1
|
Maličev E, Žiberna K, Jazbec K, Kolenc A, Mali P, Potokar UR, Rožman P. Cytokine, Anti-SARS-CoV-2 Antibody, and Neutralizing Antibody Levels in Conventional Blood Donors Who Have Recovered from COVID-19. Transfus Med Hemother 2024; 51:175-184. [PMID: 38867805 PMCID: PMC11166906 DOI: 10.1159/000531942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/02/2023] [Indexed: 06/14/2024] Open
Abstract
Background At the beginning of the pandemic, COVID-19 convalescent plasma (CCP) containing anti-SARS-CoV-2 antibodies was suggested as a source of therapy. In the last 3 years, many trials have demonstrated the limited usefulness of CCP therapy. This led us to the hypothesis that CCP could contain other elements, along with the desired neutralizing antibodies, which could potentially prevent it from having a therapeutic effect, among them cytokines, chemokines, growth factors, clotting factors, and autoantibodies. Methods In total, 39 cytokines were analyzed in the plasma of 190 blood donors, and further research focused on the levels of 23 different cytokines in CCP (sCD40L, eotaxin, FGF-2, FLT-3L, ractalkine, GRO-α, IFNα2, IL-1β, IL-1RA, IL-5, IL-6, IL-8, IL-12, IL-13, IL-15, IL-17E, IP-10, MCP-1, MIP-1b, PDGF-AA, TGFα, TNFα, and TRAIL). Anti-SARS-CoV-2 antibodies and neutralizing antibodies were detected in CCP. Results We found no significant differences between CCP taken within a maximum of 180 days from the onset of the first COVID-19 symptoms and the controls. We also made a comparison of the cytokine levels between the low neutralizing antibodies (<160) group and the high neutralizing antibodies (≥160) group and found there were no differences between the groups. Our research also showed no correlation either to levels of anti-SARS-CoV-2 IgG Ab or to the levels of neutralizing antibodies. There were also no significant changes in cytokine levels based on the period after the start of COVID-19 symptoms. Conclusions No elements which could potentially be responsible for preventing CCP from having a therapeutic effect were found.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Žiberna
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | | | - Ana Kolenc
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | | | - Primož Rožman
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
2
|
Vita S, D’Abramo A, Coppola A, Farroni C, Iori AP, Faraglia F, Sette A, Grifoni A, Lindestam Arlehamn C, Bibas M, Goletti D, Nicastri E. Combined antiviral therapy as effective and feasible option in allogenic hematopoietic stem cell transplantation during SARS-COV-2 infection: a case report. Front Oncol 2024; 14:1290614. [PMID: 38414746 PMCID: PMC10896944 DOI: 10.3389/fonc.2024.1290614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Here we describe the case of a 51 years old Italian woman with acute lymphoblastic leukemia who underwent to hematopoietic stem cell transplantation (HSCT) during SARS-COV-2 infection. She presented a prolonged COVID-19 successfully treated with dual anti SARS-COV-2 antiviral plus monoclonal antibody therapy.
Collapse
Affiliation(s)
- Serena Vita
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandra D’Abramo
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Coppola
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Chiara Farroni
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Paola Iori
- Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Francesca Faraglia
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Cecilia Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Michele Bibas
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Delia Goletti
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emanuele Nicastri
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
3
|
Franchini M, Focosi D. The Role of Convalescent Plasma in COVID-19: A Conclusive Post-Pandemic Review. Life (Basel) 2023; 13:2322. [PMID: 38137923 PMCID: PMC10744384 DOI: 10.3390/life13122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) has represented the frontline response to the COVID-19 pandemic, largely because of encouraging historical evidences in previous pandemics, biological plausibility, and the initial unavailability of targeted antivirals. Unfortunately, investigator-initiated randomized clinical trials in 2020, launched during a stressful pandemic peak, were designed mostly at addressing the main unmet need, i.e., treating critically ill hospitalized patients who were unlikely to benefit from any antiviral therapy. The failure of most of these drugs, in combination with the lack of any sponsor, led to the false belief that convalescent plasma was useless. With the relaxing pandemic stages, evidences have instead mounted that, when administered properly (i.e., within 5 days from onset of symptoms and at high titers of neutralizing antibodies), CCP is as effective as other antivirals at preventing disease progression in outpatients, and also reduces mortality in hospitalized patients. Recently, the focus of clinical use has been on immunosuppressed patients with persistent seronegativity and infection, where a randomized clinical trial has shown a reduction in mortality. Lessons learnt during the COVID-19 pandemic will be of utmost importance for future pandemics.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| |
Collapse
|
4
|
Aldunate F, Fajardo A, Ibañez N, Rammauro F, Daghero H, Arce R, Ferla D, Pereira-Gomez M, Salazar C, Iraola G, Pritsch O, Hurtado J, Tenzi J, Bollati-Fogolín M, Bianchi S, Nin N, Moratorio G, Moreno P. What have we learned from a case of convalescent plasma treatment in a two-time kidney transplant recipient COVID-19 patient? A case report from the perspective of viral load evolution and immune response. FRONTIERS IN NEPHROLOGY 2023; 3:1132763. [PMID: 37675346 PMCID: PMC10479756 DOI: 10.3389/fneph.2023.1132763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, can have a wide range of clinical manifestations, ranging from asymptomatic disease to potentially life-threatening complications. Convalescent plasma therapy has been proposed as an effective alternative for the treatment of severe cases. The aim of this study was to follow a two-time renal transplant patient with severe COVID-19 treated with convalescent plasma over time from an immunologic and virologic perspective. A 42-year-old female patient, who was a two-time kidney transplant recipient, was hospitalized with COVID-19. Due to worsening respiratory symptoms, she was admitted to the intensive care unit, where she received two doses of convalescent plasma. We analyzed the dynamics of viral load in nasopharyngeal swab, saliva, and tracheal aspirate samples, before and after convalescent plasma transfusion. The levels of pro-inflammatory cytokines and antibody titers were also measured in serum samples. A significant decrease in viral load was observed after treatment in the saliva and nasopharyngeal swab samples, and a slight decrease was observed in tracheal aspirate samples. In addition, we found evidence of an increase in antibody titers after transfusion, accompanied by a decrease in the levels of several cytokines responsible for cytokine storm.
Collapse
Affiliation(s)
- Fabian Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Natalia Ibañez
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Rammauro
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hellen Daghero
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rodrigo Arce
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Diego Ferla
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Marianoel Pereira-Gomez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Cecilia Salazar
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gregorio Iraola
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Otto Pritsch
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Javier Hurtado
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Jordan Tenzi
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | | | - Sergio Bianchi
- Laboratorio de Biomarcadores Moleculares, Departamento de Fisiopatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Genómica Funcional, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicolas Nin
- Unidad de Cuidados Intensivos, Hospital Español “Juan José Crottoggini”, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
5
|
Kandula UR, Tuji TS, Gudeta DB, Bulbula KL, Mohammad AA, Wari KD, Abbas A. Effectiveness of COVID-19 Convalescent Plasma (CCP) During the Pandemic Era: A Literature Review. J Blood Med 2023; 14:159-187. [PMID: 36855559 PMCID: PMC9968437 DOI: 10.2147/jbm.s397722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Worldwide pandemic with coronavirus disease-2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As November 2, 2022, World Health Organization (WHO) received 628,035,553 reported incidents on COVID-19, with 6,572,800 mortalities and, with a total 12,850,970,971 vaccine doses have been delivered as of October 31, 2022. The infection can cause mild or self-limiting symptoms of pulmonary and severe infections or death may be caused by SARS-CoV-2 infection. Simultaneously, antivirals, corticosteroids, immunological treatments, antibiotics, and anticoagulants have been proposed as potential medicines to cure COVID-19 affected patients. Among these initial treatments, COVID-19 convalescent plasma (CCP), which was retrieved from COVID-19 recovered patients to be used as passive immune therapy, in which antibodies from cured patients were given to infected patients to prevent illness. Such treatment has yielded the best results in earlier with preventative or early stages of illness. Convalescent plasma (CP) is the first treatment available when infectious disease initially appears, although few randomized controlled trials (RCTs) were conducted to evaluate its effectiveness. The historical record suggests with potential benefit for other respiratory infections, as coronaviruses like Severe Acute Respiratory Syndrome-CoV-I (SARS-CoV-I) and Middle Eastern Respiratory Syndrome (MERS), though the analysis of such research is constrained by some non-randomized experiments (NREs). Rigorous studies on CP are made more demanding by the following with the immediacy of the epidemics, CP use may restrict the ability to utilize it for clinical testing, non-homogenous nature of product, highly decentralized manufacturing process; constraints with capacity to measure biologic function, ultimate availability of substitute therapies, as antivirals, purified immune globulins, or monoclonal antibodies. Though, it is still not clear how effectively CCP works among hospitalized COVID-19 patients. The current review tries to focus on its efficiency and usage in clinical scenarios and identifying existing benefits of implementation during pandemic or how it may assist with future pandemic preventions.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Techane Sisay Tuji
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Kassech Leta Bulbula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Ketema Diriba Wari
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Ahmad Abbas
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
6
|
Current and Emerging Therapies for COVID-19 in Lung Transplantation. CURRENT PULMONOLOGY REPORTS 2023; 12:23-35. [PMID: 36820015 PMCID: PMC9932416 DOI: 10.1007/s13665-023-00302-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Purpose of Review The landscape of the coronavirus disease 2019 (COVID-19) pandemic has rapidly changed over the past 3 years. Paralleling this evolution, the scientific and medical communities have reported many novel findings relating to the infection's epidemiology, transmission, diagnosis, and treatment. We review pertinent studies of COVID-19 therapeutics with an emphasis on their application to lung transplant recipients. Recent Findings Agents that have been well-studied for treating COVID-19 include antivirals (remdesivir, nirmatrelvir/ritonavir, molnupiravir), monoclonal antibodies, and immunomodulators (for example, corticosteroids and tocilizumab). Summary Remdesivir remains an essential therapy for managing mild-moderate COVID-19. Though highly efficacious for mild-moderate COVID-19 for outpatient therapy, ritonavir-boosted nirmatrelvir has limited use in lung transplant recipients due to significant drug-drug interactions. Monoclonal antibodies, though useful, are the most affected by the emergence of new viral variants.
Collapse
|
7
|
Focosi D, Franchini M, Senefeld JW, Casadevall A, Joyner MJ. Convalescent plasma for COVID-19 in oncohematological patients: a call for revision of the European Conference on Infections in Leukemia-9 (ECIL-9) guidelines. JOURNAL OF CLINICAL VIROLOGY PLUS 2023; 3:100128. [PMID: 36504695 PMCID: PMC9722234 DOI: 10.1016/j.jcvp.2022.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, via Paradisa 2, Pisa 56124, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Jonathon W Senefeld
- Department of Anesthesiology, Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, United States
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD 21218, United States
| | - Michael J Joyner
- Department of Anesthesiology, Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, United States
| |
Collapse
|
8
|
Senefeld JW, Franchini M, Mengoli C, Cruciani M, Zani M, Gorman EK, Focosi D, Casadevall A, Joyner MJ. COVID-19 Convalescent Plasma for the Treatment of Immunocompromised Patients: A Systematic Review and Meta-analysis. JAMA Netw Open 2023; 6:e2250647. [PMID: 36633846 PMCID: PMC9857047 DOI: 10.1001/jamanetworkopen.2022.50647] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023] Open
Abstract
Importance Patients who are immunocompromised have increased risk for morbidity and mortality associated with coronavirus disease 2019 (COVID-19) because they less frequently mount antibody responses to vaccines. Although neutralizing anti-spike monoclonal-antibody treatment has been widely used to treat COVID-19, evolutions of SARS-CoV-2 have been associated with monoclonal antibody-resistant SARS-CoV-2 variants and greater virulence and transmissibility of SARS-CoV-2. Thus, the therapeutic use of COVID-19 convalescent plasma has increased on the presumption that such plasma contains potentially therapeutic antibodies to SARS-CoV-2 that can be passively transferred to the plasma recipient. Objective To assess the growing number of reports of clinical experiences of patients with COVID-19 who are immunocompromised and treated with specific neutralizing antibodies via COVID-19 convalescent plasma transfusion. Data Sources On August 12, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma use in patients who are immunocompromised. Study Selection Randomized clinical trials, matched cohort studies, and case report or series on COVID-19 convalescent plasma use in patients who are immunocompromised were included. The electronic search yielded 462 unique records, of which 199 were considered for full-text screening. Data Extraction and Synthesis The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 3 independent reviewers in duplicate and pooled. Main Outcomes and Meaures The prespecified end point was all-cause mortality after COVID-19 convalescent plasma transfusion; exploratory subgroup analyses were performed based on putative factors associated with the potential mortality benefit of convalescent plasma. Results This systematic review and meta-analysis included 3 randomized clinical trials enrolling 1487 participants and 5 controlled studies. Additionally, 125 case series or reports enrolling 265 participants and 13 uncontrolled large case series enrolling 358 participants were included. Separate meta-analyses, using models both stratified and pooled by study type (ie, randomized clinical trials and matched cohort studies), demonstrated that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for the amalgam of both randomized clinical trials and matched cohort studies (risk ratio [RR], 0.63 [95% CI, 0.50-0.79]). Conclusions and Relevance These findings suggest that transfusion of COVID-19 convalescent plasma is associated with mortality benefit for patients who are immunocompromised and have COVID-19.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Carlo Mengoli
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Mario Cruciani
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Matteo Zani
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Focosi D, Franchini M. Home and Out-of-Hospital Therapy with COVID-19 Convalescent Plasma in Europe. Life (Basel) 2022; 12:1704. [PMID: 36362859 PMCID: PMC9692823 DOI: 10.3390/life12111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2023] Open
Abstract
COVID19 convalescent plasma (CCP) has proven an effective treatment for outpatients, and CCP collected from vaccinated donors is among the few effective therapeutic options for immunocompromised patients. Despite this, most countries are still relying over in-hospital compassionate usages outside clinical trials. Given the need for early treatment, home transfusions are expecially needed. We review here the state of the art for out-of-hospital CCP transfusions and discuss solutions to potential burocratic hurdles.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| |
Collapse
|
10
|
Focosi D, Franchini M, Pirofski LA, Burnouf T, Paneth N, Joyner MJ, Casadevall A. COVID-19 Convalescent Plasma and Clinical Trials: Understanding Conflicting Outcomes. Clin Microbiol Rev 2022; 35:e0020021. [PMID: 35262370 PMCID: PMC9491201 DOI: 10.1128/cmr.00200-21] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convalescent plasma (CP) recurs as a frontline treatment in epidemics because it is available as soon as there are survivors. The COVID-19 pandemic represented the first large-scale opportunity to shed light on the mechanisms of action, safety, and efficacy of CP using modern evidence-based medicine approaches. Studies ranging from observational case series to randomized controlled trials (RCTs) have reported highly variable efficacy results for COVID-19 CP (CCP), resulting in uncertainty. We analyzed variables associated with efficacy, such as clinical settings, disease severity, CCP SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antibody levels and function, dose, timing of administration (variously defined as time from onset of symptoms, molecular diagnosis, diagnosis of pneumonia, or hospitalization, or by serostatus), outcomes (defined as hospitalization, requirement for ventilation, clinical improvement, or mortality), CCP provenance and time for collection, and criteria for efficacy. The conflicting trial results, along with both recent WHO guidelines discouraging CCP usage and the recent expansion of the FDA emergency use authorization (EUA) to include outpatient use of CCP, create confusion for both clinicians and patients about the appropriate use of CCP. A review of 30 available RCTs demonstrated that signals of efficacy (including reductions in mortality) were more likely if the CCP neutralizing titer was >160 and the time to randomization was less than 9 days. The emergence of the Omicron variant also reminds us of the benefits of polyclonal antibody therapies, especially as a bridge to the development and availability of more specific therapies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Nigel Paneth
- Department of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Gachoud D, Pillonel T, Tsilimidos G, Battolla D, Dumas D, Opota O, Fontana S, Vollenweider P, Manuel O, Greub G, Bertelli C, Rufer N. Antibody response and intra-host viral evolution after plasma therapy in COVID-19 patients pre-exposed or not to B-cell-depleting agents. Br J Haematol 2022; 199:549-559. [PMID: 36101920 PMCID: PMC9539045 DOI: 10.1111/bjh.18450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 12/16/2022]
Abstract
Administration of plasma therapy may contribute to viral control and survival of COVID-19 patients receiving B-cell-depleting agents that impair humoral immunity. However, little is known on the impact of anti-CD20 pre-exposition on the kinetics of SARS-CoV-2-specific antibodies. Here, we evaluated the relationship between anti-spike immunoglobulin G (IgG) kinetics and the clinical status or intra-host viral evolution after plasma therapy in 36 eligible hospitalized COVID-19 patients, pre-exposed or not to B-cell-depleting treatments. The majority of anti-CD20 pre-exposed patients (14/17) showed progressive declines of anti-spike IgG titres following plasma therapy, contrasting with the 4/19 patients who had not received B-cell-depleting agents (p = 0.0006). Patients with antibody decay also depicted prolonged clinical symptoms according to the World Health Organization (WHO) severity classification (p = 0.0267) and SARS-CoV-2 viral loads (p = 0.0032) before complete virus clearance. Moreover, they had higher mutation rates than patients able to mount an endogenous humoral response (p = 0.015), including three patients with one to four spike mutations, potentially associated with immune escape. No relevant differences were observed between patients treated with plasma from convalescent and/or mRNA-vaccinated donors. Our study emphasizes the need for an individualized clinical care and follow-up in the management of COVID-19 patients with B-cell lymphopenia.
Collapse
Affiliation(s)
- David Gachoud
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland,Medical Education Unit, School of Medicine, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Trestan Pillonel
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Gerasimos Tsilimidos
- Division of Hematology, Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Dunia Battolla
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Dominique Dumas
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Onya Opota
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Stefano Fontana
- Interregional Blood Transfusion SRCBernSwitzerland,Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Peter Vollenweider
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, Department of MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Gilbert Greub
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland,Infectious Diseases Service and Transplantation Center, Department of MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Claire Bertelli
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Nathalie Rufer
- Interregional Blood Transfusion SRCEpalingesSwitzerland,Department of OncologyLausanne University Hospital and University of LausanneEpalingesSwitzerland
| |
Collapse
|
12
|
Belcari G, Conti A, Mazzoni A, Lanza M, Mazzetti P, Focosi D. Clinical and Virological Response to Convalescent Plasma in a Chronic Lymphocytic Leukemia Patient with COVID-19 Pneumonia. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071098. [PMID: 35888185 PMCID: PMC9319583 DOI: 10.3390/life12071098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 12/28/2022]
Abstract
The burden of COVID-19 remains unchanged for immunocompromised patients who do not respond to vaccines. Unfortunately, Omicron sublineages are resistant to monoclonal antibodies authorized in Europe so far, and small chemical antivirals have contraindications and toxicities that have not been studied in these patients. We report here the successful treatment of COVID-19 pneumonia lasting for 4 months after the transfusion of COVID-19 convalescent plasma (CCP) in a patient with severe immunosuppression due to both chronic lymphocytic leukemia and venetoclax treatment. The patient achieved a complete clinical, radiological and virological response after six transfusions (600 mL each) of high-titer CCP collected from triple-vaccinated and convalescent donors. This dramatic case adds to the mounting evidence of CCP efficacy in immunocompromised patients, provided that high-titer and large volumes are infused.
Collapse
Affiliation(s)
- Giovanni Belcari
- Division of Emergency Medicine, ASL Toscana Nord-Ovest, 56124 Pisa, Italy;
| | - Alberto Conti
- Department of Emergency Medicine, ASL Toscana Nord-Ovest, 56124 Pisa, Italy;
| | - Alessandro Mazzoni
- Division of Transfusion Medicine, Pisa University Hospital, 56124 Pisa, Italy;
| | - Maria Lanza
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Paola Mazzetti
- Division of Virology, Pisa University Hospital, 56124 Pisa, Italy;
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
- Correspondence:
| |
Collapse
|
13
|
Findlay-Wilson S, Easterbrook L, Smith S, Pope N, Humphries G, Schuhmann H, Ngabo D, Rayner E, Otter AD, Coleman T, Hicks B, Graham VA, Halkerston R, Apostolakis K, Taylor S, Fotheringham S, Horton A, Tree JA, Wand M, Hewson R, Dowall SD. Development of a cost-effective ovine antibody-based therapy against SARS-CoV-2 infection and contribution of antibodies specific to the spike subunit proteins. Antiviral Res 2022; 203:105332. [PMID: 35533779 PMCID: PMC9075985 DOI: 10.1016/j.antiviral.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
Antibodies against SARS-CoV-2 are important to generate protective immunity, with convalescent plasma one of the first therapies approved. An alternative source of polyclonal antibodies suitable for upscaling would be more amendable to regulatory approval and widespread use. In this study, sheep were immunised with SARS-CoV-2 whole spike protein or one of the subunit proteins: S1 and S2. Once substantial antibody titres were generated, plasma was collected and samples pooled for each antigen. Non-specific antibodies were removed via affinity-purification to yield candidate products for testing in a hamster model of SARS-CoV-2 infection. Affinity-purified polyclonal antibodies to whole spike, S1 and S2 proteins were evaluated for in vitro for neutralising activity against SARS-CoV-2 Wuhan-like virus (Australia/VIC01/2020) and a recent variant of concern, B.1.1.529 BA.1 (Omicron), antibody-binding, complement fixation and phagocytosis assays were also performed. All antibody preparations demonstrated an effect against SARS-CoV-2 disease in the hamster model of challenge, with those raised against the S2 subunit providing the most promise. A rapid, cost-effective therapy for COVID-19 was developed which provides a source of highly active immunoglobulin specific to SARS-CoV-2 with multi-functional activity.
Collapse
Affiliation(s)
- Stephen Findlay-Wilson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Linda Easterbrook
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Sandra Smith
- International Therapeutic Proteins Ltd (Australia), Longford, Tasmania, 7301, Australia
| | - Neville Pope
- International Therapeutic Proteins Ltd (UK), Goleigh Farm, Selborne, Hampshire, GU34 3SE, UK
| | - Gareth Humphries
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Holger Schuhmann
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Didier Ngabo
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Emma Rayner
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Ashley David Otter
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Tom Coleman
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Bethany Hicks
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Anne Graham
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Rachel Halkerston
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Kostis Apostolakis
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stephen Taylor
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Susan Fotheringham
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Amanda Horton
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Julia Anne Tree
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Matthew Wand
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stuart David Dowall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
14
|
D'Abramo A, Vita S, Maffongelli G, Beccacece A, Agrati C, Cimini E, Colavita F, Giancola ML, Cavasio A, Nicastri E. Clinical Management of Patients With B-Cell Depletion Agents to Treat or Prevent Prolonged and Severe SARS-COV-2 Infection: Defining a Treatment Pathway. Front Immunol 2022; 13:911339. [PMID: 35711444 PMCID: PMC9196078 DOI: 10.3389/fimmu.2022.911339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
Introduction Immunocompromised patients with B-cell depletion agents are at risk for persistence and/or severe SARS-COV-2 infection. We describe a case series of 21 COVID-19 patients under B cell depletion therapy, mostly treated with a combined therapy based on intravenous remdesevir (RDV) and steroid associated with SARS-CoV-2 monoclonal antibodies against Spike glycoprotein and/or hyper-immune convalescent plasma. Methods This is a single-center longitudinal study. We retrospectively enrolled a total number of 21 B-cell depleted consecutive hospitalized patients with COVID-19 at the Lazzaro Spallanzani National Institute for Infectious Diseases, Rome, Italy, from November 2020 to December 2021. Demographic characteristics, medical history, clinical presentation, treatment, adverse drug reactions, and clinical and virological outcome were collected for all patients. In a subgroup, we explore immune T cells activation, T cells specific anti-SARS-COV-2 response, and neutralizing antibodies. Results Twenty-one inpatients with B-cell depletion and SARS-COV-2 infection were enrolled. A median of 1 B cells/mm3 was detected. Eighteen patients presented hypogammaglobulinemia. All patients presented interstitial pneumonia treated with intravenous RDV and steroids. Sixteen patients were treated with monoclonal antibodies against SARS-CoV-2 Spike protein, four patients were treated with SARS-CoV-2 hyper-immune convalescent plasma infusion, and three patients received both treatments. A variable kinetic of T cell activation returning to normal levels at Day 30 after immunotherapy infusion was observed. All treated patients recovered. Conclusion In COVID-19 immunosuppressed subjects, it is mandatory to establish a prompt, effective, and combined multi-target therapy including oxygen, antiviral, steroid, and antibody-based therapeutics, tailored to the patient’s clinical needs.
Collapse
Affiliation(s)
- Alessandra D'Abramo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), Rome, Italy
| | - Serena Vita
- National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), Rome, Italy
| | - Gaetano Maffongelli
- National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), Rome, Italy
| | - Alessia Beccacece
- National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), Rome, Italy
| | - Chiara Agrati
- National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), Rome, Italy
| | - Eleonora Cimini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), Rome, Italy
| | - Francesca Colavita
- National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), Rome, Italy
| | | | - Alessandro Cavasio
- Clinical Infectious Diseases, Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), Rome, Italy
| | | |
Collapse
|
15
|
Beraud M, Goodhue Meyer E, Lozano M, Bah A, Vassallo R, Brown BL. Lessons learned from the use of convalescent plasma for the treatment of COVID-19 and specific considerations for immunocompromised patients. Transfus Apher Sci 2022; 61:103355. [PMID: 35063360 PMCID: PMC8757642 DOI: 10.1016/j.transci.2022.103355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) convalescent plasma (CovCP) infusions have been widely used for the treatment of hospitalized patients with COVID-19. The aims of this narrative review were to analyze the safety and efficacy of CovCP infusions in the overall population and in immunocompromised patients with COVID-19 and to identify the lessons learned concerning the use of convalescent plasma (CP) to fill treatment gaps for emerging viruses. Systematic searches (PubMed, Scopus, and COVID-19 Research) were conducted to identify peer-reviewed articles and pre-prints published between March 1, 2020 and May 1, 2021 on the use of CovCP for the treatment of patients with COVID-19. From 261 retrieved articles, 37 articles reporting robust controlled studies in the overall population of patients with COVID-19 and 9 articles in immunocompromised patients with COVID-19 were selected. While CovCP infusions are well tolerated in both populations, they do not seem to improve clinical outcomes in critically-ill patients with COVID-19 and no conclusion could be drawn concerning their potential benefits in immunocompromised patients with COVID-19. To be better prepared for future epidemics/pandemics and to evaluate potential benefits of CP treatment, only CP units with high neutralizing antibodies (NAbs) titers should be infused in patients with low NAb titers, patient eligibility criteria should be based on the disease pathophysiology, and measured clinical outcomes and methods should be comparable across studies. Even if CovCP infusions did not improve clinical outcomes in patients with COVID-19, NAb-containing CP infusions remain a safe, widely available and potentially beneficial treatment option for future epidemics/pandemics.
Collapse
Affiliation(s)
- Mickael Beraud
- Terumo Blood and Cell Technologies Europe NV, Ikaroslaan 41, 1930, Zaventem, Belgium.
| | - Erin Goodhue Meyer
- Terumo Blood and Cell Technologies, 10811 W Collins Ave, Lakewood, CO, 80215, United States.
| | - Miquel Lozano
- Department of Hemotherapy and Hemostasis, ICMHO, University Clinic Hospital, IDIBAPS, University of Barcelona, Villarroel 170, 08036, Barcelona, Catalonia, Spain.
| | - Aicha Bah
- Terumo Blood and Cell Technologies Europe NV, Ikaroslaan 41, 1930, Zaventem, Belgium.
| | - Ralph Vassallo
- Vitalant, 6210 E Oak St, Scottsdale, AZ, 85257, United States.
| | - Bethany L Brown
- American Red Cross, Biomedical Services, Holland Laboratory for the Biomedical Sciences, 15601 Crabbs Branch Way, Rockville, MD, 20855, United States.
| |
Collapse
|
16
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
17
|
Lehman HK, Yu KOA, Towe CT, Risma KA. Respiratory Infections in Patients with Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:683-691.e1. [PMID: 34890826 DOI: 10.1016/j.jaip.2021.10.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Recurrent and life-threatening respiratory infections are nearly universal in patients with primary immunodeficiency diseases (PIDD). Early recognition, aggressive treatment, and prophylaxis with antimicrobials and immunoglobulin replacement have been the mainstays of management and will be reviewed here with an emphasis on respiratory infections. Genetic discoveries have allowed direct translation of research to clinical practice, improving our understanding of clinical patterns of pathogen susceptibilities and guiding prophylaxis. The recent identification of inborn errors in type I interferon signaling as a basis for life-threatening viral infections in otherwise healthy individuals suggests another targetable pathway for treatment and/or prophylaxis. The future of PIDD diagnosis will certainly involve early genetic identification by newborn screening before onset of infections, with early treatment offering the potential of preventing disease complications such as chronic lung changes. Gene editing approaches offer tremendous therapeutic potential, with rapidly emerging delivery systems. Antiviral therapies are desperately needed, and specific cellular therapies show promise in patients requiring hematopoietic stem cell transplantation. The introduction of approved therapies for clinical use in PIDD is limited by the difficulty of studying outcomes in rare patients/conditions with conventional clinical trials.
Collapse
Affiliation(s)
- Heather K Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, and John R. Oishei Children's Hospital, Buffalo, NY.
| | - Karl O A Yu
- Division of Infectious Diseases, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, and John R. Oishei Children's Hospital, Buffalo, NY
| | - Christopher T Towe
- Division of Pulmonary Medicine, Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kimberly A Risma
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
18
|
Focosi D, Franchini M, Pirofski LA, Maggi F, Casadevall A. Is SARS-CoV-2 viral clearance in nasopharyngeal swabs an appropriate surrogate marker for clinical efficacy of neutralising antibody-based therapeutics? Rev Med Virol 2021; 32:e2314. [PMID: 34861088 DOI: 10.1002/rmv.2314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Viral clearance is likely the best way to assess the efficacy of antibody-based therapies. Although antibodies can mediate a variety of effects that include modulation of inflammation, the demonstration of viral clearance provides an accessible and measurable parameter that can be used to evaluate efficacy and determine dosing. Therefore, it is important to ascertain the ability of monoclonal antibodies and convalescent plasma to effect viral clearance. For COVID-19, which is caused by the respiratory virus SARS-CoV-2, the most common assay to assess viral clearance is via a nasopharyngeal swab (NPS). However, assessment of antibody efficacy by sampling this site may be misleading because it may not be as accessible to serum antibodies as respiratory secretions or circulating blood. Adding to the complexity of assessing the efficacy of administered antibody, particularly in randomised controlled trials (RCTs) that enroled patients at different times after the onset of COVID-19 symptoms, viral clearance may also be mediated by endogenous antibody. In this article we critically review available data on viral clearance in RCTs, matched control studies, case series and case reports of antibody therapies in an attempt to identify variables that contribute to antibody efficacy and suggest optimal strategies for future studies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Departments of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, New York City, New York, USA
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.,Laboratory of Microbiology, ASST Sette Laghi, Varese, Italy
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Safety and Efficacy of Convalescent Plasma in COVID-19: An Overview of Systematic Reviews. Diagnostics (Basel) 2021; 11:diagnostics11091663. [PMID: 34574004 PMCID: PMC8467957 DOI: 10.3390/diagnostics11091663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Convalescent plasma (CP) from patients recovered from COVID-19 is one of the most studied anti-viral therapies against SARS-COV-2 infection. The aim of this study is to summarize the evidence from the available systematic reviews on the efficacy and safety of CP in COVID-19 through an overview of the published systematic reviews (SRs). A systematic literature search was conducted up to August 2021 in Embase, PubMed, Web of Science, Cochrane and Medrxiv databases to identify systematic reviews focusing on CP use in COVID-19. Two review authors independently evaluated reviews for inclusion, extracted data and assessed quality of evidence using AMSTAR (A Measurement Tool to Assess Reviews) and GRADE tools. The following outcomes were analyzed: mortality, viral clearance, clinical improvement, length of hospital stay, adverse reactions. In addition, where possible, subgroup analyses were performed according to study design (e.g., RCTs vs. non-RCTs), CP neutralizing antibody titer and timing of administration, and disease severity. The methodological quality of included studies was assessed using the checklist for systematic reviews AMSTAR-2 and the GRADE assessment. Overall, 29 SRs met the inclusion criteria based on 53 unique primary studies (17 RCT and 36 non-RCT). Limitations to the methodological quality of reviews most commonly related to absence of a protocol (11/29) and funding sources of primary studies (27/29). Of the 89 analyses on which GRADE judgements were made, effect estimates were judged to be of high/moderate certainty in four analyses, moderate in 38, low in 38, very low in nine. Despite the variability in the certainty of the evidence, mostly related to the risk of bias and inconsistency, the results of this umbrella review highlight a mortality reduction in CP over standard therapy when administered early and at high titer, without increased adverse reactions.
Collapse
|
20
|
Nguyen D, Simmonds P, Steenhuis M, Wouters E, Desmecht D, Garigliany M, Romano M, Barbezange C, Maes P, Van Holm B, Mendoza J, Oyonarte S, Fomsgaard A, Lassaunière R, Zusinaite E, Resman Rus K, Avšič-Županc T, Reimerink JH, Brouwer F, Hoogerwerf M, Reusken CB, Grodeland G, Le Cam S, Gallian P, Amroun A, Brisbarre N, Martinaud C, Leparc Goffart I, Schrezenmeier H, Feys HB, van der Schoot CE, Harvala H. SARS-CoV-2 neutralising antibody testing in Europe: towards harmonisation of neutralising antibody titres for better use of convalescent plasma and comparability of trial data. ACTA ACUST UNITED AC 2021; 26. [PMID: 34240697 PMCID: PMC8268650 DOI: 10.2807/1560-7917.es.2021.26.27.2100568] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We compared the performance of SARS-CoV-2 neutralising antibody testing between 12 European laboratories involved in convalescent plasma trials. Raw titres differed almost 100-fold differences between laboratories when blind-testing 15 plasma samples. Calibration of titres in relation to the reference reagent and standard curve obtained by testing a dilution series reduced the inter-laboratory variability ca 10-fold. The harmonisation of neutralising antibody quantification is a vital step towards determining the protective and therapeutic levels of neutralising antibodies.
Collapse
Affiliation(s)
- Dung Nguyen
- University of Oxford, Oxford, United Kingdom
| | | | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | - Elise Wouters
- Transfusion Research Centre, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Daniel Desmecht
- Department of Pathology, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Mutien Garigliany
- Department of Pathology, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Marta Romano
- Immune Response service, Sciensano, Brussels, Belgium
| | | | - Piet Maes
- KU Leuven, Rega Institute, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Bram Van Holm
- KU Leuven, Rega Institute, Clinical and Epidemiological Virology, Leuven, Belgium
| | | | - Salvador Oyonarte
- Andalusian Network of Transfusion Medicine, Tissues and Cells, Sevilla, Spain
| | - Anders Fomsgaard
- Virus and Microbiological Special Diagnostics, Statens Serum Institute, Copenhagen, Denmark
| | - Ria Lassaunière
- Virus and Microbiological Special Diagnostics, Statens Serum Institute, Copenhagen, Denmark
| | - Eva Zusinaite
- Tartu University Institute of Technology, Tartu, Estonia
| | | | | | - Johan Hj Reimerink
- Centre for Infectious Disease Control, WHO COVID-19 Reference Laboratory, RIVML, Bilthoven, the Netherlands
| | - Fiona Brouwer
- Centre for Infectious Disease Control, WHO COVID-19 Reference Laboratory, RIVML, Bilthoven, the Netherlands
| | - Marieke Hoogerwerf
- Centre for Infectious Disease Control, WHO COVID-19 Reference Laboratory, RIVML, Bilthoven, the Netherlands
| | - Chantal Bem Reusken
- Centre for Infectious Disease Control, WHO COVID-19 Reference Laboratory, RIVML, Bilthoven, the Netherlands
| | - Gunnveig Grodeland
- Dep. of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sophie Le Cam
- Etablissement Français du Sang, La Plaine Saint Denis, France
| | - Pierre Gallian
- Etablissement Français du Sang, La Plaine Saint Denis, France.,Unité des Virus Émergents (Aix-Marseille University - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France
| | - Abdennour Amroun
- Unité des Virus Émergents (Aix-Marseille University - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France
| | - Nadège Brisbarre
- Unité des Virus Émergents (Aix-Marseille University - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France.,Etablissement français du Sang Provence Alpes Côte d'Azur et Corse, Marseille, France
| | | | | | - Hubert Schrezenmeier
- Department of Transfusion Medicine, Ulm University, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Wurttemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Hendrik B Feys
- Transfusion Research Centre, Belgian Red Cross-Flanders, Ghent, Belgium
| | - C Ellen van der Schoot
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, Colindale, United Kingdom.,University College of London, London, United Kingdom
| |
Collapse
|