1
|
Sharma V, Chib S, Kumari D, Singh K, Saran S, Singh D. Chromatographic fingerprinting of epiphytic fungal strains isolated from Withania somnifera and biological evaluation of isolated okaramine H. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5943-5953. [PMID: 39114899 DOI: 10.1039/d4ay00901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Medicinal plants are "goldmines" of natural products, and continue to provide key scaffolds for drug development. They have immense therapeutic potential, encapsulating a plethora of metabolites within them, which have yet to be explored. Withania somnifera (L.) Dunal is one such medicinal plant known since time immemorial for its therapeutic activity in the Ayurveda system of medicine. Studies have revealed Nature's marvel of these medicinal plants harbouring endophytic and epiphytic microorganisms from phyllosphere to rhizosphere. Chromatographic fingerprinting was carried out using HPTLC and HPLC on five epiphytic strains isolated from the leaves, stem and fruits of Withania somnifera. Out of five filamentous fungi, one fungus identified as Aspergillus aculeatus S20 was well explored. An indole alkaloid, okaramine H, was isolated using systematic chromatographic investigation at a retention time of 26.278 min showing λmax at 206, 236, 284 and 370 nm. Confirmation was achieved using NMR and mass spectrometry (MS) as analytical techniques. Structure elucidation was done by studying the fragmentation pattern using MS/MS and an accurate mass was determined using HR-ESI-QTOF-MS showing m/z of 521.2546 [M + H]+. The percentage purity of isolated okaramine H was found to be >90. Well known for its insecticidal activity, okaramine H was explored for its antileishmanial activity against the Leishmania donovani parasite for the first time. Under in vitro conditions, the compound showed an inhibitory effect on Leishmania donovani promastigotes with an IC50 of 147 μg mL-1.
Collapse
Affiliation(s)
- Vandana Sharma
- Quality Control & Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shifali Chib
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepika Singh
- Quality Control & Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India.
- Quality Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu Tawi, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Cunha NFC, de Siqueira LBDO, Garcia AR, Rodrigues IA, Matos APDS, Júnior ER, Monteiro MSDSB. Nanoemulsions containing amphotericin b and paromomycin for the treatment of cutaneous leishmaniasis. Acta Trop 2024; 254:107189. [PMID: 38522630 DOI: 10.1016/j.actatropica.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Cutaneous leishmaniasis (CL) is a vector-borne disease characterized by skin lesions that can evolve into high-magnitude ulcerated lesions. Thus, this study aimed to develop an innovative nanoemulsion (NE) with clove oil, Poloxamer® 407, and multiple drugs, such as amphotericin B (AmB) and paromomycin (PM), for use in the topical treatment of CL. METHODS Droplet size, morphology, drug content, stability, in vitro release profile, in vitro cytotoxicity on RAW 264.7 macrophages, and antileishmanial activity using axenic amastigotes of Leishmania amazonensis were assessed for NEs. RESULTS After optimizing the formulation parameters, such as the concentration of clove oil and drugs, using an experimental design, it was possible to obtain a NE with an average droplet size of 40 nm and a polydispersion index of 0.3, and these parameters were maintained throughout the 365 days. Furthermore, the NE showed stability of AmB and PM content for 180 days under refrigeration (4 °C), presented a pH compatible with the skin, and released modified AmB and PM. NE showed the same toxicity as free AmB and higher toxicity than free PM against RAW 264.7 macrophages. The same activity as free AmB, and higher activity than free PM against amastigotes L. amazonensis. CONCLUSION It is possible to develop a NE for the treatment of CL; however, complementary studies regarding the antileishmanial activity of NE should be carried out.
Collapse
Affiliation(s)
- Nicolas Fontenele Callipo Cunha
- Laboratório de Desenvolvimento Galênico, Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (FF/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Luciana Betzler de Oliveira de Siqueira
- Laboratório de Desenvolvimento Galênico, Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (FF/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Andreza Raposo Garcia
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Investigação de Substâncias Bioativas, Departamentos de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Igor Almeida Rodrigues
- Laboratório de Investigação de Substâncias Bioativas, Departamentos de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Dos Santos Matos
- Laboratório de Desenvolvimento Galênico, Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (FF/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Eduardo Ricci Júnior
- Laboratório de Desenvolvimento Galênico, Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (FF/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Mariana Sato de Souza Bustamante Monteiro
- Laboratório de Desenvolvimento Galênico, Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (FF/UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Ortiz-Perez E, Vazquez-Jimenez LK, Paz-Gonzalez AD, Delgado-Maldonado T, González-González A, Gaona-Lopez C, Moreno-Herrera A, Vazquez K, Rivera G. Advances in the Development of Carbonic Anhydrase Inhibitors as New Antiprotozoal Agents. Curr Med Chem 2024; 31:6735-6759. [PMID: 37909441 DOI: 10.2174/0109298673249553231018070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Parasitic diseases are a public health problem despite the existence of drugs for their treatment. These treatments have variable efficacy and, in some cases, serious adverse effects. There has been interest in the enzyme carbonic anhydrase (CA) in the last two decades since it is essential in the life cycle of various parasites due to its important participation in processes such as pyrimidine synthesis, HCO3 - transport across cell membranes, and the maintenance of intracellular pH and ion transport (Na+, K+, and H+), among others. OBJECTIVE In this review, CA was analyzed as a pharmacological target in etiological agents of malaria, American trypanosomiasis, leishmaniasis, amoebiasis, and trichomoniasis. The CA inhibitors´ design, binding mode, and structure-activity relationship are also discussed. CONCLUSION According to this review, advances in discovering compounds with potent inhibitory activity suggest that CA is a candidate for developing new antiprotozoal agents.
Collapse
Affiliation(s)
- Eyra Ortiz-Perez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Alma D Paz-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Carlos Gaona-Lopez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Karina Vazquez
- Departamento de Biotecnología Farmacéutica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Gral. Escobedo, 66050, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| |
Collapse
|
4
|
Portela MB, Barboza CM, da Silva EM, de Moraes DC, Simão RA, de Souza CR, Cardoso VDS, Ferreira-Pereira A, Vermelho AB, Supuran CT. Dentine biomodification by sulphonamides pre-treatment: bond strength, proteolytic inhibition, and antimicrobial activity. J Enzyme Inhib Med Chem 2023; 38:319-329. [PMID: 36440644 PMCID: PMC11392503 DOI: 10.1080/14756366.2022.2150184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
We evaluated the effects of dentine biomodification after pre-treatment with two sulphonamide carbonic anhydrase inhibitors (CAIs) of the N-[4-sulphamoylphenethylcarbamoyl]benzenesulphonamide type, investigating matrix metalloproteases activity, resin-dentine micro tensile bond strength, dentine surface wettability, and antimicrobial activities. Ninety-five sound-extracted human molars were selected for the study. Inhibitory effects were evaluated by gelatinase and collagenase activity tests and collagen degradation FT-IR spectroscopic analysis. Pre-treatment with the two CAIs kept the micro tensile values after 12 months of storage (32.23 ± 5.95) and cariogenic challenge (34.13 ± 2.71) similar to the initial, pre-treatment values (33.56 ± 4.34). A decreased Streptococcus mutans biofilm formation on dentine surfaces and antibacterial activity against planktonic bacteria were observed after CAI treatment. Dentine pre-treatment with sulphonamide CAIs maintained adhesion strength stability, allowed better dentine wettability, maintained matrix collagen, and showed anti-S. mutans activity.
Collapse
Affiliation(s)
- Maristela Barbosa Portela
- Departamento de Odontotécnica, Laboratório Analítico de Biomateriais Restauradores (LABiom-R), Faculdade de Odontologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Caroliny Mello Barboza
- Departamento de Odontotécnica, Laboratório Analítico de Biomateriais Restauradores (LABiom-R), Faculdade de Odontologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Eduardo Moreira da Silva
- Departamento de Odontotécnica, Laboratório Analítico de Biomateriais Restauradores (LABiom-R), Faculdade de Odontologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Daniel Clemente de Moraes
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Antoun Simão
- Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara Ribeiro de Souza
- Departamento de Odontotécnica, Laboratório Analítico de Biomateriais Restauradores (LABiom-R), Faculdade de Odontologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Verônica da Silva Cardoso
- Bioinovar-Biotecnologia: Unidade de Biocatálise, Bioprodutos e Bioenergia (BIOINOVAR), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alane Beatriz Vermelho
- Bioinovar-Biotecnologia: Unidade de Biocatálise, Bioprodutos e Bioenergia (BIOINOVAR), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
5
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
6
|
dos Santos DB, Lemos JA, Miranda SEM, Di Filippo LD, Duarte JL, Ferreira LAM, Barros ALB, Oliveira AEMFM. Current Applications of Plant-Based Drug Delivery Nano Systems for Leishmaniasis Treatment. Pharmaceutics 2022; 14:2339. [PMID: 36365157 PMCID: PMC9695113 DOI: 10.3390/pharmaceutics14112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/28/2023] Open
Abstract
Leishmania is a trypanosomatid that causes leishmaniasis. It is transmitted to vertebrate hosts during the blood meal of phlebotomine sandflies. The clinical manifestations of the disease are associated with several factors, such as the Leishmania species, virulence and pathogenicity, the host-parasite relationship, and the host's immune system. Although its causative agents have been known and studied for decades, there have been few advances in the chemotherapy of leishmaniasis. The urgency of more selective and less toxic alternatives for the treatment of leishmaniasis leads to research focused on the study of new pharmaceuticals, improvement of existing drugs, and new routes of drug administration. Natural resources of plant origin are promising sources of bioactive substances, and the use of ethnopharmacology and folk medicine leads to interest in studying new medications from phytocomplexes. However, the intrinsic low water solubility of plant derivatives is an obstacle to developing a therapeutic product. Nanotechnology could help overcome these obstacles by improving the availability of common substances in water. To contribute to this scenario, this article provides a review of nanocarriers developed for delivering plant-extracted compounds to treat clinical forms of leishmaniasis and critically analyzing them and pointing out the future perspectives for their application.
Collapse
Affiliation(s)
- Darline B. dos Santos
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| | - Janaina A. Lemos
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sued E. M. Miranda
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leonardo D. Di Filippo
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Lucas A. M. Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Andre L. B. Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anna E. M. F. M. Oliveira
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| |
Collapse
|
7
|
Beatriz Vermelho A, Rodrigues GC, Nocentini A, Mansoldo FRP, Supuran CT. Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs? Expert Opin Drug Discov 2022; 17:1147-1158. [PMID: 36039500 DOI: 10.1080/17460441.2022.2117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Carbonic anhydrase (CA) arose significant interest as a potential new target for Chagas disease since its discovery in Trypanosoma cruzi in 2013. Benznidazole and Nifurtimox have been used for Chagas disease treatment for 60 years despite all efforts done for obtaining more efficient treatments, acting in the acute and chronic phases of illness, with fewer side effects and resistance induction. AREAS COVERED We discuss the positive and negative aspects of T. cruzi CA (TcCA) studies as a target for developing new drugs. The current research discoveries and the classes of TcCA inhibitors are reviewed. The sulfonamides and their derivatives are the main inhibitor classes, but hydroxamates and the thiols, were investigated too. These compounds inhibited the growth of the evolutive forms of the parasite. A comparative analysis was done with CAs from other Trypanosomatids and protozoans. EXPERT OPINION The search for new targets and drugs is a significant challenge worldwide, and TcCA is a potential candidate for developing new drugs. Several studied inhibitors were active against Trypanosoma cruzi, but their penetration and toxicity problems emerged. New approaches are in progress to obtain inhibitors with desired properties, allowing further steps such as tests using an adequate animal model and subsequent developments for the preclinical testing.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giseli Capaci Rodrigues
- UNIGRANRIO - Universidade do Grande Rio Programa de Pós-Graduação em Ensino das Ciências, Rio de Janeiro, Brazil
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| | - Felipe R P Mansoldo
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| |
Collapse
|
8
|
Brioschi MBC, Coser EM, Coelho AC, Gadelha FR, Miguel DC. Models for cytotoxicity screening of antileishmanial drugs: what has been done so far? Int J Antimicrob Agents 2022; 60:106612. [PMID: 35691601 DOI: 10.1016/j.ijantimicag.2022.106612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022]
Abstract
A growing number of studies have demonstrated the in vitro potential of an impressive number of antileishmanial candidates in the past years. However, the lack of uniformity regarding the choice of cell types for cytotoxicity assays may lead to uncomparable and inconclusive data. In vitro assays relying solely on non-phagocytic cell models may not represent a realistic result as the effect of an antileishmanial agent should ideally be presented based on its cytotoxicity profile against reticuloendothelial system cells. In the present review, we have assembled studies published in the scientific literature from 2015 to 2021 that explored leishmanicidal candidates, emphasising the main host cell models used for cytotoxicity assays. The pros and cons of different host cell types as well as primary cells and cell lines are discussed in order to draw attention to the need to establish standardised protocols for preclinical testing when assessing new antileishmanial candidates.
Collapse
Affiliation(s)
- Mariana B C Brioschi
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Elizabeth M Coser
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Adriano C Coelho
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Department of Biochemistry and Tissue Biology, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Department of Animal Biology-Parasitology Section, Biology Institute, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Angeli A, Urbański LJ, Hytönen VP, Parkkila S, Supuran CT. Activation of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with amines and amino acids. J Enzyme Inhib Med Chem 2021; 36:758-763. [PMID: 33715570 PMCID: PMC7952076 DOI: 10.1080/14756366.2021.1897802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We report the first activation study of the β-class carbonic anhydrase (CA, EC 4.2.1.1) encoded in the genome of the protozoan pathogen Trichomonas vaginalis, TvaCA1. Among 24 amino acid and amine activators investigated, derivatives incorporating a second carboxylic moiety, such as L-Asp, L- and D-Glu, were devoid of activating effects up to concentrations of 50 µM within the assay system, whereas the corresponding compounds with a CONH2 moiety, i.e. L-Gln and L-Asn showed modest activating effects, with activation constants in the range of 26.9 − 32.5 µM. Moderate activation was observed with L- and D-DOPA, histamine, dopamine, serotonin, (2-Aminoethyl)pyridine/piperazine and morpholine (KA‘s ranging between 8.3 and 14.5 µM), while the best activators were L-and D-Trp, L-and D-Tyr and 4-amino-Phe, which showed KA‘s ranging between 3.0 and 5.1 µM. Understanding in detail the activation mechanism of β-CAs may be relevant for the design of enzyme activity modulators with potential clinical significance.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
10
|
Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond) 2021; 135:1233-1249. [PMID: 34013961 DOI: 10.1042/cs20210040] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Inhibition of carbonic anhydrase (CA, EC 4.2.1.1) was clinically exploited for decades, as most modern diuretics were obtained considering as lead molecule acetazolamide, the prototypical CA inhibitor (CAI). The discovery and characterization of multiple human CA (hCA) isoforms, 15 of which being known today, led to new applications of their inhibitors. They include widely clinically used antiglaucoma, antiepileptic and antiobesity agents, antitumor drugs in clinical development, as well as drugs for the management of acute mountain sickness and idiopathic intracranial hypertension (IIH). Emerging roles of several CA isoforms in areas not generally connected to these enzymes were recently documented, such as in neuropathic pain, cerebral ischemia, rheumatoid arthritis, oxidative stress and Alzheimer's disease. Proof-of-concept studies thus emerged by using isoform-selective inhibitors, which may lead to new clinical applications in such areas. Relevant preclinical models are available for these pathologies due to the availability of isoform-selective CAIs for all human isoforms, belonging to novel classes of compounds, such as coumarins, sulfocoumarins, dithiocarbamates, benzoxaboroles, apart the classical sulfonamide inhibitors. The inhibition of CAs from pathogenic bacteria, fungi, protozoans or nematodes started recently to be considered for obtaining anti-infectives with a new mechanism of action.
Collapse
|
11
|
Silva A, Costa A, Jain S, Coelho E, Fujiwara R, Scher R, Nunes R, Dolabella S. Application of Poloxamers for the Development of Drug Delivery System to Treat Leishmaniasis: A Review. Curr Drug Targets 2021; 22:296-309. [PMID: 33155921 DOI: 10.2174/1389450121666201106145022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
Leishmaniasis is a neglected tropical disease affecting more than 1.5 million people annually, with an annual mortality of over 20.000. The drugs used for its treatment are toxic, expensive, require extended treatment times and present variable efficacy. The disease severity and therapy limitations suggest the need for new antileishmanial agents. In this context, in order to identify new options for treatment, a number of studies based on nanotechnological strategies have been carried out. Poloxamers are triblock copolymers very often utilized for nanotherapeutic solutions, resulting in products with better solubility, higher stability, superior therapeutic efficacy and less toxicity. This review will discuss the physicochemical properties of the copolymers, as well as describe the use of poloxamers for the development of therapeutic formulations to treat leishmaniasis.
Collapse
Affiliation(s)
- Audrey Silva
- Departamento de Farmacia, Universidade Federal de Sergipe, Sao Cristovao, 49100-000, Sergipe, Brazil
| | - Amanda Costa
- Departamento de Farmacia, Universidade Federal de Sergipe, Sao Cristovao, 49100-000, Sergipe, Brazil
| | - Sona Jain
- Programa de Pos-Graduacao em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, 49032-490, Sergipe, Brazil
| | - Eduardo Coelho
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Ricardo Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Ricardo Scher
- Departamento de Morfologia, Universidade Federal de Sergipe, Sao Cristovao, 49100-000, Sergipe, Brazil
| | - Rogéria Nunes
- Departamento de Farmacia, Universidade Federal de Sergipe, Sao Cristovao, 49100-000, Sergipe, Brazil
| | - Silvio Dolabella
- Departamento de Farmacia, Universidade Federal de Sergipe, Sao Cristovao, 49100-000, Sergipe, Brazil
| |
Collapse
|
12
|
Petreni A, De Luca V, Scaloni A, Nocentini A, Capasso C, Supuran CT. Anion inhibition studies of the Zn(II)-bound ι-carbonic anhydrase from the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2021; 36:372-376. [PMID: 33390061 PMCID: PMC7782983 DOI: 10.1080/14756366.2020.1867122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Burkholderia territorii, a Gram-negative bacterium, encodes for the ι-class carbonic anhydrase (CA, EC 4.2.1.1) BteCAι, which was recently characterised. It acts as a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat value of 3.0 × 105 s-1 and kcat/KM value of 3.9 × 107 M-1 s-1. No inhibition data on this new class of enzymes are available to date. We report here an anion and small molecules inhibition study of BteCAι, which we prove to be a zinc(II)- and not manganese(II)-containing enzyme, as reported for diatom ι-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic acid, phenylboronic acid and sulfamide (KI values of 6.2-94 µM), whereas diethyldithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors (KI values of 0.71-0.94 mM). The halides (except iodide), thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1-9.3 mM.
Collapse
Affiliation(s)
- Andrea Petreni
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy.,Proteomics and Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| |
Collapse
|
13
|
Urbański LJ, Angeli A, Hytönen VP, Di Fiore A, De Simone G, Parkkila S, Supuran CT. Inhibition of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with sulphonamides. J Enzyme Inhib Med Chem 2020; 36:329-334. [PMID: 33356653 PMCID: PMC7782162 DOI: 10.1080/14756366.2020.1863958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sulphonamides and their isosteres are classical inhibitors of the carbonic anhydrase (CAs, EC 4.2.1.1) metalloenzymes. The protozoan pathogen Trichomonas vaginalis encodes two such enzymes belonging to the β-class, TvaCA1 and TvaCA2. Here we report the first sulphonamide inhibition study of TvaCA1, with a series of simple aromatic/heterocyclic primary sulphonamides as well as with clinically approved/investigational drugs for a range of pathologies (diuretics, antiglaucoma, antiepileptic, antiobesity, and antitumor drugs). TvaCA1 was effectively inhibited by acetazolamide and ethoxzolamide, with KIs of 391 and 283 nM, respectively, whereas many other simple or clinically used sulphonamides were micromolar inhibitors or did not efficiently inhibit the enzyme. Finding more effective TvaCA1 inhibitors may constitute an innovative approach for fighting trichomoniasis, a sexually transmitted infection, caused by T. vaginalis.
Collapse
Affiliation(s)
- Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging of the National Research Council, Naples, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging of the National Research Council, Naples, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
14
|
Llanos MA, Sbaraglini ML, Villalba ML, Ruiz MD, Carrillo C, Alba Soto C, Talevi A, Angeli A, Parkkila S, Supuran CT, Gavernet L. A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2020; 35:21-30. [PMID: 31619095 PMCID: PMC6807911 DOI: 10.1080/14756366.2019.1677638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/28/2022] Open
Abstract
Trypanosoma cruzi carbonic anhydrase (TcCA) has recently emerged as an interesting target for the design of new compounds to treat Chagas disease. In this study we report the results of a structure-based virtual screening campaign to identify novel and selective TcCA inhibitors. The combination of properly validated computational methodologies such as comparative modelling, molecular dynamics and docking simulations allowed us to find high potency hits, with KI values in the nanomolar range. The compounds also showed trypanocidal effects against T. cruzi epimastigotes and trypomastigotes. All the candidates are selective for inhibiting TcCA over the human isoform CA II, which is encouraging in terms of possible therapeutic safety and efficacy.
Collapse
Affiliation(s)
- Manuel A. Llanos
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - María L. Villalba
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - María D. Ruiz
- Instituto de Ciencias y Tecnología Dr. Cesar Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. Cesar Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Catalina Alba Soto
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Luciana Gavernet
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| |
Collapse
|
15
|
Oguz M, Kalay E, Akocak S, Nocentini A, Lolak N, Boga M, Yilmaz M, Supuran CT. Synthesis of calix[4]azacrown substituted sulphonamides with antioxidant, acetylcholinesterase, butyrylcholinesterase, tyrosinase and carbonic anhydrase inhibitory action. J Enzyme Inhib Med Chem 2020; 35:1215-1223. [PMID: 32401067 PMCID: PMC7269057 DOI: 10.1080/14756366.2020.1765166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
A series of novel calix[4]azacrown substituted sulphonamide Schiff bases was synthesised by the reaction of calix[4]azacrown aldehydes with different substituted primary and secondary sulphonamides. The obtained novel compounds were investigated as inhibitors of six human (h) isoforms of carbonic anhydrases (CA, EC 4.2.1.1). Their antioxidant profile was assayed by various bioanalytical methods. The calix[4]azacrown substituted sulphonamide Schiff bases were also investigated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes, associated with several diseases such as Alzheimer, Parkinson, and pigmentation disorders. The new sulphonamides showed low to moderate inhibition against hCAs, AChE, BChE, and tyrosinase enzymes. However, some of them possessed relevant antioxidant activity, comparable with standard antioxidants used in the study.
Collapse
Affiliation(s)
- Mehmet Oguz
- Department of Chemistry, University of Selcuk, Konya, Turkey
- Department of Advanced Material and Nanotechnology, Selcuk University, Konya, Turkey
| | - Erbay Kalay
- Kars Vocational School, Kafkas University, Kars, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Mehmet Boga
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, University of Selcuk, Konya, Turkey
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
16
|
Development, characterization, and anti-leishmanial activity of topical amphotericin B nanoemulsions. Drug Deliv Transl Res 2020; 10:1552-1570. [DOI: 10.1007/s13346-020-00821-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Discov 2020; 15:671-686. [PMID: 32208982 DOI: 10.1080/17460441.2020.1743676] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The spacious active site cavity of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) shows a great versatility for a variety of binding modes for modulators of activity, inhibitors, and activators, some of which are clinically used drugs. AREAS COVERED There are at least four well-documented CA inhibition mechanisms and the same number of binding modes for CA inhibitors (CAIs), one of which superposes with the binding of activators (CAAs). They include (i) coordination to the catalytic metal ion; (ii) anchoring to the water molecule coordinated to the metal ion; (iii) occlusion of the active site entrance; and (iv) binding outside the active site. A large number of chemical classes of CAIs show these binding modes explored in detail by kinetic, crystallographic, and other techniques. The tail approach was applied to all of them and allowed many classes of highly isoform-selective inhibitors. This is the subject of our review. EXPERT OPINION All active site regions of CAs accommodate inhibitors to bind, which is reflected in very different inhibition profiles for such compounds and the possibility to design drugs with effective action and new applications, such as for the management of hypoxic tumors, neuropathic pain, cerebral ischemia, arthritis, and degenerative disorders.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence , Florence, Italy
| |
Collapse
|
18
|
Teixeira BVF, Teles ALB, da Silva SG, Brito CCB, de Freitas HF, Pires ABL, Froes TQ, Castilho MS. Dual and selective inhibitors of pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Leishmania chagasi. J Enzyme Inhib Med Chem 2019; 34:1439-1450. [PMID: 31409157 PMCID: PMC6713189 DOI: 10.1080/14756366.2019.1651311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Leishmaniasis is a tropical disease found in more than 90 countries. The drugs available to treat this disease have nonspecific action and high toxicity. In order to develop novel therapeutic alternatives to fight this ailment, pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHF-TS) have been targeted, once Leishmania is auxotrophic for folates. Although PTR1 and DHFR-TS from other protozoan parasites have been studied, their homologs in Leishmania chagasi have been poorly characterized. Hence, this work describes the optimal conditions to express the recombinant LcPTR1 and LcDHFR-TS enzymes, as well as balanced assay conditions for screening. Last but not the least, we show that 2,4 diaminopyrimidine derivatives are low-micromolar competitive inhibitors of both enzymes (LcPTR1 Ki = 1.50-2.30 µM and LcDHFR Ki = 0.28-3.00 µM) with poor selectivity index. On the other hand, compound 5 (2,4-diaminoquinazoline derivative) is a selective LcPTR1 inhibitor (Ki = 0.47 µM, selectivity index = 20).
Collapse
Affiliation(s)
| | - André Lacerda Braga Teles
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Bahia, Salvador, BA, Brazil
- Departamento de Ciências da Vida, Universidade do Estado da Bahia, Salvador, BA, Brazil
| | | | | | - Humberto Fonseca de Freitas
- Programa de Pós-Graduação em Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | | | - Thamires Quadros Froes
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | - Marcelo Santos Castilho
- Programa de Pós-Graduação em Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| |
Collapse
|
19
|
Al-Sanea MM, Elkamhawy A, Paik S, Bua S, Ha Lee S, Abdelgawad MA, Roh EJ, Eldehna WM, Supuran CT. Synthesis and biological evaluation of novel 3-(quinolin-4-ylamino)benzenesulfonamidesAQ3 as carbonic anhydrase isoforms I and II inhibitors. J Enzyme Inhib Med Chem 2019; 34:1457-1464. [PMID: 31411080 PMCID: PMC6713088 DOI: 10.1080/14756366.2019.1652282] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are crucial metalloenzymes that are involved in diverse bioprocesses. We report the synthesis and biological evaluation of novel series of benzenesulfonamides incorporating un/substituted ethyl quinoline-3-carboxylate moieties. The newly synthesised compounds were in vitro evaluated as inhibitors of the cytosolic human (h) isoforms hCA I and II. Both isoforms hCA I and II were inhibited by the quinolines reported here in variable degrees: hCA I was inhibited with KIs in the range of 0.966-9.091 μM, whereas hCA II in the range of 0.083-3.594 μM. The primary 7-chloro-6-flouro substituted sulphfonamide derivative 6e (KI = 0.083 μM) proved to be the most active quinoline in inhibiting hCA II, whereas, its secondary sulfonamide analog failed to inhibit the hCA II up to 10 μM, confirming the crucial role of the primary sulphfonamide group, as a zinc-binding group for CA inhibitory activity.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
20
|
Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests. NANOMATERIALS 2019; 9:nano9091285. [PMID: 31505756 PMCID: PMC6781030 DOI: 10.3390/nano9091285] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022]
Abstract
The management of parasites, insect pests and vectors requests development of novel, effective and eco-friendly tools. The development of resistance towards many drugs and pesticides pushed scientists to look for novel bioactive compounds endowed with multiple modes of action, and with no risk to human health and environment. Several natural products are used as alternative/complementary approaches to manage parasites, insect pests and vectors due to their high efficacy and often limited non-target toxicity. Their encapsulation into nanosystems helps overcome some hurdles related to their physicochemical properties, for instance limited stability and handling, enhancing the overall efficacy. Among different nanosystems, micro- and nanoemulsions are easy-to-use systems in terms of preparation and industrial scale-up. Different reports support their efficacy against parasites of medical importance, including Leishmania, Plasmodium and Trypanosoma as well as agricultural and stored product insect pests and vectors of human diseases, such as Aedes and Culex mosquitoes. Overall, micro- and nanoemulsions are valid options for developing promising eco-friendly tools in pest and vector management, pending proper field validation. Future research on the improvement of technical aspects as well as chronic toxicity experiments on non-target species is needed.
Collapse
|
21
|
Wagner V, Minguez-Menendez A, Pena J, Fernández-Prada C. Innovative Solutions for the Control of Leishmaniases: Nanoscale Drug Delivery Systems. Curr Pharm Des 2019; 25:1582-1592. [DOI: 10.2174/1381612825666190621154552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/15/2019] [Indexed: 12/26/2022]
Abstract
Background:
Leishmania are sandfly-transmitted protozoan parasites that harbour within the macrophages
of a mammalian host and cause leishmaniasis, a serious zoonotic disease that threatens the lives of millions
worldwide. Its numerous forms (cutaneous, mucocutaneous, and visceral) are currently treated with a sparse
arsenal of drugs, specifically antimonials, amphotericin B, miltefosine, and paromomycin, for which drug resistance
and clinical failure are rampant. Medicine is presently trending towards nanotechnology to aid in the successful
delivery of drugs. Vehicles such as lipid-based nanocarriers, polymer-based nanoparticles, and metal ions
and oxides have been previously demonstrated to improve bioavailability of drugs and decrease toxicity for the
patient. These cutting-edge solutions can be combined with existing active molecules, as well as novel drugs or
plant extracts with promising antileishmanial activity.
Conclusion:
This review explores the current evidence for the treatment of leishmaniases using nanoscale drug
delivery systems (specifically lipid-, polymer- and metal-based systems) and encourages further development of
the aforementioned nanotechnologies for treatment of Leishmania.
Collapse
Affiliation(s)
- Victoria Wagner
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Aida Minguez-Menendez
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Joan Pena
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Christopher Fernández-Prada
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
22
|
Oliveira JWDF, Rocha HAO, de Medeiros WMTQ, Silva MS. Application of Dithiocarbamates as Potential New Antitrypanosomatids-Drugs: Approach Chemistry, Functional and Biological. Molecules 2019; 24:E2806. [PMID: 31374887 PMCID: PMC6695843 DOI: 10.3390/molecules24152806] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Dithiocarbamates represent a class of compounds that were evaluated in different biomedical applications because of their chemical versatility. For this reason, several pharmacological activities have already been attributed to these compounds, such as antiparasitic, antiviral, antifungal activities, among others. Therefore, compounds that are based on dithiocarbamates have been evaluated in different in vivo and in vitro models as potential new antimicrobials. Thus, the purpose of this review is to present the possibilities of using dithiocarbamate compounds as potential new antitrypanosomatids-drugs, which could be used for the pharmacological control of Chagas disease, leishmaniasis, and African trypanosomiasis.
Collapse
Affiliation(s)
- Johny Wysllas de Freitas Oliveira
- Laboratório de Imunoparasitologia, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
| | - Wendy Marina Toscano Queiroz de Medeiros
- Laboratório de Imunoparasitologia, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil
| | - Marcelo Sousa Silva
- Laboratório de Imunoparasitologia, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1800-166 Lisbon, Portugal.
| |
Collapse
|
23
|
Thacker PS, Shaikh P, Angeli A, Arifuddin M, Supuran CT. Synthesis and biological evaluation of novel 8-substituted quinoline-2-carboxamides as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2019; 34:1172-1177. [PMID: 31218888 PMCID: PMC6586119 DOI: 10.1080/14756366.2019.1626376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of novel 8-substituted-N-(4-sulfamoylphenyl)quinoline-2-carboxamides was synthesised by the reaction of 8-hydroxy-N-(4-sulfamoylphenyl) quinoline-2-carboxamide with alkyl and benzyl halides. The compounds were assayed for carbonic anhydrase (CA) inhibitory activity against four hCA isoforms, hCA I, hCA II, hCA IV, and hCA IX. Barring hCA IX, all the isoforms were inhibited from low to high nanomolar range. hCA I was inhibited in the range of 61.9–8126 nM, with compound 5h having an inhibition constant of KI = 61.9 nM. hCA II was inhibited in the range of 33.0–8759 nM, with compound 5h having an inhibition constant of 33.0 nM and compounds 5a and 5b having inhibition constants of 88.4 and 85.7 nM, respectively. hCA IV was inhibited in the range of 657.2–6757 nM. Hence, compound 5h, possessing low nanomolar hCA I and II inhibition, can be selected as a lead for the design of novel CA I and II inhibitors.
Collapse
Affiliation(s)
- Pavitra S Thacker
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad , India
| | - Pirpasha Shaikh
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad , India
| | - Andrea Angeli
- b Neurofarba Department, Section of Pharmaceutical Chemistry, University of Florence, Florence , Italy
| | - Mohammed Arifuddin
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad , India
| | - Claudiu T Supuran
- b Neurofarba Department, Section of Pharmaceutical Chemistry, University of Florence, Florence , Italy
| |
Collapse
|
24
|
Nocentini A, Osman SM, Almeida IA, Cardoso V, Alasmary FAS, AlOthman Z, Vermelho AB, Gratteri P, Supuran CT. Appraisal of anti-protozoan activity of nitroaromatic benzenesulfonamides inhibiting carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani. J Enzyme Inhib Med Chem 2019; 34:1164-1171. [PMID: 31219348 PMCID: PMC6598531 DOI: 10.1080/14756366.2019.1626375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Chagas disease and leishmaniasis are neglected tropical disorders caused by the protozoans Trypanosoma cruzi and Leishmania spp. Carbonic anhydrases (CAs, EC 4.2.1.1) from these protozoans (α-TcCA and β-LdcCA) have been validated as promising targets for chemotherapic interventions. Many anti-protozoan agents, such as nitroimidazoles, nifurtimox, and benznidazole possess a nitro aromatic group in their structure which is crucial for their activity. As a continuation of our previous work on N-nitrosulfonamides as anti-protozoan agents, we investigated benzenesulfonamides bearing a nitro aromatic moiety against TcCA and LdcCA, observing selective inhibitions over human off-target CAs. Selected derivatives were assessed in vitro in different developmental stages of T. cruzi and Leishmania spp. A lack of significant growth inhibition has been found, which has been connected to the low permeability of this class of derivatives through cell membranes. Further strategies necessarily need to be designed for targeting Chagas disease and leishmaniasis with nitro-containing CA inhibitors.
Collapse
Affiliation(s)
- Alessio Nocentini
- a Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , Sesto Fiorentino , Italy
| | - Sameh M Osman
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Igor A Almeida
- c Department of Natural Products and Food, School of Pharmacy , Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Veronica Cardoso
- d BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes , Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Fatmah Ali S Alasmary
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Zeid AlOthman
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Alane B Vermelho
- d BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes , Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Paola Gratteri
- a Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , Sesto Fiorentino , Italy
| | - Claudiu T Supuran
- a Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , Sesto Fiorentino , Italy
| |
Collapse
|
25
|
Garcia AR, Oliveira DMP, Claudia F Amaral A, Jesus JB, Rennó Sodero AC, Souza AMT, Supuran CT, Vermelho AB, Rodrigues IA, Pinheiro AS. Leishmania infantum arginase: biochemical characterization and inhibition by naturally occurring phenolic substances. J Enzyme Inhib Med Chem 2019; 34:1100-1109. [PMID: 31124384 PMCID: PMC6534257 DOI: 10.1080/14756366.2019.1616182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inhibition of Leishmania arginase leads to a decrease in parasite growth and infectivity and thus represents an attractive therapeutic strategy. We evaluated the inhibitory potential of selected naturally occurring phenolic substances on Leishmania infantum arginase (ARGLi) and investigated their antileishmanial activity in vivo. ARGLi exhibited a Vmax of 0.28 ± 0.016 mM/min and a Km of 5.1 ± 1.1 mM for L-arginine. The phenylpropanoids rosmarinic acid and caffeic acid (100 µM) showed percentages of inhibition of 71.48 ± 0.85% and 56.98 ± 5.51%, respectively. Moreover, rosmarinic acid and caffeic acid displayed the greatest effects against L. infantum with IC50 values of 57.3 ± 2.65 and 60.8 ± 11 μM for promastigotes, and 7.9 ± 1.7 and 21.9 ± 5.0 µM for intracellular amastigotes, respectively. Only caffeic acid significantly increased nitric oxide production by infected macrophages. Altogether, our results broaden the current spectrum of known arginase inhibitors and revealed promising drug candidates for the therapy of visceral leishmaniasis.
Collapse
Affiliation(s)
- Andreza R Garcia
- a Graduate Program in Pharmaceutical Sciences , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Danielle M P Oliveira
- b Department of Biochemistry , Institute of Chemistry, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Ana Claudia F Amaral
- c Department of Natural Products , Farmanguinhos, FIOCRUZ , Rio de Janeiro , Brazil
| | - Jéssica B Jesus
- d Department of Drugs and Medicines , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Ana Carolina Rennó Sodero
- d Department of Drugs and Medicines , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Alessandra M T Souza
- d Department of Drugs and Medicines , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Claudiu T Supuran
- e Neurofarba Department , Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche , Florence , Italy
| | - Alane B Vermelho
- f Department of General Microbiology , Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Igor A Rodrigues
- a Graduate Program in Pharmaceutical Sciences , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil.,g Department of Natural Products and Food , School of Pharmacy, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Anderson S Pinheiro
- b Department of Biochemistry , Institute of Chemistry, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
26
|
Angeli A, Del Prete S, Osman SM, AlOthman Z, Donald WA, Capasso C, Supuran CT. Activation Studies of the γ-Carbonic Anhydrases from the Antarctic Marine Bacteria Pseudoalteromonas haloplanktis and Colwellia psychrerythraea with Amino Acids and Amines. Mar Drugs 2019; 17:md17040238. [PMID: 31013612 PMCID: PMC6520686 DOI: 10.3390/md17040238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022] Open
Abstract
The γ-carbonic anhydrases (CAs, EC 4.2.1.1) present in the Antarctic marine bacteria Pseudoalteromonas haloplanktis and Colwellia psychrerythraea, herein referred to as PhaCA and CpsCA, respectively, were investigated for their activation with a panel of 24 amino acids and amines. Both bacteria are considered Antarctic models for the investigation of photosynthetic and metabolic pathways in organisms adapted to live in cold seawater. PhaCA was much more sensitive to activation by these compounds compared to the genetically related enzyme CpsCA. The most effective PhaCA activators were d-Phe, l-/d-DOPA, l-Tyr and 2-pyridyl-methylamine, with the activation constant KA values of 0.72–3.27 µM. d-His, l-Trp, d-Tyr, histamine, dopamine, serotonin anddicarboxylic amino acids were also effective activators of PhaCA, with KA values of 6.48–9.85 µM. CpsCA was activated by d-Phe, d-DOPA, l-Trp, l-/d-Tyr, 4-amino-l-Phe, histamine, 2-pyridyl-methylamine and l-/d-Glu with KA values of 11.2–24.4 µM. The most effective CpsCA activator was l-DOPA (KA of 4.79 µM). Given that modulators of CAs from Antarctic bacteria have not been identified and investigated in detail for their metabolic roles to date, this research sheds some light on these poorly understood processes.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - William A Donald
- School of Chemistry, University of New South Wales, Dalton Building, Sydney, New South Wales 2052, Australia.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
- School of Chemistry, University of New South Wales, Dalton Building, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
27
|
Akdemir A, Angeli A, Göktaş F, Eraslan Elma P, Karalı N, Supuran CT. Novel 2-indolinones containing a sulfonamide moiety as selective inhibitors of candida β-carbonic anhydrase enzyme. J Enzyme Inhib Med Chem 2019; 34:528-531. [PMID: 30724625 PMCID: PMC6366411 DOI: 10.1080/14756366.2018.1564045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inhibition of the β-carbonic anhydrase (CA, EC 4.2.1.1) from pathogenic Candida glabrata (CgNce103) by 1H-indole-2,3-dione 3-[N-(4-sulfamoylphenyl)thiosemicarbazones] 4a–m was investigated. All the compounds were found to be potent inhibitors of CgNce103, with inhibition constants in the range of 6.4-63.9 nM. The 5,7-dichloro substituted derivative 4l showed the most effective inhibition (KI of 6.4 nM) as well as the highest selectivity for inhibiting CgNce103 over the cytosolic human (h) isoforms hCA I and II. A possible binding interaction of compound 4l within the active site of CgNce103 has been proposed based on docking studies.
Collapse
Affiliation(s)
- Atilla Akdemir
- a Computer-aided drug discovery laboratory, Department of Pharmacology, Faculty of Pharmacy , Bezmialem Vakif University , Istanbul , Turkey
| | - Andrea Angeli
- b Sezione di Scienza Farmaceutiche, Neurofarba Department , Universita degli Studi di Firenze , Florence , Italy
| | - Füsun Göktaş
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Istanbul University , Istanbul , Turkey
| | - Pınar Eraslan Elma
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Istanbul University , Istanbul , Turkey
| | - Nilgün Karalı
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Istanbul University , Istanbul , Turkey
| | - Claudiu T Supuran
- b Sezione di Scienza Farmaceutiche, Neurofarba Department , Universita degli Studi di Firenze , Florence , Italy
| |
Collapse
|
28
|
Bua S, Haapanen S, Kuuslahti M, Parkkila S, Supuran CT. Activation Studies of the β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica with Amino Acids and Amines. Metabolites 2019; 9:metabo9020026. [PMID: 30717275 PMCID: PMC6409850 DOI: 10.3390/metabo9020026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
The β-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic protozoan Entamoeba histolytica, EhiCA, was investigated for its activation with a panel of natural and non-natural amino acids and amines. EhiCA was potently activated by D-His, D-Phe, D-DOPA, L- and D-Trp, L- and D-Tyr, 4-amino-L-Tyr, histamine and serotonin, with KAs ranging between 1.07 and 10.1 µM. The best activator was D-Tyr (KA of 1.07 µM). L-Phe, L-DOPA, L-adrenaline, L-Asn, L-Asp, L-Glu and L-Gln showed medium potency activation, with KAs of 16.5–25.6 µM. Some heterocyclic- alkyl amines, such as 2-pyridyl-methyl/ethyl-amine and 4-(2-aminoethyl)-morpholine, were devoid of EhiCA activating properties with KAs > 100 µM. As CA activators have poorly been investigated for their interaction with protozoan CAs, our study may be relevant for an improved understanding of the role of this enzyme in the life cycle of E. histolytica.
Collapse
Affiliation(s)
- Silvia Bua
- Sezione di Scienze Farmaceutiche e Nutraceutiche, Dipartimento Neurofarba, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, 50019 Florence, Italy.
| | - Susanna Haapanen
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland.
| | - Marianne Kuuslahti
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland.
- Fimlab Ltd., Tampere University Hospital, 33100 Tampere, Finland.
| | - Claudiu T Supuran
- Sezione di Scienze Farmaceutiche e Nutraceutiche, Dipartimento Neurofarba, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
29
|
Berrino E, Supuran CT. Novel approaches for designing drugs that interfere with pH regulation. Expert Opin Drug Discov 2019; 14:231-248. [PMID: 30681011 DOI: 10.1080/17460441.2019.1567488] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In all living species, pH regulation is a tightly controlled process, with a plethora of proteins involved in its regulation. These include sodium-proton exchangers, carbonic anhydrases, anion exchangers, bicarbonate transporters/cotransporters, H+-ATPases, and monocarboxylate transporters. All of them play crucial roles in acid-base balancing, both in eukaryotic as well as in prokaryotic organisms, making them interesting drug targets for the management of pathological events (in)directly involved in pH regulation. Areas covered: Interfering with pH regulation for the treatment of tumors and microbial infections is the main focus of this review, with particular attention paid to inhibitors targeting the above-mentioned proteins. The latest advances in each field id reviewed. Expert opinion: Interfering with the pH regulation of tumor cells is a validated approach to tackle primary tumors and metastases growth. Carbonic anhydrases are the most investigated proteins of those aforementioned, with several inhibitors in clinical development. Recent advances in the characterization of proteins involved in pH homeostasis of various pathogens evidenced their crucial role in the survival and virulence of bacterial, fungal, and protozoan microorganisms. Some encouraging results shed light on the possibility to target such proteins for obtaining new anti-infectives, overcoming the extensive drug resistance problems of clinically used drugs.
Collapse
Affiliation(s)
- Emanuela Berrino
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
30
|
Jiang Z, You Q, Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur J Med Chem 2019; 165:172-197. [PMID: 30684796 DOI: 10.1016/j.ejmech.2019.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Numerous metal-containing enzymes (metalloenzymes) have been considered as drug targets related to diseases such as cancers, diabetes, anemia, AIDS, malaria, bacterial infection, fibrosis, and neurodegenerative diseases. Inhibitors of the metalloenzymes have been developed independently, most of which are mimics of substrates of the corresponding enzymes. However, little attention has been paid to the interactions between inhibitors and active site metal ions. This review is focused on different metal binding fragments and their chelating properties in the metal-containing active binding pockets of metalloenzymes. We have enumerated over one hundred of inhibitors targeting various metalloenzymes and identified over ten kinds of fragments with different binding patterns. Furthermore, we have investigated the inhibitors that are undergoing clinical evaluation in order to help looking for more potential scaffolds bearing metal binding fragments. This review will provide deep insights for the rational design of novel inhibitors targeting the metal-containing binding sites of specific proteins.
Collapse
Affiliation(s)
- Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
31
|
Sulfonamide Inhibition Studies of a New β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. Int J Mol Sci 2018; 19:ijms19123946. [PMID: 30544802 PMCID: PMC6321117 DOI: 10.3390/ijms19123946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022] Open
Abstract
A newly described β-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic protozoan Entamoeba histolytica, EhiCA, was recently shown to possess a significant catalytic activity for the physiologic CO2 hydration reaction (kcat of 6.7 × 105 s−1 and a kcat/Km of 8.9 × 107 M−1 s−1). A panel of sulfonamides and one sulfamate, some of which are clinically used drugs, were investigated for their inhibitory properties against EhiCA. The best inhibitors detected in the study were 4-hydroxymethyl/ethyl-benzenesulfonamide (KIs of 36–89 nM), whereas some sulfanilyl-sulfonamides showed activities in the range of 285–331 nM. Acetazolamide, methazolamide, ethoxzolamide, and dichlorophenamide were less effective inhibitors (KIs of 509–845 nM) compared to other sulfonamides investigated here. As β-CAs are not present in vertebrates, the present study may be useful for detecting lead compounds for the design of more effective inhibitors with potential to develop anti-infectives with alternative mechanisms of action.
Collapse
|
32
|
Cloning, Characterization and Anion Inhibition Studies of a β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. Molecules 2018; 23:molecules23123112. [PMID: 30486513 PMCID: PMC6321543 DOI: 10.3390/molecules23123112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/22/2023] Open
Abstract
We report the cloning and catalytic activity of a β-carbonic anhydrase (CA, EC 4.2.1.1), isolated from the pathogenic protozoan Entamoeba histolytica, EhiCA. This enzyme has a high catalytic activity for the physiologic CO2 hydration reaction, with a kcat of 6.7 × 105 s−1 and a kcat/Km of 8.9 × 107 M−1 × s−1. An anion inhibition study of EhiCA with inorganic/organic anions and small molecules revealed that fluoride, chloride, cyanide, azide, pyrodiphosphate, perchlorate, tetrafluoroborate and sulfamic acid did not inhibit the enzyme activity, whereas pseudohalides (cyanate and thiocyanate), bicarbonate, nitrate, nitrite, diethyldithiocarbamate, and many complex inorganic anions showed inhibition in the millimolar range (KIs of 0.51–8.4 mM). The best EhiCA inhibitors were fluorosulfonate, sulfamide, phenylboronic acid and phenylarsonic acid (KIs in the range of 28–86 μM). Since β-CAs are not present in vertebrates, the present study may be useful for detecting lead compounds for the design of effective enzyme inhibitors, with potential to develop anti-infectives with alternative mechanisms of action.
Collapse
|