1
|
Zhang L, Liu J, Gao D, Li D. Role of ghrelin in promoting catch-up growth and maintaining metabolic homeostasis in small-for-gestational-age infants. Front Pediatr 2024; 12:1395571. [PMID: 38903769 PMCID: PMC11187245 DOI: 10.3389/fped.2024.1395571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Small-for-gestational age (SGA) has been a great concern in the perinatal period as it leads to adverse perinatal outcomes and increased neonatal morbidity and mortality, has an impact on long-term health outcomes, and increases the risk of metabolic disorders, cardiovascular, and endocrine diseases in adulthood. As an endogenous ligand of the growth hormone secretagotor (GHS-R), ghrelin may play an important role in regulating growth and energy metabolic homeostasis from fetal to adult life. We reviewed the role of ghrelin in catch-up growth and energy metabolism of SGA in recent years. In addition to promoting SGA catch-up growth, ghrelin may also participate in SGA energy metabolism and maintain metabolic homeostasis. The causes of small gestational age infants are very complex and may be related to a variety of metabolic pathway disorders. The related signaling pathways regulated by ghrelin may help to identify high-risk groups of SGA metabolic disorders and formulate targeted interventions to prevent the occurrence of adult dwarfism, insulin resistance-related metabolic syndrome and other diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingfei Liu
- Department of Neonatology, Dalian Women and Children’s Medical Group, Dalian, China
| | - Dianyong Gao
- Department of Orthopedics, Lushunkou District People’s Hospital, Dalian, China
| | - Dong Li
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Grace MR, Vora NL, Smeester L, Dotters-Katz SK, Fry RC, Bae-Jump V, Boggess K. Sex-Dependent Differences in Mouse Placental Gene Expression following a Maternal High-Fat Diet. Am J Perinatol 2024; 41:e1273-e1280. [PMID: 36608700 PMCID: PMC10427734 DOI: 10.1055/a-2008-8286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE In utero fetal exposures may have sex-specific placental gene responses. Our objective was to measure sex-based differences in placental gene expression from dams fed high-fat diet (HFD) versus control diet (CD). STUDY DESIGN We fed timed pregnant Friend virus B-strain dams either a CD (n = 5) or an HFD (n = 5). We euthanized dams on embryonic day 17.5 to collect placentas. We extracted placental RNA and hybridized it to a customized 96-gene Nanostring panel focusing on angiogenic, inflammatory, and growth genes. We compared normalized gene expression between CD and HFD, stratified by fetal sex, using analysis of variance. Pathway analysis was used to further interpret the genomic data. RESULTS Pups from HFD-fed dams were heavier than those from CD-fed dams (0.97 ± 0.06 vs. 0.84 ± 0.08 g, p < 0.001). Male pups were heavier than females in the HFD (0.99 ± 0.05 vs. 0.94 ± 0.06 g, p = 0.004) but not CD (0.87 ± 0.08 vs. 0.83 ± 0.07 g, p = 0.10) group. No sex-based differences in placental gene expression in CD-fed dams were observed. Among HFD-fed dams, placentas from female pups exhibited upregulation of 15 genes (q = 0.01). Network analyses identified a cluster of genes involved in carbohydrate metabolism, cellular function and maintenance, and endocrine system development and function (p = 1 × 10-23). The observed female-specific increased gene expression following in utero HFD exposure was predicted to be regulated by insulin (p = 5.79 × 10-13). CONCLUSION In female compared with male pups, in utero exposure to HFD upregulated placental gene expression in 15 genes predicted to be regulated by insulin. Sex-specific differences in placental expression of these genes should be further investigated. KEY POINTS · Male pups were heavier than female pups at the time of sacrifice when dams were fed an HFD.. · HFD was associated with upregulated gene expression in female placentas.. · Female-specific increased gene was predicted to be regulated by insulin..
Collapse
Affiliation(s)
- Matthew R. Grace
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Neeta L. Vora
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Lisa Smeester
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Sarah K. Dotters-Katz
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina
| | - Rebecca C. Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, North Carolina
| | - Kim Boggess
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Page L, Younge N, Freemark M. Hormonal Determinants of Growth and Weight Gain in the Human Fetus and Preterm Infant. Nutrients 2023; 15:4041. [PMID: 37764824 PMCID: PMC10537367 DOI: 10.3390/nu15184041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The factors controlling linear growth and weight gain in the human fetus and newborn infant are poorly understood. We review here the changes in linear growth, weight gain, lean body mass, and fat mass during mid- and late gestation and the early postnatal period in the context of changes in the secretion and action of maternal, placental, fetal, and neonatal hormones, growth factors, and adipocytokines. We assess the effects of hormonal determinants on placental nutrient delivery and the impact of preterm delivery on hormone expression and postnatal growth and metabolic function. We then discuss the effects of various maternal disorders and nutritional and pharmacologic interventions on fetal and perinatal hormone and growth factor production, growth, and fat deposition and consider important unresolved questions in the field.
Collapse
Affiliation(s)
- Laura Page
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Noelle Younge
- Neonatology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Michael Freemark
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
- The Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Östling H, Lodefalk M, Backman H, Kruse R. Global microRNA and protein expression in human term placenta. Front Med (Lausanne) 2022; 9:952827. [PMID: 36330066 PMCID: PMC9622934 DOI: 10.3389/fmed.2022.952827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Description of the global expression of microRNAs (miRNAs) and proteins in healthy human term placentas may increase our knowledge of molecular biological pathways that are important for normal fetal growth and development in term pregnancy. The aim of this study was to explore the global expression of miRNAs and proteins, and to point out functions of importance in healthy term placentas. Materials and methods Placental samples (n = 19) were identified in a local biobank. All samples were from uncomplicated term pregnancies with vaginal births and healthy, normal weight newborns. Next-generation sequencing and nano-scale liquid chromatographic tandem mass spectrometry were used to analyse miRNA and protein expression, respectively. Results A total of 895 mature miRNAs and 6,523 proteins were detected in the placentas, of which 123 miRNAs and 346 proteins were highly abundant. The miRNAs were in high degree mapped to chromosomes 19, 14, and X. Analysis of the highly abundant miRNAs and proteins showed several significantly predicted functions in common, including immune and inflammatory response, lipid metabolism and development of the nervous system. Discussion The predicted function inflammatory response may reflect normal vaginal delivery, while lipid metabolism and neurodevelopment may be important processes for the term fetus. The data presented in this study, with complete miRNA and protein findings, will enhance the knowledge base for future research in the field of placental function and pathology.
Collapse
Affiliation(s)
- Hanna Östling
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- *Correspondence: Hanna Östling,
| | - Maria Lodefalk
- Department of Paediatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helena Backman
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert Kruse
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
5
|
Marley AR, Ryder JR, Turcotte LM, Spector LG. Maternal obesity and acute lymphoblastic leukemia risk in offspring: A summary of trends, epidemiological evidence, and possible biological mechanisms. Leuk Res 2022; 121:106924. [PMID: 35939888 DOI: 10.1016/j.leukres.2022.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Acute lymphoblastic leukemia, a heterogenous malignancy characterized by uncontrolled proliferation of lymphoid progenitors and generally initiated in utero, is the most common pediatric cancer. Although incidence of ALL has been steadily increasing in recent decades, no clear reason for this trend has been identified. Rising concurrently with ALL incidence, increasing maternal obesity rates may be partially contributing to increasing ALL prevelance. Epidemiological studies, including a recent meta-analysis, have found an association between maternal obesity and leukemogenesis in offspring, although mechanisms underlying this association remain unknown. Therefore, the purpose of this review is to propose possible mechanisms connecting maternal obesity to ALL risk in offspring, including changes to fetal/neonatal epigenetics, altered insulin-like growth factor profiles and insulin resistance, modified adipokine production and secretion, changes to immune cell populations, and impacts on birthweight and childhood obesity/adiposity. We describe how each proposed mechanism is biologically plausible due to their connection with maternal obesity, presence in neonatal and/or fetal tissue, observation in pediatric ALL patients at diagnosis, and association with leukemogenesis, A description of ALL and maternal obesity trends, a summary of epidemiological evidence, a discussion of the pathway from intrauterine environment to subsequent malignancy, and propositions for future directions are also presented.
Collapse
Affiliation(s)
- Andrew R Marley
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA.
| | - Justin R Ryder
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Center for Pediatric Obesity Medicine, Department of Pediatrics, University of Minnesota, 2450 Riverside Ave S AO-102, Minneapolis, MN 55454, USA
| | - Lucie M Turcotte
- Division of Hematology/Oncology, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 484, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Sato T, Ida T, Shiimura Y, Matsui K, Oishi K, Kojima M. Insights Into the Regulation of Offspring Growth by Maternally Derived Ghrelin. Front Endocrinol (Lausanne) 2022; 13:852636. [PMID: 35250893 PMCID: PMC8894672 DOI: 10.3389/fendo.2022.852636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of fetal development by bioactive substances such as hormones and neuropeptides derived from the gestational mother is considered to be essential for the development of the fetus. On the other hand, it has been suggested that changes in the physiological state of the pregnant mother due to various factors may alter the secretion of these bioactive substances and induce metabolic changes in the offspring, such as obesity, overeating, and inflammation, thereby affecting postnatal growth and health. However, our knowledge of how gestational maternal bioactive substances modulate offspring physiology remains fragmented and lacks a systematic understanding. In this mini-review, we focus on ghrelin, which regulates growth and energy metabolism, to advance our understanding of the mechanisms by which maternally derived ghrelin regulates the growth and health of the offspring. Understanding the regulation of offspring growth by maternally-derived ghrelin is expected to clarify the fetal onset of metabolic abnormalities and lead to a better understanding of lifelong health in the next generation of offspring.
Collapse
Affiliation(s)
- Takahiro Sato
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
- *Correspondence: Takahiro Sato, ; Masayasu Kojima,
| | - Takanori Ida
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kazuma Matsui
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - Kanae Oishi
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
- *Correspondence: Takahiro Sato, ; Masayasu Kojima,
| |
Collapse
|
7
|
Stoyanova I, Lutz D. Ghrelin-Mediated Regeneration and Plasticity After Nervous System Injury. Front Cell Dev Biol 2021; 9:595914. [PMID: 33869167 PMCID: PMC8046019 DOI: 10.3389/fcell.2021.595914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
The nervous system is highly vulnerable to different factors which may cause injury followed by an acute or chronic neurodegeneration. Injury involves a loss of extracellular matrix integrity, neuronal circuitry disintegration, and impairment of synaptic activity and plasticity. Application of pleiotropic molecules initiating extracellular matrix reorganization and stimulating neuronal plasticity could prevent propagation of the degeneration into the tissue surrounding the injury. To find an omnipotent therapeutic molecule, however, seems to be a fairly ambitious task, given the complex demands of the regenerating nervous system that need to be fulfilled. Among the vast number of candidates examined so far, the neuropeptide and hormone ghrelin holds within a very promising therapeutic potential with its ability to cross the blood-brain barrier, to balance metabolic processes, and to stimulate neurorepair and neuroactivity. Compared with its well-established systemic effects in treatment of metabolism-related disorders, the therapeutic potential of ghrelin on neuroregeneration upon injury has received lesser appreciation though. Here, we discuss emerging concepts of ghrelin as an omnipotent player unleashing developmentally related molecular cues and morphogenic cascades, which could attenuate and/or counteract acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Irina Stoyanova
- Department of Anatomy and Cell Biology, Medical University Varna, Varna, Bulgaria
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Chen L, Zhao H, Shen J, Ji X. Association Between Ghrelin Gene Polymorphism and Cerebral Infarction. Med Sci Monit 2020; 26:e924539. [PMID: 32667288 PMCID: PMC7382299 DOI: 10.12659/msm.924539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this study was to explore the associations of ghrelin gene polymorphisms at rs26312, rs26802 and rs27647 with cerebral infarction. Material/Methods A total of 200 cerebral infarction patients in our hospital were enrolled as the disease group, while 200 healthy people were enrolled as the control group. Peripheral venous blood was collected from both groups, and the ghrelin gene polymorphisms at rs26312, rs26802, and rs27647 in nucleated cells were detected through sequencing. Results The genotype distribution at ghrelin gene loci rs26802 and rs27647 in the disease group was significantly different from that in the control group. The distribution of recessive model at ghrelin gene locus rs26802 in the disease group was different from that in the control group, in which the TG+GG frequency was evidently higher in the disease group. The AA genotype at ghrelin gene locus rs26312 was remarkably associated with the ghrelin gene expression level, and the expression level of ghrelin gene in the disease group was remarkably lower than that in the control group. The genotype at ghrelin gene locus rs26312 was associated with activated partial thromboplastin time (APTT), and APTT was significantly shorter in patients with GG genotype. The genotype at ghrelin gene locus rs26802 was associated with D-dimer, and the D-dimer level was significantly lower in patients with TG genotype. The genotype at ghrelin gene locus rs27647 was associated with prothrombin time (PT), and PT was obviously shorter in patients with TT genotype. Conclusions The ghrelin gene polymorphisms are remarkably associated with the occurrence of cerebral infarction.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, The Second Affiliated Hospital of Yangtze University and Jingzhou Central Hospital, Jingzhou, Hubei, China (mainland)
| | - Hua Zhao
- Department of Neurology, The Second Affiliated Hospital of Yangtze University and Jingzhou Central Hospital, Jingzhou, Hubei, China (mainland)
| | - Jing Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Yangtze University and Jingzhou Central Hospital, Jingzhou, Hubei, China (mainland)
| | - Xiaoyu Ji
- Department of Neurology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China (mainland)
| |
Collapse
|
9
|
Tehranian N, Hosseini M, Ramezani-Tehrani F, Yousefi S. Association of serum ghrelin with weight gain during pregnancy in overweight and normal women. J Endocrinol Invest 2019; 42:809-813. [PMID: 30465249 DOI: 10.1007/s40618-018-0986-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Despite the fact that the ghrelin hormone plays pivotal role in the process of weight gain, its correlation with weighing during pregnancy has not been elucidated. Hence, the present study was conducted to evaluate the correlation between plasma ghrelin levels and gestational weight gain in overweight and normal women. METHODS This prospective cohort study was conducted in 27 overweight and 18 normal body mass index (BMI) pregnant women referring to Tehran health care centers. Weight gain during all trimesters of pregnancy was measured and the blood samples were collected at 8-12 (first trimester) and 16-20 weeks (second trimester) of pregnancy. The plasma total ghrelin concentration was measured by ELISA method. RESULTS The overweight pregnant women exhibited significantly lower weight gain at the second (p = 0.002), third trimesters (p = 0.005) as well as total weighing during pregnancy (p = 0.001) compared to the normal BMI pregnant women. There was no significant difference in plasma ghrelin levels between the groups from the first to the second trimesters of pregnancy (p > 0.05). Moreover, no correlation was found between ghrelin levels and gestational weight gain in the overweight and normal groups. CONCLUSIONS Our results indicate that the increased level of serum ghrelin could not be considered as a key mediator for weight gain difference during pregnancy of overweight women.
Collapse
Affiliation(s)
- N Tehranian
- Department of Midwifery and Reproductive Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Hosseini
- Cellular and Molecular Research Center,Department of Anatomy, Birjand University of Medical Sciences, Birjand, Iran
| | - F Ramezani-Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Yousefi
- Department of Midwifery and Reproductive Health, Faculty of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, 9717853577, Iran.
| |
Collapse
|
10
|
Leptin and Ghrelin in Excessive Gestational Weight Gain-Association between Mothers and Offspring. Int J Mol Sci 2019; 20:ijms20102398. [PMID: 31096564 PMCID: PMC6566238 DOI: 10.3390/ijms20102398] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Two-thirds of pregnant women exceed gestational weight gain recommendations. Excessive gestational weight gain (EGWG) appears to be associated with offspring's complications induced by mechanisms that are still unclear. The aim of this study was to investigate whether umbilical cord leptin (UCL) and ghrelin (UCG) concentrations are altered in full-term neonates born to EGWG mothers and whether neonatal anthropometric measurements correlate with UCL and UCG levels and maternal serum ghrelin and leptin as well as urine ghrelin concentrations. The study subjects were divided into two groups, 28 healthy controls and 38 patients with EGWG. Lower UCL and UCG levels were observed in neonates born to healthy mothers but only in male newborns. In the control group UCG concentrations correlated positively with neonatal birth weight, body length and head circumference. In the control group maternal serum ghrelin levels correlated negatively with neonatal birth weight, body length and head circumference as well as positively with chest circumference. In the EGWG group UCG concentrations correlated negatively with neonatal birth weight and birth body length. UCL correlated positively with birth body length in EGWG group and negatively with head circumference in the control group. In conclusion, EGWG is associated with disturbances in UCL and UCG concentrations.
Collapse
|