1
|
Xu Y, Sun F, Chuai Z, Wang J, Bai Z, Bian C, Wang X, Zhao Z, Liu Y, Yang P. Cold-adapted influenza vaccine carrying three repeats of a respiratory syncytial virus (RSV) fusion glycoprotein epitope site protects BALB/c mice and cotton rats against RSV infection. Antiviral Res 2024; 229:105960. [PMID: 38986872 DOI: 10.1016/j.antiviral.2024.105960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Respiratory syncytial virus is the major cause of respiratory viral infections, particularly in infants, immunocompromised populations, and the elderly (over 65 years old), the prevention of RSV infection has become a priority. In this study, we generated a chimeric influenza virus, termed LAIV/RSV/HA-3F, using reverse genetics technology which contained three repeats of the RSV fusion protein neutralizing epitope site II to the N terminal in the background of the hemagglutinin (HA) gene of cold adapted influenza vaccine A/California/7/2009 ca. LAIV/RSV/HA-3F exhibited cold-adapted (ca) and attenuated (att) phenotype. BALB/c mice immunized intranasally with LAIV/RSV/HA-3F showed robust immunogenicity, inducing viral-specific antibody responses against both influenza and RSV, eliciting RSV-specific humoral, cellular and mucosal immune responses. LAIV/RSV/HA-3F also conferred protection as indicated by reduced viral titers and improved lung histopathological alterations against live RSV virus challenge. Mechanismly, single-cell RNA sequencing (scRNA-seq) and single-cell T cell antigen receptor (TCR) sequencing were employed to characterize the immune responses triggered by chimeric RSV vaccine, displaying that LAIV/RSV/HA-3F provided protection mainly via interferon-γ (IFN-γ). Moreover, we found that LAIV/RSV/HA-3F significantly inhibited viral replication in the challenged lung and protected against subsequent RSV challenge in cotton rats without causing lung disease. Taken together, our findings demonstrated that LAIV/RSV/HA-3F has potential as a promising bivalent vaccine with dual purpose candidate for the prevention of influenza and RSV, and preclinical and clinical studies warrant further investigations.
Collapse
Affiliation(s)
- Yongru Xu
- The First Medical Center of Chinese PLA General Hospital, Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Fang Sun
- The First Medical Center of Chinese PLA General Hospital, Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China; Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Zhengran Chuai
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Junyun Wang
- Harbin GenVista Medical Laboratory Co., Ltd, Harbin, 150001, China; Heilongjiang Hulu Institute of Precision Medicine Co., Ltd, Harbin 150001, China
| | - Zhifang Bai
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Chengrong Bian
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yongzhuang Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Penghui Yang
- The First Medical Center of Chinese PLA General Hospital, Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China.
| |
Collapse
|
2
|
Xu Y, Sun F, Bai Z, Bian C, Wang X, Zhao Z, Yang P. Cold-adapted influenza-vectored RSV vaccine protects BALB/c mice and cotton rats from RSV challenge. J Med Virol 2024; 96:e29308. [PMID: 39007405 DOI: 10.1002/jmv.29308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 07/16/2024]
Abstract
Respiratory syncytial virus (RSV) remains the primary cause of lower respiratory tract infections, particularly in infants and the elderly. In this study, we employed reverse genetics to generate a chimeric influenza virus expressing neuraminidase-3F protein conjugate with three repeats of the RSV F protein protective epitope inserted into the NA gene of A/California/7/2009 ca (CA/AA ca), resulting in rFlu/RSV/NA-3F (hereafter, rFRN3). The expression of NA-3F protein was confirmed by Western blotting. The morphology and temperature-sensitive phenotype of rFRN3 were similar to CA/AA ca. Its immunogenicity and protective efficiency were evaluated in BALB/c mice and cotton rats. Intranasal administration of rFRN3 elicited robust humoral, cellular, and to some extent, mucosal immune responses. Compared to controls, rFRN3 protected animals from RSV infection, attenuated lung injury, and reduced viral titers in the nose and lungs post-RSV challenge. These results demonstrate that rFRN3 can trigger RSV-specific immune responses and thus exhibits potent protective efficacy. The "dual vaccine" approach of a cold-adapted influenza vector RSV vaccine will improve the prophylaxis of influenza and RSV infection. rFRN3 thus warrants further clinical investigations as a candidate RSV vaccine.
Collapse
Affiliation(s)
- Yongru Xu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Fang Sun
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhifang Bai
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengrong Bian
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Penghui Yang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| |
Collapse
|
3
|
Yang Y, Chen YZ, Xia T. Optimizing antigen selection for the development of tuberculosis vaccines. CELL INSIGHT 2024; 3:100163. [PMID: 38572176 PMCID: PMC10987857 DOI: 10.1016/j.cellin.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Tuberculosis (TB) remains a prevalent global infectious disease caused by genetically closely related tubercle bacilli in Mycobacterium tuberculosis complex (MTBC). For a century, the Bacillus Calmette-Guérin (BCG) vaccine has been the primary preventive measure against TB. While it effectively protects against extrapulmonary forms of pediatric TB, it lacks consistent efficacy in providing protection against pulmonary TB in adults. Consequently, the exploration and development of novel TB vaccines, capable of providing broad protection to populations, have consistently constituted a prominent area of interest in medical research. This article presents a concise overview of the novel TB vaccines currently undergoing clinical trials, discussing their classification, protective efficacy, immunogenicity, advantages, and limitations. In vaccine development, the careful selection of antigens that can induce strong and diverse specific immune responses is essential. Therefore, we have summarized the molecular characteristics, biological function, immunogenicity, and relevant studies associated with the chosen antigens for TB vaccines. These insights gained from vaccines and immunogenic proteins will inform the development of novel mycobacterial vaccines, particularly mRNA vaccines, for effective TB control.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yi-Zhen Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| |
Collapse
|
4
|
Nie L, Huang Y, Cheng Z, Luo H, Zhan Y, Dou K, Ma C, Yu C, Luo C, Liu Z, Liu S, Zhu Y. An intranasal influenza virus vector vaccine protects against Helicobacter pylori in mice. J Virol 2024; 98:e0192323. [PMID: 38358289 PMCID: PMC10949480 DOI: 10.1128/jvi.01923-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Helicobacter pylori is a human pathogen that infects almost half of the population. Antibiotic resistance in H. pylori threatens health and increases the demand for prophylactic and therapeutic vaccines. Traditional oral vaccine research faces considerable challenges because of the epithelial barrier, potential enterotoxicity of adjuvants, and the challenging conditions of the gastric environment. We developed an intranasal influenza A virus (IAV) vector vaccine based on two live attenuated influenza viruses with modified acidic polymerase protein (PA) genes encoding the A subunit of H. pylori neutrophil-activating protein (NapA), named IAV-NapA, including influenza virus A/WSN/33 (WSN)-NapA and A/Puerto Rico/8/34 (PR8)-NapA. These recombinant influenza viruses were highly attenuated and exhibited strong immunogenicity in mice. Vaccination with IAV-NapA induced antigen-specific humoral and mucosal immune responses while stimulating robust Th1 and Th17 cell immune responses in mice. Our findings suggest that prophylactic and therapeutic vaccination with influenza virus vector vaccines significantly reduces colonization of H. pylori and inflammation in the stomach of mice.IMPORTANCEHelicobacter pylori is the most common cause of chronic gastritis and leads to severe gastroduodenal pathology in some patients. Many studies have shown that Th1 and Th17 cellular and gastric mucosal immune responses are critical in reducing H. pylori load. IAV vector vaccines can stimulate these immune responses while overcoming potential adjuvant toxicity and antigen dosing issues. To date, no studies have demonstrated the role of live attenuated IAV vector vaccines in preventing and treating H. pylori infection. Our work indicates that vaccination with IAV-NapA induces antigen-specific humoral, cellular, and mucosal immunity, producing a protective and therapeutic effect against H. pylori infection in BALB/c mice. This undescribed H. pylori vaccination approach may provide valuable information for developing vaccines against H. pylori infection.
Collapse
Affiliation(s)
- Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuxin Zhan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kaiwen Dou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiqiang Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Ji D, Zhang Y, Sun J, Zhang B, Ma W, Cheng B, Wang X, Li Y, Mu Y, Xu H, Wang Q, Zhang C, Xiao S, Zhang L, Zhou D. An engineered influenza virus to deliver antigens for lung cancer vaccination. Nat Biotechnol 2024; 42:518-528. [PMID: 37231262 DOI: 10.1038/s41587-023-01796-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The development of cancer neoantigen vaccines that prime the anti-tumor immune responses has been hindered in part by challenges in delivery of neoantigens to the tumor. Here, using the model antigen ovalbumin (OVA) in a melanoma model, we demonstrate a chimeric antigenic peptide influenza virus (CAP-Flu) system for delivery of antigenic peptides bound to influenza A virus (IAV) to the lung. We conjugated attenuated IAVs with the innate immunostimulatory agent CpG and, after intranasal administration to the mouse lung, observed increased immune cell infiltration to the tumor. OVA was then covalently displayed on IAV-CPG using click chemistry. Vaccination with this construct yielded robust antigen uptake by dendritic cells, a specific immune cell response and a significant increase in tumor-infiltrating lymphocytes compared to peptides alone. Lastly, we engineered the IAV to express anti-PD1-L1 nanobodies that further enhanced regression of lung metastases and prolonged mouse survival after rechallenge. Engineered IAVs can be equipped with any tumor neoantigen of interest to generate lung cancer vaccines.
Collapse
Affiliation(s)
- Dezhong Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China.
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Yuanjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China
| | - Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenxiao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China
| | - Boyang Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China
| | - Xinchen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China
| | - Yuanhao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China
| | - Yu Mu
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China
| | - Huan Xu
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China
| | - Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China.
- Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| |
Collapse
|
6
|
Studniski M, Stumvoll K, Kromm M, Ssematimba A, Marusak R, Xing Z, Halvorson D, Culhane M, Cardona C. Vaccination of Poultry Against Influenza. Avian Dis 2024; 67:402-409. [PMID: 38300659 DOI: 10.1637/aviandiseases-d-23-99995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 02/02/2024]
Abstract
The complexity of influenza A virus (IAV) infections in avian hosts leads to equally complex scenarios for the vaccination of poultry. Vaccination against avian influenza strains can be used to prevent infections from sources with a single strain of IAV. It has been used as a part of outbreak control strategies as well as a way to maintain production for both low and high pathogenicity outbreaks. Unlike other viral pathogens of birds, avian influenza vaccination when used against highly pathogenic avian influenza virus, is tied to international trade and thus is not freely available for use without specific permission.
Collapse
Affiliation(s)
| | | | | | - Amos Ssematimba
- Department of Mathematics, Gulu University, Gulu, Uganda
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Rosemary Marusak
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Zheng Xing
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Dave Halvorson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Marie Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Carol Cardona
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108,
| |
Collapse
|
7
|
Sun W, Xu J, Wang Z, Li D, Sun Y, Zhu M, Liu X, Li Y, Li F, Wang T, Feng N, Guo Z, Xia X, Gao Y. Clade 2.3.4.4 H5 chimeric cold-adapted attenuated influenza vaccines induced cross-reactive protection in mice and ferrets. J Virol 2023; 97:e0110123. [PMID: 37916835 PMCID: PMC10688331 DOI: 10.1128/jvi.01101-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Clade 2.3.4.4 H5Nx avian influenza viruses (AIVs) have circulated globally and caused substantial economic loss. Increasing numbers of humans have been infected with Clade 2.3.4.4 H5N6 AIVs in recent years. Only a few human influenza vaccines have been licensed to date. However, the licensed live attenuated influenza virus vaccine exhibited the potential of being recombinant with the wild-type influenza A virus (IAV). Therefore, we developed a chimeric cold-adapted attenuated influenza vaccine based on the Clade 2.3.4.4 H5 AIVs. These H5 vaccines demonstrate the advantage of being non-recombinant with circulated IAVs in the future influenza vaccine study. The findings of our current study reveal that these H5 vaccines can induce cross-reactive protective efficacy in mice and ferrets. Our H5 vaccines may provide a novel option for developing human-infected Clade 2.3.4.4 H5 AIV vaccines.
Collapse
Affiliation(s)
- Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiaqi Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences,Shandong Normal University, Jinan, China
| | - Zhenfei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jilin Agricultural University, Changchun, China
| | - Dongxu Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yue Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Menghan Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, School of Basic Medical Sciences, Kaifeng, China
| | - Xiawei Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, School of Basic Medical Sciences, Kaifeng, China
| | - Yuanguo Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fangxu Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences,Shandong Normal University, Jinan, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhendong Guo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Wang D, Deng Y, Zhou J, Wang W, Huang B, Wang W, Wei L, Ren J, Han R, Bing J, Zhai C, Guo X, Tan W. Single-Dose Intranasal Immunisation with Novel Chimeric H1N1 Expressing the Receptor-Binding Domain of SARS-CoV-2 Induces Robust Mucosal Immunity, Tissue-Resident Memory T Cells, and Heterologous Protection in Mice. Vaccines (Basel) 2023; 11:1453. [PMID: 37766130 PMCID: PMC10537001 DOI: 10.3390/vaccines11091453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Current COVID-19 vaccines can effectively reduce disease severity and hospitalisation; however, they are not considerably effective in preventing infection and transmission. In this context, mucosal vaccines are pertinent to prevent SARS-CoV-2 infection and spread. In this study, we generated a replication-competent recombinant chimeric influenza A virus (IAV) expressing the receptor-binding domain (RBD) of a SARS-CoV-2 prototype in the C-terminus of the neuraminidase (NA) of A/Puerto Rico/08/1934 H1N1 (PR8). The remaining seven segments from A/WSN/1933 H1N1 (WSN) were named PR8NARBD/WSN. We observed that the recombinant virus with the WSN backbone demonstrated improved expression of NA and RBD. A single intranasal dose of PR8NARBD/WSN(103PFU) in mice generated robust mucosal immunity, neutralising antibodies, cellular immunity, and tissue-resident memory T cells specific to SARS-CoV-2 and IAV. Importantly, immunisation with PR8NARBD/WSN viruses effectively protected mice against lethal challenges with H1N1, H3N2 IAV, and SARS-CoV-2 Beta variant and significantly reduced lung viral loads. Overall, our research demonstrates the promising potential of PR8NARBD/WSN as an attractive vaccine against emerging SARS-CoV-2 variants and influenza A virus infections.
Collapse
Affiliation(s)
- Donghong Wang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Yao Deng
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Jianfang Zhou
- State Key Laboratory for Molecular Virology and Genetic Engineering, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China
| | - Wen Wang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Baoying Huang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Wenling Wang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Lan Wei
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Jiao Ren
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Ruiwen Han
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jialuo Bing
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chengcheng Zhai
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Xiaoyan Guo
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
| | - Wenjie Tan
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing 102206, China; (D.W.)
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
9
|
Beicht J, Kubinski M, Zdora I, Puff C, Biermann J, Gerlach T, Baumgärtner W, Sutter G, Osterhaus ADME, Prajeeth CK, Rimmelzwaan GF. Induction of humoral and cell-mediated immunity to the NS1 protein of TBEV with recombinant Influenza virus and MVA affords partial protection against lethal TBEV infection in mice. Front Immunol 2023; 14:1177324. [PMID: 37483628 PMCID: PMC10360051 DOI: 10.3389/fimmu.2023.1177324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Tick-borne encephalitis virus (TBEV) is one of the most relevant tick-transmitted neurotropic arboviruses in Europe and Asia and the causative agent of tick-borne encephalitis (TBE). Annually more than 10,000 TBE cases are reported despite having vaccines available. In Europe, the vaccines FSME-IMMUN® and Encepur® based on formaldehyde-inactivated whole viruses are licensed. However, demanding vaccination schedules contribute to sub-optimal vaccination uptake and breakthrough infections have been reported repeatedly. Due to its immunogenic properties as well as its role in viral replication and disease pathogenesis, the non-structural protein 1 (NS1) of flaviviruses has become of interest for non-virion based flavivirus vaccine candidates in recent years. Methods Therefore, immunogenicity and protective efficacy of TBEV NS1 expressed by neuraminidase (NA)-deficient Influenza A virus (IAV) or Modified Vaccinia virus Ankara (MVA) vectors were investigated in this study. Results With these recombinant viral vectors TBEV NS1-specific antibody and T cell responses were induced. Upon heterologous prime/boost regimens partial protection against lethal TBEV challenge infection was afforded in mice. Discussion This supports the inclusion of NS1 as a vaccine component in next generation TBEV vaccines.
Collapse
Affiliation(s)
- Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jeannine Biermann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
10
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
11
|
Stepanova E, Isakova-Sivak I, Rudenko L. Options for the development of a bivalent vaccine against SARS-CoV-2 and influenza. Expert Rev Vaccines 2022; 21:1533-1535. [PMID: 36004567 DOI: 10.1080/14760584.2022.2117692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ekaterina Stepanova
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
12
|
Safety, Immunogenicity, and Protective Efficacy of an H5N1 Chimeric Cold-Adapted Attenuated Virus Vaccine in a Mouse Model. Viruses 2021; 13:v13122420. [PMID: 34960689 PMCID: PMC8709164 DOI: 10.3390/v13122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
H5N1 influenza virus is a threat to public health worldwide. The virus can cause severe morbidity and mortality in humans. We constructed an H5N1 influenza candidate virus vaccine from the A/chicken/Guizhou/1153/2016 strain that was recommended by the World Health Organization. In this study, we designed an H5N1 chimeric influenza A/B vaccine based on a cold-adapted (ca) influenza B virus B/Vienna/1/99 backbone. We modified the ectodomain of H5N1 hemagglutinin (HA) protein, while retaining the packaging signals of influenza B virus, and then rescued a chimeric cold-adapted H5N1 candidate influenza vaccine through a reverse genetic system. The chimeric H5N1 vaccine replicated well in eggs and the Madin-Darby Canine Kidney cells. It maintained a temperature-sensitive and cold-adapted phenotype. The H5N1 vaccine was attenuated in mice. Hemagglutination inhibition (HAI) antibodies, micro-neutralizing (MN) antibodies, and IgG antibodies were induced in immunized mice, and the mucosal IgA antibody responses were detected in their lung lavage fluids. The IFN-γ-secretion and IL-4-secretion by the mouse splenocytes were induced after stimulation with the specific H5N1 HA protein. The chimeric H5N1 candidate vaccine protected mice against lethal challenge with a wild-type highly pathogenic avian H5N1 influenza virus. The chimeric H5 candidate vaccine is thus a potentially safe, attenuated, and reassortment-incompetent vaccine with circulating A viruses.
Collapse
|
13
|
Chen J, Wang J, Zhang J, Ly H. Advances in Development and Application of Influenza Vaccines. Front Immunol 2021; 12:711997. [PMID: 34326849 PMCID: PMC8313855 DOI: 10.3389/fimmu.2021.711997] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus is one of the most important zoonotic pathogens that can cause severe symptoms and has the potential to cause high number of deaths and great economic loss. Vaccination is still the best option to prevent influenza virus infection. Different types of influenza vaccines, including live attenuated virus vaccines, inactivated whole virus vaccines, virosome vaccines, split-virion vaccines and subunit vaccines have been developed. However, they have several limitations, such as the relatively high manufacturing cost and long production time, moderate efficacy of some of the vaccines in certain populations, and lack of cross-reactivity. These are some of the problems that need to be solved. Here, we summarized recent advances in the development and application of different types of influenza vaccines, including the recent development of viral vectored influenza vaccines. We also described the construction of other vaccines that are based on recombinant influenza viruses as viral vectors. Information provided in this review article might lead to the development of safe and highly effective novel influenza vaccines.
Collapse
Affiliation(s)
- Jidang Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiehuang Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jipei Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, MN, United States
| |
Collapse
|
14
|
Universal Live-Attenuated Influenza Vaccine Candidates Expressing Multiple M2e Epitopes Protect Ferrets against a High-Dose Heterologous Virus Challenge. Viruses 2021; 13:v13071280. [PMID: 34209093 PMCID: PMC8310119 DOI: 10.3390/v13071280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
The development of an influenza vaccine with broad protection and durability remains an attractive idea due to the high mutation rate of the influenza virus. An extracellular domain of Matrix 2 protein (M2e) is among the most attractive target for the universal influenza vaccine owing to its high conservancy rate. Here, we generated two recombinant live attenuated influenza vaccine (LAIV) candidates encoding four M2e epitopes representing consensus sequences of human, avian and swine influenza viruses, and studied them in a preclinical ferret model. Both LAIV+4M2e viruses induced higher levels of M2e-specific antibodies compared to the control LAIV strain, with the LAIV/HA+4M2e candidate being significantly more immunogenic than the LAIV/NS+4M2e counterpart. A high-dose heterosubtypic influenza virus challenge revealed the highest degree of protection after immunization with LAIV/HA+4M2e strain, followed by the NS-modified LAIV and the classical LAIV virus. Furthermore, only the immune sera from the LAIV/HA+4M2e-immunized ferrets protected mice from a panel of lethal influenza viruses encoding M genes of various origins. These data suggest that the improved cross-protection of the LAIV/HA+4M2e universal influenza vaccine candidate was mediated by the M2e-targeted antibodies. Taking into account the safety profile and improved cross-protective potential, the LAIV/HA+4M2e vaccine warrants its further evaluation in a phase I clinical trial.
Collapse
|
15
|
Mucosal Priming with a Recombinant Influenza A Virus-Vectored Vaccine Elicits T-Cell and Antibody Responses to HIV-1 in Mice. J Virol 2021; 95:JVI.00059-21. [PMID: 33789991 DOI: 10.1128/jvi.00059-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Recombinant influenza A viral (IAV) vectors are potential to stimulate systemic and mucosal immunity, but the packaging capacity is limited and only one or a few epitopes can be carried. Here, we report the generation of a replication-competent IAV vector that carries a full-length HIV-1 p24 gene linked to the 5'-terminal coding region of the neuraminidase segment via a protease cleavage sequence (IAV-p24). IAV-p24 was successfully rescued and stably propagated, and P24 protein was efficiently expressed in infected mammalian cells. In BALB/c mice, IAV-p24 showed attenuated pathogenicity compared to that of the parental A/PR/8/34 (H1N1) virus. An intranasal inoculation with IAV-p24 elicited moderate HIV-specific cell-mediated immune (CMI) responses in the airway and vaginal tracts and in the spleen, and an intranasal boost with a replication-incompetent adenovirus type 2 vector expressing the HIV-1 gag gene (Ad2-gag) greatly improved these responses. Importantly, compared to an Ad2-gag prime plus IAV-p24 boost regimen, the IAV-p24 prime plus Ad2-gag boost regimen had a greater efficacy in eliciting HIV-specific CMI responses. P24-specific CD8+ T cells and antibodies were robustly provoked both systemically and in mucosal sites and showed long-term durability, revealing that IAV-p24 may be used as a mucosa-targeted priming vaccine. Our results illustrate that IAV-p24 is able to prime systemic and mucosal immunity against HIV-1 and warrants further evaluation in nonhuman primates.IMPORTANCE An effective HIV-1 vaccine remains elusive despite nearly 40 years of research. CD8+ T cells and protective antibodies may both be desirable for preventing HIV-1 infection in susceptible mucosal sites. Recombinant influenza A virus (IAV) vector has the potential to stimulate these immune responses, but the packaging capacity is extremely limited. Here, we describe a replication-competent IAV vector expressing the HIV-1 p24 gene (IAV-p24). Unlike most other IAV vectors that carried one or several antigenic epitopes, IAV-p24 stably expressed the full-length P24 protein, which contains multiple epitopes and is highly conserved among all known HIV-1 sequences. Compared to the parental A/PR/8/34 (H1N1) virus, IAV-p24 showed an attenuated pathogenicity in BALB/c mice. When combined with an adenovirus vector expressing the HIV-1 gag gene, IAV-p24 was able to prime P24-specific systemic and mucosal immune responses. IAV-p24 as an alternative priming vaccine against HIV-1 warrants further evaluation in nonhuman primates.
Collapse
|
16
|
Kanno AI, Barbosa MMF, Moraes L, Leite LCC. SARS-CoV-2 vaccine development and how Brazil is contributing. Genet Mol Biol 2021; 44:e20200320. [PMID: 33818582 PMCID: PMC8020624 DOI: 10.1590/1678-4685-gmb-2020-0320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/19/2021] [Indexed: 03/01/2023] Open
Abstract
The SARS-CoV-2 coronavirus pandemic calls for coordinated efforts by the scientific community for the development of vaccines. The most advanced strategies have focused on modifications of technologies that were already under development for other viruses, such as SARS, MERS, and even Influenza. Classic and new technologies, such as inactivated and attenuated viruses (non-replicative and replicative), DNA and mRNA vaccines, and nanoparticles containing SARS-CoV-2 antigens, are some of the strategies currently investigated. Although there is a very high expectation for the effectiveness of the most advanced vaccine candidates, there are still no established correlates of protection. Previous experience in vaccine development for other pathogens shows that differences in vaccine formulation can result in diverse immune responses and consequently, different protective properties. Therefore the importance of continuing investigations on a broad range of strategies. Expertise in vaccine development in Brazil was refocused to the new coronavirus. Impressive collaboration between institutions will support further developments until we have available a safe, effective, and economically viable vaccine. Established competence and collaborations will allow preparedness for future challenges and can also be used to address local issues as neglected infectious diseases.
Collapse
Affiliation(s)
- Alex I Kanno
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brazil
| | - Mayra M F Barbosa
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brazil
- Universidade de São Paulo, Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | - Luana Moraes
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brazil
- Universidade de São Paulo, Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | - Luciana C C Leite
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021; 10:pathogens10020119. [PMID: 33503845 PMCID: PMC7911756 DOI: 10.3390/pathogens10020119] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma pneumoniae is a major causative agent of community-acquired pneumonia which can lead to both acute upper and lower respiratory tract inflammation, and extrapulmonary syndromes. Refractory pneumonia caused by M. pneumonia can be life-threatening, especially in infants and the elderly. Here, based on a comprehensive review of the scientific literature related to the respective area, we summarize the virulence factors of M. pneumoniae and the major pathogenic mechanisms mediated by the pathogen: adhesion to host cells, direct cytotoxicity against host cells, inflammatory response-induced immune injury, and immune evasion. The increasing rate of macrolide-resistant strains and the harmful side effects of other sensitive antibiotics (e.g., respiratory quinolones and tetracyclines) in young children make it difficult to treat, and increase the health risk or re-infections. Hence, there is an urgent need for development of an effective vaccine to prevent M. pneumoniae infections in children. Various types of M. pneumoniae vaccines have been reported, including whole-cell vaccines (inactivated and live-attenuated vaccines), subunit vaccines (involving M. pneumoniae protein P1, protein P30, protein P116 and CARDS toxin) and DNA vaccines. This narrative review summarizes the key pathogenic mechanisms underlying M. pneumoniae infection and highlights the relevant vaccines that have been developed and their reported effectiveness.
Collapse
|
18
|
Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus. Pathogens 2020; 9:pathogens9060481. [PMID: 32570728 PMCID: PMC7350342 DOI: 10.3390/pathogens9060481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory illnesses in children, the elderly and immunocompromised patients. Although this pathogen was only discovered in 2001, an enormous amount of research has been conducted in order to develop safe and effective vaccines to prevent people from contracting the disease. In this review, we summarize current knowledge about the most promising experimental B- and T-cell epitopes of human metapneumovirus for the rational design of HMPV vaccines using vector delivery systems, paying special attention to the conservation of these epitopes among different lineages/genotypes of HMPV. The prospects of the successful development of an epitope-based HMPV vaccine are discussed in the context of recent findings regarding HMPV’s ability to modulate host immunity. In particular, we discuss the lack of data on experimental human CD4 T-cell epitopes for HMPV despite the role of CD4 lymphocytes in both the induction of higher neutralizing antibody titers and the establishment of CD8 memory T-cell responses. We conclude that current research should be focused on searching for human CD4 T-cell epitopes of HMPV that can help us to design a safe and cross-protective epitope-based HMPV vaccine.
Collapse
|
19
|
Behzadi MA, Stein KR, Bermúdez-González MC, Simon V, Nachbagauer R, Tortorella D. An Influenza Virus Hemagglutinin-Based Vaccine Platform Enables the Generation of Epitope Specific Human Cytomegalovirus Antibodies. Vaccines (Basel) 2019; 7:vaccines7020051. [PMID: 31207917 PMCID: PMC6630953 DOI: 10.3390/vaccines7020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent pathogen with ~60%–90% seropositivity in adults. CMV can contribute to organ rejection in transplant recipients and is a major cause of birth defects in newborns. Currently, there are no approved vaccines against CMV. The epitope of a CMV neutralizing monoclonal antibody against a conserved region of the envelope protein gH provided the basis for a new CMV vaccine design. We exploited the influenza A virus as a vaccine platform due to the highly immunogenic head domain of its hemagglutinin envelope protein. Influenza A variants were engineered by reverse genetics to express the epitope of an anti-CMV gH neutralizing antibody that recognizes native gH into the hemagglutinin antigenic Sa site. We determined that the recombinant influenza variants expressing 7, 10, or 13 residues of the anti-gH neutralizing antibody epitope were recognized and neutralized by the anti-gH antibody 10C10. Mice vaccinated with the influenza/CMV chimeric viruses induced CMV-specific antibodies that recognized the native gH protein and inhibited virus infection. In fact, the influenza variants expressing 7–13 gH residues neutralized a CMV infection at ~60% following two immunizations with variants expressing the 13 residue gH peptide produced the highest levels of neutralization. Collectively, our study demonstrates that a variant influenza virus inserted with a gH peptide can generate a humoral response that limits a CMV infection.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Maria Carolina Bermúdez-González
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|