior axis, remains elusive. Empirical evidence from several studies in the past decade has suggested that the ideal target lies in the vicinity of the anterior commissure (AC), either just anterior to the AC, above the ventral striatum (VS), or just posterior to the AC, above the bed nucleus of the stria terminalis (BNST). Various methods have been utilized to optimize target selection for trOCD DBS. The authors describe their practice of planning trajectories to both the VS and BNST and adjudicating between them with awake intraoperative valence testing to individualize permanent target selection. METHODS Eight patients with trOCD underwent awake DBS with trajectories planned for both VS and BNST targets bilaterally. The authors intraoperatively assessed the acute effects of stimulation on mood, energy, and anxiety and implanted the trajectory with the most reliable positive valence responses and least stimulation-induced side effects. The method of intraoperative target adjudication is described, and the OCD outcome at last follow-up is reported. RESULTS The mean patient age at surgery was 41.25 ± 15.1 years, and the mean disease duration was 22.75 ± 10.2 years. The median preoperative Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score was 39 (range 34-40). Two patients had previously undergone capsulotomy, with insufficient response. Seven (44%) of 16 leads were moved to the second target based on intraoperative stimulation findings, 4 of them to avoid strong negative valence effects. Three patients had an asymmetric implant (1 lead in each target). All 8 patients (100%) met full response criteria, and the mean Y-BOCS score reduction across the full cohort was 51.2% ± 12.8%. CONCLUSIONS Planning and intraoperatively testing trajectories flanking the AC-superjacent to the VS anteriorly and to the BNST posteriorly-allowed identification of positive valence responses and acute adverse effects. Awake testing helped to select between possible trajectories and identify individually optimized targets in DBS for trOCD.
Collapse
Affiliation(s)
- Ben Shofty
- 1Department of Neurosurgery, University of Utah, Salt Lake City, Utah; and
| | | | | | | | - Eric A Storch
- 3Psychiatry, Baylor College of Medicine, Houston, Texas
| | - Sarah A McKay
- 3Psychiatry, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | |
Collapse
|
7
|
Long-term comparative effectiveness of deep brain stimulation in severe obsessive-compulsive disorder. Brain Stimul 2022; 15:1128-1138. [DOI: 10.1016/j.brs.2022.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
|
8
|
Yu Q, Wang Z, Li Z, Liu X, Oteng Agyeman F, Wang X. Hierarchical Structure of Depression Knowledge Network and Co-word Analysis of Focus Areas. Front Psychol 2022; 13:920920. [PMID: 35664156 PMCID: PMC9160970 DOI: 10.3389/fpsyg.2022.920920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Contemporarily, depression has become a common psychiatric disorder that influences people's life quality and mental state. This study presents a systematic review analysis of depression based on a hierarchical structure approach. This research provides a rich theoretical foundation for understanding the hot spots, evolutionary trends, and future related research directions and offers further guidance for practice. This investigation contributes to knowledge by combining robust methodological software for analysis, including Citespace, Ucinet, and Pajek. This paper employed the bibliometric methodology to analyze 5,000 research articles concerning depression. This current research also employed the BibExcel software to bibliometrically measure the keywords of the selected articles and further conducted a co-word matrix analysis. Additionally, Pajek software was used to conduct a co-word network analysis to obtain a co-word network diagram of depression. Further, Ucinet software was utilized to calculate K-core values, degree centrality, and mediated centrality to better present the research hotspots, sort out the current status and reveal the research characteristics in the field of depression with valuable information and support for subsequent research. This research indicates that major depressive disorder, anxiety, and mental health had a high occurrence among adolescents and the aged. This present study provides policy recommendations for the government, non-governmental organizations and other philanthropic agencies to help furnish resources for treating and controlling depression orders.
Collapse
Affiliation(s)
- Qingyue Yu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zihao Wang
- College of Medicine, Jiangsu University, Zhenjiang, China
| | - Zeyu Li
- Jingjiang College of Jiangsu University, Zhenjiang, China
| | - Xuejun Liu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | | | - Xinxing Wang
- School of Management, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Acevedo N, Rossell S. Deep brain stimulation for treatment-refractory obsessive-compulsive disorder should be an accepted therapy in Australia. Aust N Z J Psychiatry 2022; 56:301-302. [PMID: 34585969 DOI: 10.1177/00048674211049344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia.,St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Hollunder B, Rajamani N, Siddiqi SH, Finke C, Kühn AA, Mayberg HS, Fox MD, Neudorfer C, Horn A. Toward personalized medicine in connectomic deep brain stimulation. Prog Neurobiol 2022; 210:102211. [PMID: 34958874 DOI: 10.1016/j.pneurobio.2021.102211] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023]
Abstract
At the group-level, deep brain stimulation leads to significant therapeutic benefit in a multitude of neurological and neuropsychiatric disorders. At the single-patient level, however, symptoms may sometimes persist despite "optimal" electrode placement at established treatment coordinates. This may be partly explained by limitations of disease-centric strategies that are unable to account for heterogeneous phenotypes and comorbidities observed in clinical practice. Instead, tailoring electrode placement and programming to individual patients' symptom profiles may increase the fraction of top-responding patients. Here, we propose a three-step, circuit-based framework with the aim of developing patient-specific treatment targets that address the unique symptom constellation prevalent in each patient. First, we describe how a symptom network target library could be established by mapping beneficial or undesirable DBS effects to distinct circuits based on (retrospective) group-level data. Second, we suggest ways of matching the resulting symptom networks to circuits defined in the individual patient (template matching). Third, we introduce network blending as a strategy to calculate optimal stimulation targets and parameters by selecting and weighting a set of symptom-specific networks based on the symptom profile and subjective priorities of the individual patient. We integrate the approach with published literature and conclude by discussing limitations and future challenges.
Collapse
Affiliation(s)
- Barbara Hollunder
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Nanditha Rajamani
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
| | - Clemens Neudorfer
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Li N, Hollunder B, Baldermann JC, Kibleur A, Treu S, Akram H, Al-Fatly B, Strange BA, Barcia JA, Zrinzo L, Joyce EM, Chabardes S, Visser-Vandewalle V, Polosan M, Kuhn J, Kühn AA, Horn A. A Unified Functional Network Target for Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biol Psychiatry 2021; 90:701-713. [PMID: 34134839 DOI: 10.1016/j.biopsych.2021.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Multiple deep brain stimulation (DBS) targets have been proposed for treating intractable obsessive-compulsive disorder (OCD). Here, we investigated whether stimulation effects of different target sites would be mediated by one common or several segregated functional brain networks. METHODS First, seeding from active electrodes of 4 OCD patient cohorts (N = 50) receiving DBS to anterior limb of the internal capsule or subthalamic nucleus zones, optimal functional connectivity profiles for maximal Yale-Brown Obsessive Compulsive Scale improvements were calculated and cross-validated in leave-one-cohort-out and leave-one-patient-out designs. Second, we derived optimal target-specific connectivity patterns to determine brain regions mutually predictive of clinical outcome for both targets and others predictive for either target alone. Functional connectivity was defined using resting-state functional magnetic resonance imaging data acquired in 1000 healthy participants. RESULTS While optimal functional connectivity profiles showed both commonalities and differences between target sites, robust cross-predictions of clinical improvements across OCD cohorts and targets suggested a shared network. Connectivity to the anterior cingulate cortex, insula, and precuneus, among other regions, was predictive regardless of stimulation target. Regions with maximal connectivity to these commonly predictive areas included the insula, superior frontal gyrus, anterior cingulate cortex, and anterior thalamus, as well as the original stereotactic targets. CONCLUSIONS Pinpointing the network modulated by DBS for OCD from different target sites identified a set of brain regions to which DBS electrodes associated with optimal outcomes were functionally connected-regardless of target choice. On these grounds, we establish potential brain areas that could prospectively inform additional or alternative neuromodulation targets for obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Ningfei Li
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany.
| | - Barbara Hollunder
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany; Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Astrid Kibleur
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France; OpenMind Innovation, Paris, France
| | - Svenja Treu
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Bassam Al-Fatly
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan A Barcia
- Neurosurgery Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Eileen M Joyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France
| | | | - Mircea Polosan
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Johanniter Hospital Oberhausen, Evangelisches Klinikum Niederrhein, Oberhausen, Germany
| | - Andrea A Kühn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany; Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
12
|
Pressing ethical issues in considering pediatric deep brain stimulation for obsessive-compulsive disorder. Brain Stimul 2021; 14:1566-1572. [PMID: 34700055 DOI: 10.1016/j.brs.2021.10.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Refractory obsessive-compulsive disorder (OCD) among adults is the first psychiatric indication of deep brain stimulation (DBS) to receive an FDA Humanitarian Device Exemption (HDE). Given the HDE approval and encouraging evidence that has since emerged, exploration of DBS for OCD may expand to adolescents in the future. More than 100,000 adolescents in the U.S. suffer from refractory OCD, and there is already a precedent for the transition of DBS in adults to children in the case of dystonia. However, the risk-benefit analysis of pediatric DBS for OCD may be more complex and raise different ethical questions compared to pediatric DBS for dystonia. OBJECTIVE This study aimed to gain insight into pressing ethical issues related to using DBS in adolescents with OCD. METHODS Semi-structured interviews were conducted with clinicians (n = 25) caring for pediatric patients with refractory OCD. Interview transcripts were coded with MAXQDA 2018 software and analyzed using thematic content analysis to identify emergent themes. RESULTS Five central themes were identified in clinician responses, three of which were exacerbated in the pediatric DBS setting. Clinicians expressed concerns related to conditions of decision-making including adolescents' capacity to assent (80%), the lack of evidence about the outcomes and potential unknown effects of using DBS in adolescents with OCD (68%), and the importance of exhausting other treatment options before considering DBS (20%). CONCLUSIONS Strategies to address clinician concerns include implementation of validated decision support tools and further research into the outcomes of pediatric DBS for OCD to establish clear guidelines for patient selection.
Collapse
|
13
|
Mar-Barrutia L, Real E, Segalás C, Bertolín S, Menchón JM, Alonso P. Deep brain stimulation for obsessive-compulsive disorder: A systematic review of worldwide experience after 20 years. World J Psychiatry 2021; 11:659-680. [PMID: 34631467 PMCID: PMC8474989 DOI: 10.5498/wjp.v11.i9.659] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Twenty years after its first use in a patient with obsessive-compulsive disorder (OCD), the results confirm that deep brain stimulation (DBS) is a promising therapy for patients with severe and resistant forms of the disorder. Nevertheless, many unknowns remain, including the optimal anatomical targets, the best stimulation parameters, the long-term (LT) effects of the therapy, and the clinical or biological factors associated with response. This systematic review of the articles published to date on DBS for OCD assesses the short and LT efficacy of the therapy and seeks to identify predictors of response.
AIM To summarize the existing knowledge on the efficacy and tolerability of DBS in treatment-resistant OCD.
METHODS A comprehensive search was conducted in the PubMed, Cochrane, Scopus, and ClinicalTrials.gov databases from inception to December 31, 2020, using the following strategy: “(Obsessive-compulsive disorder OR OCD) AND (deep brain stimulation OR DBS).” Clinical trials and observational studies published in English and evaluating the effectiveness of DBS for OCD in humans were included and screened for relevant information using a standardized collection tool. The inclusion criteria were as follows: a main diagnosis of OCD, DBS conducted for therapeutic purposes and variation in symptoms of OCD measured by the Yale-Brown Obsessive-Compulsive scale (Y-BOCS) as primary outcome. Data were analyzed with descriptive statistics.
RESULTS Forty articles identified by the search strategy met the eligibility criteria. Applying a follow-up threshold of 36 mo, 29 studies (with 230 patients) provided information on short-term (ST) response to DBS in, while 11 (with 155 patients) reported results on LT response. Mean follow-up period was 18.5 ± 8.0 mo for the ST studies and 63.7 ± 20.7 mo for the LT studies. Overall, the percentage of reduction in Y-BOCS scores was similar in ST (47.4%) and LT responses (47.2%) to DBS, but more patients in the LT reports met the criteria for response (defined as a reduction in Y-BOCS scores > 35%: ST, 60.6% vs LT, 70.7%). According to the results, the response in the first year predicts the extent to which an OCD patient will benefit from DBS, since the maximum symptom reduction was achieved in most responders in the first 12-14 mo after implantation. Reports indicate a consistent tendency for this early improvement to be maintained to the mid-term for most patients; but it is still controversial whether this improvement persists, increases or decreases in the long term. Three different patterns of LT response emerged from the analysis: 49.5% of patients had good and sustained response to DBS, 26.6% were non responders, and 22.5% were partial responders, who might improve at some point but experience relapses during follow-up. A significant improvement in depressive symptoms and global functionality was observed in most studies, usually (although not always) in parallel with an improvement in obsessive symptoms. Most adverse effects of DBS were mild and transient and improved after adjusting stimulation parameters; however, some severe adverse events including intracranial hemorrhages and infections were also described. Hypomania was the most frequently reported psychiatric side effect. The relationship between DBS and suicide risk is still controversial and requires further study. Finally, to date, no clear clinical or biological predictors of response can be established, probably because of the differences between studies in terms of the neuroanatomical targets and stimulation protocols assessed.
CONCLUSION The present review confirms that DBS is a promising therapy for patients with severe resistant OCD, providing both ST and LT evidence of efficacy.
Collapse
Affiliation(s)
- Lorea Mar-Barrutia
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Cinto Segalás
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Sara Bertolín
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| |
Collapse
|
14
|
Pinckard-Dover H, Ward H, Foote KD. The Decline of Deep Brain Stimulation for Obsessive-Compulsive Disorder Following FDA Humanitarian Device Exemption Approval. Front Surg 2021; 8:642503. [PMID: 33777998 PMCID: PMC7994854 DOI: 10.3389/fsurg.2021.642503] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: In February 2009, the US Food and Drug Administration (FDA) granted Humanitarian Device Exemption (HDE) for deep brain stimulation (DBS) in the anterior limb of the internal capsule (ALIC) for the treatment of severely debilitating, treatment refractory obsessive–compulsive disorder (OCD). Despite its promise as a life altering treatment for patients with otherwise refractory, severely debilitating OCD, the use of DBS for the treatment of OCD has diminished since the FDA HDE endorsement and is now rarely performed even at busy referral centers. We sought to identify factors hindering OCD patients from receiving DBS therapy. Materials and Methods: University of Florida (UF) clinical research databases were queried to identify patients evaluated as potential candidates for OCD DBS from January 1, 2002 to July 30, 2020. A retrospective review of these patients' medical records was performed to obtain demographic information, data related to their OCD, and details relevant to payment such as third-party payer, study participation, evaluation prior to or after HDE approval, and any stated factors prohibiting surgical intervention. Results: Out of 25 patients with severe OCD identified as candidates for DBS surgery during the past 18 years, 15 underwent surgery. Prior to FDA HDE approval, 6 out of 7 identified candidates were treated. After the HDE, only 9 out of 18 identified candidates were treated. Seven of the 9 were funded by Medicare, 1 paid out of pocket, and 1 had “pre-authorization” from her private insurer who ultimately refused to pay after the procedure. Among the 10 identified OCD DBS candidates who were ultimately not treated, 7 patients—all with private health insurance—were approved for surgery by the interdisciplinary team but were unable to proceed with surgery due to lack of insurance coverage, 1 decided against surgical intervention, 1 was excluded due to medical comorbidities and excessive perceived surgical risk, and no clear reason was identified for 1 patient evaluated in 2004 during our initial NIH OCD DBS trial. Conclusion: Based on compelling evidence that DBS provides substantial improvement of OCD symptoms and markedly improved functional capacity in 2 out of 3 patients with severely debilitating, treatment refractory OCD, the FDA approved this procedure under a Humanitarian Device Exemption in 2009, offering new hope to this unfortunate patient population. A careful review of our experience with OCD DBS at the University of Florida shows that since the HDE approval, only 50% of the severe OCD patients (9 of 18) identified as candidates for this potentially life altering treatment have been able to access the therapy. We found the most common limiting factor to be failure of private insurance policies to cover DBS for OCD, despite readily covering DBS for Parkinson's disease, essential tremor, and even dystonia—another HDE approved indication for DBS. We have identified an inherent discrimination in the US healthcare system against patients with medication-refractory OCD who are economically challenged and do not qualify for Medicare. We urge policy makers, insurance companies, and hospital administrations to recognize this health care disparity and seek to rectify it.
Collapse
Affiliation(s)
- Heather Pinckard-Dover
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | - Herbert Ward
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States.,Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| |
Collapse
|
15
|
Weinzimmer SA, Schneider SC, Cepeda SL, Guzick AG, Lázaro-Muñoz G, McIngvale E, Goodman WK, Sheth SA, Storch EA. Perceptions of Deep Brain Stimulation for Adolescents with Obsessive-Compulsive Disorder. J Child Adolesc Psychopharmacol 2021; 31:109-117. [PMID: 33534637 PMCID: PMC7984933 DOI: 10.1089/cap.2020.0166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: The present study aims to understand perceptions of deep brain stimulation (DBS) for severe obsessive-compulsive disorder (OCD) in adolescents among two groups: parents of children with a history of OCD and adults with a history of OCD. Methods: Two hundred sixty participants completed a questionnaire exploring their treatment history, relevant symptom severity, DBS knowledge, and DBS attitudes using an acceptability scale and a series of statements indicating levels of willingness or reluctance to consider DBS for adolescents with severe OCD or severe epilepsy. Results: Overall, participants found DBS to be fairly acceptable for adolescents with severe OCD, with 63% reporting at least 7/10 on a 0-10 acceptability Likert scale. Respondents were more willing to consider DBS for epilepsy than for OCD. Several factors were associated with greater willingness to consider DBS for OCD, including familiarity with DBS, the presence of suicidal thoughts, assurances of daily functioning improvements, and assurances of substantial symptom reduction. Concerns about safety, personality changes, and long-term effects on the body were associated with greatest reluctance to consider DBS for OCD. Conclusions: Our findings support the importance of increasing parents' familiarity with DBS, monitoring factors participants identified as most important to their DBS perceptions in future DBS research, and communicating benefits and risks clearly. We also highlight the need for further research on perceptions of DBS for severe and refractory OCD in adolescents.
Collapse
Affiliation(s)
- Saira A. Weinzimmer
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA.,Address correspondence to: Saira Weinzimmer, BA, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1977 Butler Boulevard, Suite 4-400, Houston, TX 77030, USA
| | - Sophie C. Schneider
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L. Cepeda
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew G. Guzick
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Gabriel Lázaro-Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, Texas, USA
| | | | - Wayne K. Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Eric A. Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA.,Address correspondence to: Eric Storch, PhD, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1977 Butler Boulevard, Suite 4-400, Houston, TX 77030, USA
| |
Collapse
|
16
|
Görmezoğlu M, Bouwens van der Vlis T, Schruers K, Ackermans L, Polosan M, Leentjens AF. Effectiveness, Timing and Procedural Aspects of Cognitive Behavioral Therapy after Deep Brain Stimulation for Therapy-Resistant Obsessive Compulsive Disorder: A Systematic Review. J Clin Med 2020; 9:jcm9082383. [PMID: 32722565 PMCID: PMC7464329 DOI: 10.3390/jcm9082383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background and aim: Deep brain stimulation (DBS) is an effective treatment for patients with severe therapy-resistant obsessive-compulsive disorder (OCD). After initiating DBS many patients still require medication and/or behavioral therapy to deal with persisting symptoms and habitual behaviors. The clinical practice of administering postoperative cognitive behavioral therapy (CBT) varies widely, and there are no clinical guidelines for this add-on therapy. The aim of this review is to assess the efficacy, timing and procedural aspects of postoperative CBT in OCD patients treated with DBS. Method: Systematic review of literature. Results: The search yielded 5 original studies, one case series and three reviews. Only two clinical trials have explicitly focused on the effectiveness of CBT added to DBS in patients with therapy-resistant OCD. These two studies both showed effectiveness of CBT. However, they had a distinctly different design, very small sample sizes and different ways of administering the therapy. Therefore, no firm conclusions can be drawn or recommendations made for administering CBT after DBS for therapy-resistant OCD. Conclusion: The effectiveness, timing and procedural aspects of CBT added to DBS in therapy-resistant OCD have hardly been studied. Preliminary evidence indicates that CBT has an added effect in OCD patients being treated with DBS. Since the overall treatment effect is the combined result of DBS, medication and CBT, future trials should be designed in such a way that they allow quantification of the effects of these add-on therapies in OCD patients treated with DBS. Only in this way information can be gathered that contributes to the development of an algorithm and clinical guidelines for concomittant therapies to optimize treatment effects in OCD patients being treated with DBS.
Collapse
Affiliation(s)
- Meltem Görmezoğlu
- Department of Psychiatry, Ondokuz Mayıs University, 55270 Samsun, Turkey;
- Department of Neurosurgery, Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (T.B.v.d.V.); (L.A.)
| | - Tim Bouwens van der Vlis
- Department of Neurosurgery, Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (T.B.v.d.V.); (L.A.)
| | - Koen Schruers
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
- School of Mental Health and Neuroscience, Maastricht University, 6229 Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (T.B.v.d.V.); (L.A.)
- School of Mental Health and Neuroscience, Maastricht University, 6229 Maastricht, The Netherlands
| | - Mircea Polosan
- Grenoble Institute of Neurosciences, University of Grenoble Alpes, 38058 Grenoble, France;
| | - Albert F.G. Leentjens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
- School of Mental Health and Neuroscience, Maastricht University, 6229 Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
17
|
Goodman WK, Storch EA, Cohn JF, Sheth SA. Deep Brain Stimulation for Intractable Obsessive-Compulsive Disorder: Progress and Opportunities. Am J Psychiatry 2020; 177:200-203. [PMID: 32114787 PMCID: PMC7239379 DOI: 10.1176/appi.ajp.2020.20010037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wayne K Goodman
- From the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Goodman, Storch); the Department of Psychology, University of Pittsburgh (Cohn); and the Department of Neurosurgery, Baylor College of Medicine, Houston (Sheth)
| | - Eric A Storch
- From the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Goodman, Storch); the Department of Psychology, University of Pittsburgh (Cohn); and the Department of Neurosurgery, Baylor College of Medicine, Houston (Sheth)
| | - Jeffrey F Cohn
- From the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Goodman, Storch); the Department of Psychology, University of Pittsburgh (Cohn); and the Department of Neurosurgery, Baylor College of Medicine, Houston (Sheth)
| | - Sameer A Sheth
- From the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Goodman, Storch); the Department of Psychology, University of Pittsburgh (Cohn); and the Department of Neurosurgery, Baylor College of Medicine, Houston (Sheth)
| |
Collapse
|