1
|
Alex SB, M S S, M S L. Evaluation of antimicrobial, anti-inflammatory and cytotoxic effects of silver nanoparticles synthesised from Cynodon dactylon. Nat Prod Res 2025; 39:779-786. [PMID: 38058172 DOI: 10.1080/14786419.2023.2290154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Plant mediated synthesis of metal nanoparticles (MNPs) has been considered as a reliable green technique for mitigating the involvement of toxic chemicals and which is widely used for desired applications. In the present study, a simple and environment friendly approach for the synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Cynodon dactylon was proposed. The phytochemicals present in C. dactylon acted as the reducing as well as the capping agents during the nanoparticle synthesis. The aqueous extract of C. dactylon added to AgNO3 solution showed a colour change from brown to black at room temperature which confirmed the formation of AgNPs. UV-Vis spectral analysis revealed the surface plasmon resonance band of synthesised AgNPs at around 380 nm, while FT-IR spectroscopy confirmed the role of biomolecules present in the plant extract in the reduction and efficient stabilisation of AgNPs. The X-ray diffraction (XRD) patterns confirmed distinctive peaks corresponding to the crystalline planes of cubic silver. Shape and surface morphology of green AgNPs were examined by SEM. Biosynthesized AgNPs were predominantly cubical and spherical with an average particle size of 30.5 nm approximately as observed through SEM and DLS analysis respectively. The EDS analysis displayed intense signals of silver element. The stability of AgNPs was confirmed by zeta potential analysis. A negative zeta potential value of -17.1 mV indicated the stability and good dispersion of AgNPs. Antimicrobial and anti-inflammatory potentials of green synthesised AgNPs were analysed through in vitro techniques. The cytotoxic effect of green AgNPs on normal fibroblast cells (L929) was studied to analyse its effect on normal cells.
Collapse
Affiliation(s)
- Sheeba Baby Alex
- Department of Chemistry, St.Stephen's College, Pathanapuram, Kerala, India
- Department of Chemistry, Sree Narayana College, Kollam, Kerala, India
| | - Sujamol M S
- Department of Chemistry, St.Stephen's College, Pathanapuram, Kerala, India
| | - Latha M S
- Department of Chemistry, Sree Narayana College, Kollam, Kerala, India
| |
Collapse
|
2
|
Kumari M, Sarkar B, Mukherjee K. Enhanced antimycotic activity of biomodified copper oxide nanoparticles from indigenous state flowers of Jharkhand: an in vitro and in silico approach. Nat Prod Res 2025:1-7. [PMID: 39862148 DOI: 10.1080/14786419.2025.2456671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Current study investigates the medicinal applications of Butea monosperma (Palash), the state flower of Jharkhand, India, focusing on synthesising biomodified copper oxide nanoparticles (CuO-NPs) and its antifungal properties. Flavonoid content in the flower extract was quantified by aluminium chloride colorimetric analysis. CuO-NPs were synthesised via co-precipitation method and then modified with methanolic flower extract. Characterization confirmed the properties of these NPs including their high crystallinity, spherical structure and nanoscale size (9-90 nm size). Anti-fungal activity revealed significant inhibition of hyphal growth at concentrations of 100-1000 ppm (76.6% for F. oxysporum and 75.05% for S. rolfsii). Statistical and computational analysis confirmed the effectiveness of these NPs by showing strong interactions between the CuO-NPs and fungal proteins.
Collapse
Affiliation(s)
- Madhubala Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology (IIAB), Ranchi, Jharkhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
3
|
Yadha H, Kolure R, Thakur S, Mandava K, Boddu S. QBD approach for green synthesis of Rutin silver nanoparticles- screening for antioxidant, anticancer and anticlastogenic potential. Heliyon 2024; 10:e38391. [PMID: 39492892 PMCID: PMC11530793 DOI: 10.1016/j.heliyon.2024.e38391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
Rutin is a flavonoid glycoside abundant in many plants exhibiting pharmacological activities like antioxidant, anticancer, anti-inflammatory and antimicrobial activities. Plant biomarkers suffer low bioavailability and solubility that lack clinical effectiveness. The smart nanoparticles conversion addresses this limitation with optimal particle size and targeted drug delivery. The present study involves QbD approach for formulation of Rutin silver nanoparticles and evaluation of antioxidant, anticancer and anticlastogenic potential. QbD experimentation involved particle size and drug release as dependent variables over the silver nitrate concentration, methanol and sonication time as independent variables devising 15 formulations (F1 -F15). F12 formulation was found to be optimized with 126.3 nm average size, stable and dispersible characterized by UV, FTIR, SEM and DLS studies. The calibration curve of Rutin was plotted at 352 nm with linearity (LOD = 0.061 μg/ml and LOQ = 0.187 μg/ml). The invitro drug release studies by USP dissolution apparatus I (Basket type) proved the sustained release characteristics with 97.3 % drug release when compared to the Rutin. The pharmacological screening for potential antioxidant and anticancer activity on G361 and MCF 7 cell line of F12 formulation have shown promising results and also enhanced solubility in water compared to Rutin. Anticalstogenic potential as a function of induced micronuclei frequency was evaluated as a characteristic feature in bone marrow cells obtained from mice. Results indicate pre-treatment with the F12 reduced frequency of micronuclei in mouse bone marrow cells caused by Cyclophosphamide (CP) significantly. The protective effect of F12 in suppression was demonstrated at both dosages of 100 and 200 mg/kg. Thus the findings suggest the novel Rutin silver nanoparticles as lead drug serving as antioxidant, anticancer and anticlastogenic agent.
Collapse
Affiliation(s)
| | - Rajini Kolure
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Telangana, 501510, India
| | - Sneha Thakur
- Department of Pharmacognosy, St. Pauls College of Pharmacy, Turkayamjal, Telangana, 501510, India
| | - Kiranmai Mandava
- Department of Pharmaceutical Chemistry, St. Pauls College of Pharmacy, Turkayamjal, Telangana, 501510, India
| | - Suhasini Boddu
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Telangana, 501510, India
| |
Collapse
|
4
|
Almayouf MA, Charguia R, Awad MA, Ben Bacha A, Ben Abdelmalek I. Nanotherapy for Cancer and Biological Activities of Green Synthesized AgNPs Using Aqueous Saussurea costus Leaves and Roots Extracts. Pharmaceuticals (Basel) 2024; 17:1371. [PMID: 39459011 PMCID: PMC11510687 DOI: 10.3390/ph17101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Nanoparticles derived from medicinal plants are gaining attention for their diverse biological activities and potential therapeutic applications. Methods: This study explored the antioxidant, anti-inflammatory, anti-tumoral, and antimicrobial properties of green synthesized silver nanoparticles (AgNPs) using the aqueous leaf and root extracts of Saussurea costus (S. costus). The physicochemical characterizations of both biosynthesized AgNPs using the aqueous leaf extract (L-AgNPs) and root extract (R-AgNPs) were examined using UV spectroscopy, fluorescence spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, dynamic light scattering, and Fourier-transform infrared spectroscopy. The antioxidant activity measured using ABTS, DPPH, and FRAP assays showed that AgNPs, particularly from roots, had higher activity than aqueous extracts, attributed to phenolic compounds acting as capping and antioxidant agents. Results: Enzyme inhibition studies indicated that AgNPs exhibited remarkable anti-inflammatory effects, inhibiting COX-1, 5-LOX, and secreted PLA2 enzymes by over 99% at 120 µg/mL, comparable to standard drugs. The anti-tumoral effects were evaluated on the human cancer cell lines HCT-116, LoVo, and MDA-MB-231, with AgNPs inhibiting cell proliferation dose-dependently and IC50 values between 42 and 60 µg/mL, demonstrating greater potency than extracts. The AgNPs also showed enhanced antimicrobial activities against various microbial strains, with IC50 values as low as 14 µg/mL, which could be linked to nanoparticle interactions with microbial cell membranes, causing structural damage and cell death. Conclusions: These findings suggest that S. costus-derived AgNPs are promising natural, biodegradable agents for various biological applications and potential new therapeutic agents, necessitating further research to explore their mechanisms and applications.
Collapse
Affiliation(s)
- Mina A. Almayouf
- Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Raihane Charguia
- Department of Physics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Manal A. Awad
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abir Ben Bacha
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Imen Ben Abdelmalek
- Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
5
|
K Karunakar K, Cheriyan BV, R K, M G, B A. "Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles". BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:64-79. [PMID: 39416696 PMCID: PMC11446369 DOI: 10.1016/j.biotno.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology has the advantages of enhanced bioactivity, reduced toxicity, target specificity, and sustained release and NPs can penetrate cell membranes. The small size of silver nanoparticles, AgNPs, large surface area, and unique physicochemical properties contribute to cell lysis and increased permeability of cell membranes used in the field of biomedicine. Functional precursors integrate with phytochemicals to create distinctive therapeutic properties and the stability of the nanoparticles can be enhanced by Surface coatings and encapsulation methods, The current study explores the various synthesis methods and characterization techniques of silver nanoparticles (AgNPs) and highlights their intrinsic activity in therapeutic applications, Anti-cancer activity noted at a concentration range of 5-50 μg/ml and angiogenesis is mitigated at a dosage range of 10-50 μg/ml, Diabetes is controlled within the same concentration. Wound healing is improved at concentrations of 10-50 μg/ml and with a typical range of 10-08 μg/ml for bacteria with antimicrobial capabilities. Advancement of silver nanoparticles with a focus on the future use of AgNPs-coated wound dressings and medical devices to decrease the risk of infection. Chemotherapeutic drugs can be administered by AgNPs, which reduces adverse effects and an improvement in treatment outcomes. AgNPs have been found to improve cell proliferation and differentiation, making them beneficial for tissue engineering and regenerative medicine. Our study highlights emerging patterns and developments in the field of medicine, inferring potential future paths.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Krithikeshvaran R
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Gnanisha M
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Abinavi B
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| |
Collapse
|
6
|
Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M, Vijayaram S, Rohani MF, Van Doan H, Sun YZ. Comparative Effect of Chemical and Green Zinc Nanoparticles on the Growth, Hematology, Serum Biochemical, Antioxidant Parameters, and Immunity in Serum and Mucus of Goldfish, Carassius auratus (Linnaeus, 1758). Biol Trace Elem Res 2024; 202:1264-1278. [PMID: 37434037 DOI: 10.1007/s12011-023-03753-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Recently, nano feed supplement research has great attention to improving healthy aquatic production and improving the aquatic environment. With the aims of the present study, chemical and green synthesized nanoparticles are characterized by various instrumentation analyses, namely UV-Vis spectrophotometry (UV-Vis), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, and scanning electron microscope (SEM). After characterization analysis of these nanoparticles utilized in aquatic animals, the composition ratio is as follows: controls (without ZnO-NPs (0 mg/L)), T1 (0.9 mg/L ZnO-NPs), T2 (1.9 mg/L ZnO-NPs), T3 (0.9 mg/L GZnO-NPs), T4 (1.9 mg/L GZnO-NPs). SEM investigation report demonstrates that the structure of the surface of green synthesized zinc oxide nanoparticles (GZnO-NPs) was conical shape and the size ranging was from 60 to 70 nm. Concerning hematological parameters, the quantity of hemoglobin increased in different doses of green zinc nanoparticles, but the values of MCV and MCH decreased somewhat. However, this decrease was the highest in the T2 group. Total protein and albumin decreased in T2 and triglyceride, cholesterol, glucose, cortisol, creatinine, and urea increased, while in T3 and T4 groups, changes in biochemical parameters were evaluated as positive. Mucosal and serum immunological parameters in the T2 group showed a significant decrease compared to other groups. In zinc nanoparticles, with increasing dose, oxidative damage is aggravated, so in the T2 group, a decrease in antioxidant enzymes and an increase in MDA were seen compared to other groups. In this regard, the concentration of liver enzymes AST and ALT increased in the T2 group compared with control and other groups. This can confirm liver damage in this dose compared with control and other groups. This research work suggests that green synthesized form of zinc nanoparticles in higher doses have less toxic effects in comparison to the chemical form of zinc nanoparticles and can act as suitable nutrient supplements in aquatic animals.
Collapse
Affiliation(s)
- Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | | | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
7
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Jiang H, Lu H, Zhou Y, Liu Y, Hao C. High-efficiency degradation catalytic performance of a novel Angelica sinensis polysaccharide-silver nanomaterial for dyes by ultrasonic cavitation. ULTRASONICS SONOCHEMISTRY 2023; 93:106289. [PMID: 36638651 PMCID: PMC9852643 DOI: 10.1016/j.ultsonch.2023.106289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Currently, the polluted wastewater discharged by industry accounts for the major part of polluted bodies of water. As one of the industrial wastewaters, dye wastewater is characterized by high toxicity, wide pollution, and difficulty in decolorization degradation. In this paper, a novel composite nanomaterial catalyst of silver was prepared by using Angelica sinensis polysaccharide (ASP) as a reducing and stabilizing agent. And the optimum reaction conditions explored are VAgNO3 = 5 mL (300 mM) and vASP = 7% (w/v) for 6 h at 90 °C. In addition, the ASP-Ag nanocatalyst was characterized by several techniques. The results demonstrated that ASP-Ag nanoparticles were successfully synthesized. Degradation rate, which provides a numerical visualization of the percentage reduction in pollutant concentration. With the wrapping of ASP, the ultrasonic catalytic degradation rates of different organic dyes including rhodamine B (RB), methylene blue (MB), and methyl orange (MO) were from 88.2%, 88.7%, and 85.2% to 96.1%, 95.2% and 93.5% at room temperature, respectively. After the experiments, when cdyes = 10 mg/L, the highest degradation rate can be observed under cAPS-AgNPs = 10 mg/L with the most powerful cavitation frequency f = 59 kHz. The effect of ultrasonic frequency on the acoustic pressure distribution in the reactor was investigated by using COMSOL Multiphysis@ software to propose the mechanism of ultrasonic degradation and the mechanism was confirmed by OH radical trapping experiments. It indicates that OH produced by the ultrasonic cavitation effect plays a determinant role in the degradation. And then, the intermediate products of the dye degradation process were analyzed by gas chromatography and mass spectrometry (GC-MS), and the possible degradation processes of dyes were proposed. The resulting products of degradation are SO42-, NH4+, NO3-, N2, CO2 and H2O. Finally, the recycling degradation experiments showed that catalyst maintains a high degradation rate within reusing 5 cycles. Thus, this catalyst is highly efficient and recyclable.
Collapse
Affiliation(s)
- Hao Jiang
- Shaanxi Key Laboratory of Ultrasound, Shaanxi Normal University, Xi'an 710062, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Haonan Lu
- Shaanxi Key Laboratory of Ultrasound, Shaanxi Normal University, Xi'an 710062, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yongshan Zhou
- Shaanxi Key Laboratory of Ultrasound, Shaanxi Normal University, Xi'an 710062, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yongfeng Liu
- Shaanxi Key Laboratory of Ultrasound, Shaanxi Normal University, Xi'an 710062, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Changchun Hao
- Shaanxi Key Laboratory of Ultrasound, Shaanxi Normal University, Xi'an 710062, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
9
|
Hossain N, Islam MA, Chowdhury MA. Synthesis and characterization of plant extracted silver nanoparticles and advances in dental implant applications. Heliyon 2022; 8:e12313. [PMID: 36590472 PMCID: PMC9794905 DOI: 10.1016/j.heliyon.2022.e12313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dental implantology has always emphasized silver nanoparticles (AgNPs) for various applications due to their biocompatibility, antibacterial activity, and increased surface volume ratio offered by these particles. It is utilized to a large extent in the dental implant industry as a surface modification, biocompatible constituent and composite material. AgNPs may be produced inexpensively, sustainably, and environmentally responsibly by utilizing technologies that extract the plant material. The phytochemical components that are contained in plants make them a better, non-toxic, and more cost-effective alternative to both physical and chemical approaches. Because the size and shape of AgNP depend on their synthesis method and technique, and because the efficacy and toxicity of AgNP depend on both size and shape, synthesis methods and techniques have recently become the focus of a significant amount of research attention. In this review, we discussed Plant Extracted Ag-NP's whose sizes range up to 100nm. This review also focuses on recent research advancements in the Plant Extracted synthesis of AgNPs, as well as their characterization methodologies, current obstacles, future possibilities, and applications in dental implantology.
Collapse
Affiliation(s)
- Nayem Hossain
- Department of Mechanical Engineering IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Aminul Islam
- Department of Mechanical Engineering IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering Dhaka University of Engineering and Technology (DUET), Gazipur Gazipur-1707, Bangladesh
| |
Collapse
|
10
|
Das D, Bhattacharyya S, Bhattacharyya M, Mandal P. Green chemistry inspired formation of bioactive stable colloidal nanosilver and its wide-spectrum functionalised properties for sustainable industrial escalation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
11
|
Labulo AH, David OA, Terna AD. Green synthesis and characterization of silver nanoparticles using Morinda lucida leaf extract and evaluation of its antioxidant and antimicrobial activity. CHEMICKE ZVESTI 2022; 76:7313-7325. [PMID: 35992611 PMCID: PMC9379235 DOI: 10.1007/s11696-022-02392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
This study emphasizes the production of eco-friendly silver nanoparticles from a medicinal plant extract of Morinda lucida (M. lucida) and investigated its antioxidant and antimicrobial activity. Phytochemical screening of M. lucida (ML) leave extract was carried out and observed to contain some fundamental phyto-reducing agents such as reducing sugar, proteins, and alkaloids. The green synthesized AgNPs (ML-AgNPs) were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission emission microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Energy dispersive X-ray analysis (EDX). Thermo gravimetric analysis (TGA) was performed on the synthesized ML-capped AgNPs to determine the thermal stability and the formation of the green synthesized AgNPs. The formation of AgNPs was confirmed by the UV-vis absorption spectra, which showed an absorption band at 420 nm. The morphology of ML extract-mediated AgNPs was mostly spherical and rough-edged crystallite nanostructures, with an average particle size of 11 nm. The FTIR analyses revealed distinctive functional groups which were directly involved in the synthesis and stability of AgNPs. The crystallite size was 8.79 nm, with four intense peaks at 2θ angles of 38°, 44°, 64°, and 77°. At an energy level of 3.4 keV, a significant signal was observed indicating the production of thermally stable and pure crystallite AgNPs. The antioxidant property of green synthesized ML-AgNPs was determined to be 40% higher than that of crude M. lucida leaf extract. The ability of green synthesized ML-AgNPs to scavenge free radicals also increased in the order of OH- < NO < H2O2. The ML-AgNPs have strong activities with a maximum against P. vulgaris and a minimum with E. faecalis.
Collapse
Affiliation(s)
- Ayomide H. Labulo
- Department of Chemistry, Federal University of Lafia, Lafia, Nasarawa State Nigeria
| | - Oyinade A. David
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State Nigeria
| | - Augustine D. Terna
- Department of Chemistry, Federal University of Technology, PMB 1526, Owerri, Imo State Nigeria
| |
Collapse
|
12
|
Gul N, Ata S, Bibi I, Ijaz-ul-Mohsin, Azam M, Shahid A, Alwadai N, Masood N, Iqbal M. Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present investigation, silver nanoparticles were synthesized and a comparative analysis was performed of modified Turkevich and BRUST methods. Silver nitrate precursor was reduced by trisodium citrate dihydrate and ascorbic acid was used as a surfactant. Based on Turkevich and BRUST methods, the process variables, i.e., temperature, reducing agent concentration, stirring speed, mode of injecting reducing agent/precursor to large excess volume of either precursor/reducing agent were studied. The size of the particles was preliminarily ascertained by DLS studies and it was found that modified BRUST method yielded silver nanoparticles with average particle size of 25 nm, while modified Turkevich method furnished nanoparticles with average particle size of 15 nm. The silver nanoparticles were characterized by employing the UV/visible, Zeta sizer, scanning electron microscopy (SEM) and energy dispersive microscopy (EDX) techniques. Results revealed that the silver nanoparticles size can be controlled by optimizing the conditions of modified Turkevich and BRUST methods.
Collapse
Affiliation(s)
- Nouroze Gul
- School of Chemistry , University of the Punjab , Lahore , Pakistan
- Institute of Nuclear Medicine and Oncology , Lahore , Pakistan
| | - Sadia Ata
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Institute of Chemistry, The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ijaz-ul-Mohsin
- Institute for Applied Materials–Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Muhammad Azam
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Abubaker Shahid
- Institute of Nuclear Medicine and Oncology , Lahore , Pakistan
| | - Norah Alwadai
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Nasir Masood
- Department of Environmental Sciences , COMSATS University Islamabad, Vehari Campus , Punjab , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
13
|
Karthik C, Punnaivalavan KA, Prabha SP, Caroline DG. Multifarious global flora fabricated phytosynthesis of silver nanoparticles: a green nanoweapon for antiviral approach including SARS-CoV-2. INTERNATIONAL NANO LETTERS 2022; 12:313-344. [PMID: 35194512 PMCID: PMC8853038 DOI: 10.1007/s40089-022-00367-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The progressive research into the nanoscale level upgrades the higher end modernized evolution with every field of science, engineering, and technology. Silver nanoparticles and their broader range of application from nanoelectronics to nano-drug delivery systems drive the futuristic direction of nanoengineering and technology in contemporary days. In this review, the green synthesis of silver nanoparticles is the cornerstone of interest over physical and chemical methods owing to its remarkable biocompatibility and idiosyncratic property engineering. The abundant primary and secondary plant metabolites collectively as multifarious phytochemicals which are more peculiar in the composition from root hair to aerial apex through various interspecies and intraspecies, capable of reduction, and capping with the synthesis of silver nanoparticles. Furthermore, the process by which intracellular, extracellular biological macromolecules of the microbiota reduce with the synthesis of silver nanoparticles from the precursor molecule is also discussed. Viruses are one of the predominant infectious agents that gets faster resistance to the antiviral therapies of traditional generations of medicine. We discuss the various stages of virus targeting of cells and viral target through drugs. Antiviral potential of silver nanoparticles against different classes and families of the past and their considerable candidate for up-to-the-minute need of complete addressing of the fulminant and opportunistic global pandemic of this millennium SARS-CoV2, illustrated through recent silver-based formulations under development and approval for countering the pandemic situation. Graphical abstract
Collapse
Affiliation(s)
- C. Karthik
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| | - K. A. Punnaivalavan
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| | - S. Pandi Prabha
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117 Tamil Nadu India
| | - D. G. Caroline
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| |
Collapse
|
14
|
Zhao P, El-kott A, Ahmed AE, Khames A, Zein MA. Green synthesis of gold nanoparticles (Au NPs) using Tribulus terrestris extract: Investigation of its catalytic activity in the oxidation of sulfides to sulfoxides and study of its anti-acute leukemia activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Rossos AK, Banti CN, Raptis PK, Papachristodoulou C, Sainis I, Zoumpoulakis P, Mavromoustakos T, Hadjikakou SK. Silver Nanoparticles Using Eucalyptus or Willow Extracts (AgNPs) as Contact Lens Hydrogel Components to Reduce the Risk of Microbial Infection. Molecules 2021; 26:5022. [PMID: 34443612 PMCID: PMC8400931 DOI: 10.3390/molecules26165022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
Eucalyptus leaves (ELE) and willow bark (WBE) extracts were utilized towards the formation of silver nanoparticles (AgNPs(ELE), AgNPs(WBE)). AgNPs(ELE) and AgNPs(WBE) were dispersed in polymer hydrogels to create pHEMA@AgNPs(ELE)_2 and pHEMA@AgNPs(WBE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized in a solid state by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC) and attenuated total reflection spectroscopy (ATR-FTIR) and ultraviolet visible (UV-vis) spectroscopy in solution. The antimicrobial potential of the materials was investigated against the Gram-negative bacterial strain Pseudomonas aeruginosa (P. aeruginosa) and the Gram-positive bacterial strain of the genus Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus), which are involved in microbial keratitis. The percentage of bacterial viability of P. aeruginosa and S. epidermidis upon their incubation over the pHEMA@AgNPs(ELE)_2 discs is interestingly low (28.3 and 6.8% respectively), while the inhibition zones (IZ) formed are 12.3 ± 1.7 and 13.2 ± 1.2 mm, respectively. No in vitro toxicity of this material towards human corneal epithelial cells (HCEC) was detected. Despite its low performance against S. aureus, pHEMA@AgNPs(ELE)_2 could be an efficient candidate towards the development of contact lenses that reduces microbial infection risk.
Collapse
Affiliation(s)
- Andreas K. Rossos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
| | - Christina N. Banti
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
| | - Panagiotis K. Raptis
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
| | | | - Ioannis Sainis
- Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece;
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis and Design of Food Processes, Department of Food Science and Technology, University of West Attica, 12243 Attica, Greece;
| | - Thomas Mavromoustakos
- Organic Chemistry Laboratory, Department of Chemistry, University of Athens Greece, 15571 Athens, Greece;
| | - Sotiris K. Hadjikakou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.K.R.); (P.K.R.)
- University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, 45110 Ioannina, Greece
| |
Collapse
|
16
|
Barabadi H, Mojab F, Vahidi H, Marashi B, Talank N, Hosseini O, Saravanan M. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108647] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Ceylan R, Demirbas A, Ocsoy I, Aktumsek A. Green synthesis of silver nanoparticles using aqueous extracts of three Sideritis species from Turkey and evaluations bioactivity potentials. SUSTAINABLE CHEMISTRY AND PHARMACY 2021; 21:100426. [DOI: 10.1016/j.scp.2021.100426] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
18
|
Toward a Better Understanding of Metal Nanoparticles, a Novel Strategy from Eucalyptus Plants. PLANTS 2021; 10:plants10050929. [PMID: 34066925 PMCID: PMC8148548 DOI: 10.3390/plants10050929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Nanotechnology is a promising tool that has opened the doors of improvement to the quality of human's lives through its potential in numerous technological aspects. Green chemistry of nanoscale materials (1-100 nm) is as an effective and sustainable strategy to manufacture homogeneous nanoparticles (NPs) with unique properties, thus making the synthesis of green NPs, especially metal nanoparticles (MNPs), the scientist's core theme. Researchers have tested different organisms to manufacture MNPs and the results of experiments confirmed that plants tend to be the ideal candidate amongst all entities and are suitable to synthesize a wide variety of MNPs. Natural and cultivated Eucalyptus forests are among woody plants used for landscape beautification and as forest products. The present review has been written to reflect the efficacious role of Eucalyptus in the synthesis of MNPs. To better understand this, the route of extracting MNPs from plants, in general, and Eucalyptus, in particular, are discussed. Furthermore, the crucial factors influencing the process of MNP synthesis from Eucalyptus as well as their characterization and recent applications are highlighted. Information gathered in this review is useful to build a basis for new prospective research ideas on how to exploit this woody species in the production of MNPs. Nevertheless, there is a necessity to feed the scientific field with further investigations on wider applications of Eucalyptus-derived MNPs.
Collapse
|
19
|
Meretoudi A, Banti CN, Raptis PK, Papachristodoulou C, Kourkoumelis N, Ikiades AA, Zoumpoulakis P, Mavromoustakos T, Hadjikakou SK. Silver Nanoparticles from Oregano Leaves' Extracts as Antimicrobial Components for Non-Infected Hydrogel Contact Lenses. Int J Mol Sci 2021; 22:3539. [PMID: 33805476 PMCID: PMC8037402 DOI: 10.3390/ijms22073539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
The oregano leaves' extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV-Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses.
Collapse
Affiliation(s)
- Anastasia Meretoudi
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | - Christina N. Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | - Panagiotis K. Raptis
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
| | | | - Nikolaos Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110 Ioannina, Greece;
| | - Aris A. Ikiades
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece; (C.P.); (A.A.I.)
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, 11635 Attica, Greece;
| | - Thomas Mavromoustakos
- Organic Chemistry Laboratory, Department of Chemistry, University of Athens Greece, 15571 Athens, Greece;
| | - Sotiris K. Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.M.); (P.K.R.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
20
|
Ma Z, Liu J, Liu Y, Zheng X, Tang K. Green synthesis of silver nanoparticles using soluble soybean polysaccharide and their application in antibacterial coatings. Int J Biol Macromol 2021; 166:567-577. [PMID: 33144252 DOI: 10.1016/j.ijbiomac.2020.10.214] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
In the present work, a facile and green synthesis approach for the production of monodispersed, small-sized (2.9 ± 0.7 nm) and stable silver nanoparticles (AgNPs) using soluble soybean polysaccharide (SSPS) was reported. SSPS was used as the reducing and stabilizing agent. The obtained SSPS-stabilized AgNPs (SA) were characterized by UV-vis absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. The antimicrobial activity of the SA colloidal dispersion (SACD) was evaluated based on the growth kinetics of bacteria E. coli and S. aureus. Afterwards, the colloidal dispersion was applied as a coating material to Kraft paper. The SACD-coated Kraft paper exhibited excellent antimicrobial activity against above bacteria strains and P. aeruginosa. The effects of SACD coating on surface wettability, barrier property and microstructure of the Kraft paper were also studied. The results suggested that the SSPS-stabilized AgNPs have great potential in antibacterial applications.
Collapse
Affiliation(s)
- Zhengxin Ma
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanchun Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejing Zheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci 2020; 15:819-839. [PMID: 33817269 PMCID: PMC7747521 DOI: 10.1515/biol-2020-0094] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology is a rapidly growing field due to its unique functionality and a wide range of applications. Nanomedicine explores the possibilities of applying the knowledge and tools of nanotechnology for the prevention, treatment, diagnosis and control of disease. In this regard, silver nanoparticles with diameters ranging from 1 to 100 nm are considered most important due to their unique properties, ability to form diverse nanostructures, their extraordinary range of bactericidal and anticancer properties, wound healing and other therapeutic abilities and their cost-effectiveness in production. The current paper reviews various types of physical, chemical and biological methods used in the production of silver nanoparticles. It also describes approaches employing silver nanoparticles as antimicrobial and antibiofilm agents, as antitumour agents, in dentistry and dental implants, as promoters of bone healing, in cardiovascular implants and as promoters of wound healing. The paper also explores the mechanism of action, synthesis methods and morphological characterisation of silver nanoparticles to examine their role in medical treatments and disease management.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
22
|
Green-synthesized Cu2O nanoaggregates incorporated on β-cyclodextrin for catalytic reduction and electrochemical sensing. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01954-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Javan Bakht Dalir S, Djahaniani H, Nabati F, Hekmati M. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon 2020; 6:e03624. [PMID: 32215333 PMCID: PMC7090345 DOI: 10.1016/j.heliyon.2020.e03624] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 01/16/2023] Open
Abstract
A green, direct and cost-effective fabrication method is proposed for Eco-environmentally silver nanoparticles (AgNPs) through leaf extraction of Carya illinoinensis from Iran. Formation of Ag NPs was confirmed through different characterization techniques such as UV–Vis Spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). UV-Visible spectrophotometer showed absorbance peak at 440 nm due to the Surface Plasmon Resonance (SPR). Based on XRD results and SEM and TEM analysis, AgNPs were crystalline with face-centered cubic geometry and in different sizes ranged 12–30 nm. Furthermore, FTIR Spectroscopy was utilized to recognize the specific functional groups responsible for reducing ion silver to silver nanoparticles and the capping agents available in the leaf extract. In addition, the antibacterial effect of Eco-friendly synthesized nanoparticles and also leaf extract, were evaluated on four pathogens by implementing minimum inhibitory concentration test (MIC) and agar diffusion assay. The MIC results exhibits more inhibiting activity against gram-negative microorganisms (Escherichia coli and Pseudomonas aeruginosa) rather than gram-positive microorganisms (Staphylococcus aureus and Listeria monocytogenes). Compared to leaf extract, nanoparticles have better antimicrobial activity against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Sahar Javan Bakht Dalir
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hoorieh Djahaniani
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farzaneh Nabati
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
24
|
Radwan IM, Gitipour A, Potter PM, Dionysiou DD, Al-Abed SR. Dissolution of Silver Nanoparticles in Colloidal Consumer Products: Effects of Particle Size and Capping Agent. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2019; 21:1-155. [PMID: 32184700 PMCID: PMC7077831 DOI: 10.1007/s11051-019-4597-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
The utilization of silver nanoparticles (AgNPs) in consumer products has significantly increased in recent years, primarily due to their antimicrobial properties. Increased use of AgNPs has raised ecological concerns. Once released into an aquatic environment, AgNPs may undergo oxidative dissolution leading to the generation of toxic Ag+. Therefore, it is critical to investigate the ecotoxicological potential of AgNPs and determine the physicochemical parameters that control their dissolution in aquatic environments. We have investigated the dissolution trends of aqueous colloidal AgNPs in five products, marketed as dietary supplements and surface sanitizers. The dissolution trends of AgNPs in studied products were compared to the dissolution trends of AgNPs in well-characterized laboratory-synthesized nanomaterials: citrate-coated AgNPs, polyvinylpyrrolidone-coated AgNPs, and branched polyethyleneimine-coated AgNPs. The characterization of the studied AgNPs included: particle size, anion content, metal content, silver speciation, and capping agent identification. There were small differences in the dissolved masses of Ag+ between products, but we did not observe any significant differences in the dissolution trends obtained for deionized water and tap water. The decrease of the dissolved mass of Ag+ in tap water could be due to the reaction between Ag+ and Cl-, forming AgCl and affecting their dissolution. We observed a rapid initial Ag+ release and particle size decrease for all AgNP suspensions due to the desorption of Ag+ from the nanoparticles surfaces. The observed differences in dissolution trends between AgNPs in products and laboratory-synthesized AgNPs could be caused by variances in capping agent, particle size, and total AgNP surface area in suspensions.
Collapse
Affiliation(s)
- Islam M. Radwan
- University of Cincinnati, Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 2600 Clifton Avenue, Cincinnati, OH 45221-001, United States
- National Institute of Oceanography and Fisheries , Marine Chemistry Department, Environmental Division, Qayet-Bey, Al-Anfoushy, Alexandria 21556, Egypt
| | - Alireza Gitipour
- Pegasus Technical Services, Inc., 46 E. Hollister St., Cincinnati, OH 45219, United States
| | - Phillip M. Potter
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 5995 Center Hill Avenue, Cincinnati, OH 45224, United States
| | - Dionysios D. Dionysiou
- University of Cincinnati, Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), 2600 Clifton Avenue, Cincinnati, OH 45221-001, United States
| | - Souhail R. Al-Abed
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| |
Collapse
|
25
|
Mirsadeghi S, Koudehi MF, Rajabi HR, Pourmortazavi SM. Green and Simple Synthesis of Silver Nanoparticles by Aqueous Extract of Perovskia abrotanoides: Characterization, Optimization and Antimicrobial Activity. Curr Pharm Biotechnol 2019; 21:1129-1137. [PMID: 31258080 DOI: 10.2174/1389201020666190618121218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides. METHODS The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV-Vis spectrophotometer, XRD and SEM. RESULTS The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively. CONCLUSION The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.
Collapse
Affiliation(s)
- Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| | - Masoumeh F Koudehi
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Hamid R Rajabi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Seied M Pourmortazavi
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
26
|
Khoshroo A, Hosseinzadeh L, Sobhani-Nasab A, Rahimi-Nasrabadi M, Ahmadi F. Silver nanofibers/ionic liquid nanocomposite based electrochemical sensor for detection of clonazepam via electrochemically amplified detection. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Nasrollahzadeh M, Sajjadi M, Sajadi SM. Green synthesis of Cu/zirconium silicate nanocomposite by using
Rubia tinctorum
leaf extract and its application in the preparation of
N
‐benzyl‐
N
‐arylcyanamides. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of ScienceUniversity of Qom Qom 3716146611 Iran
| | - S. Mohammad Sajadi
- Department of Petroleum Geoscience, Faculty of ScienceSoran University PO Box 624 Soran Kurdistan Regional Government Iraq
| |
Collapse
|
28
|
Prasher P, Singh M, Mudila H. Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. 3 Biotech 2018; 8:411. [PMID: 30237958 PMCID: PMC6138003 DOI: 10.1007/s13205-018-1436-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Utility of silver metal in antimicrobial therapy is an accepted practice since ages that faded with time because of the identification of a few silver resistant strains in the contemporary era. A successive development of antibiotics soon followed. However, due to an indiscriminate and unregulated use coupled with poor legal control measures and a dearth of expertise in handling the critical episodes, the antibiotics era has already seen a steep decline in the past decades due to the evolution of multi-drug resistant 'superbugs' which pose a sizeable challenge to manage with. Due to limited options in the pipeline and no clear strategy in the forefront, the aspirations for novel, MDR focused drug discovery to target the 'superbugs' arose which once again led to the rise of AgNPs in antimicrobial research. In this review, we have focused on the green routes for the synthesis of AgNPs, the mode of microbial inhibition by AgNPs, synergistic effect of AgNPs with antibiotics and future challenges for the development of nano-silver-based therapeutics.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, 248007 India
| | - Manjeet Singh
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, 248007 India
| | - Harish Mudila
- Lovely Professional University, Punjab, 144411 India
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263153 India
| |
Collapse
|
29
|
Truskewycz A, Shukla R, Ball AS. Phytofabrication of Iron Nanoparticles for Hexavalent Chromium Remediation. ACS OMEGA 2018; 3:10781-10790. [PMID: 30411070 PMCID: PMC6199743 DOI: 10.1021/acsomega.8b00410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/07/2018] [Indexed: 05/08/2023]
Abstract
Hexavalent chromium is a genotoxic and carcinogenic byproduct of a number of industrial processes, which is discharged into the environment in excessive and toxic concentrations worldwide. In this paper, the synthesis of green iron oxide nanoparticles using extracts of four novel plant species [Pittosporum undulatum, Melia azedarach, Schinus molle, and Syzygium paniculatum (var. australe)] using a "bottom-up approach" has been implemented for hexavalent chromium remediation. Nanoparticle characterizations show that different plant extracts lead to the formation of nanoparticles with different sizes, agglomeration tendencies, and shapes but similar amorphous nature and elemental makeup. Hexavalent chromium removal is linked with the particle size and monodispersity. Nanoparticles with sizes between 5 and 15 nm from M. azedarach and P. undulatum showed enhanced chromium removal capacities (84.1-96.2%, respectively) when compared to the agglomerated particles of S. molle and S. paniculatum with sizes between 30 and 100 nm (43.7-58.7%, respectively) in over 9 h. This study has shown that the reduction of iron salts with plant extracts is unlikely to generate vast quantities of stable zero valent iron nanoparticles but rather favor the formation of iron oxide nanoparticles. In addition, plant extracts with higher antioxidant concentrations may not produce nanoparticles with morphologies optimal for pollutant remediation.
Collapse
Affiliation(s)
- Adam Truskewycz
- Centre
for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 71, Bundoora, Victoria 3083, Australia
- Nanobiotechnology
Research Laboratory and Centre for Advanced Materials & Industrial
Chemistry, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3000, Australia
- E-mail: (A.T.)
| | - Ravi Shukla
- Nanobiotechnology
Research Laboratory and Centre for Advanced Materials & Industrial
Chemistry, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3000, Australia
| | - Andrew S. Ball
- Centre
for Environmental Sustainability and Remediation, School of Science, RMIT University, GPO Box 71, Bundoora, Victoria 3083, Australia
| |
Collapse
|
30
|
Matei PM, Martín-Gil J, Michaela Iacomi B, Pérez-Lebeña E, Barrio-Arredondo MT, Martín-Ramos P. Silver Nanoparticles and Polyphenol Inclusion Compounds Composites for Phytophthora cinnamomi Mycelial Growth Inhibition. Antibiotics (Basel) 2018; 7:antibiotics7030076. [PMID: 30115899 PMCID: PMC6163761 DOI: 10.3390/antibiotics7030076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Phytophthora cinnamomi, responsible for "root rot" or "dieback" plant disease, causes a significant amount of economic and environmental impact. In this work, the fungicide action of nanocomposites based on silver nanoparticles and polyphenol inclusion compounds, which feature enhanced bioavailability and water solubility, was assayed for the control of this soil-borne water mold. Inclusion compounds were prepared by an aqueous two-phase system separation method through extraction, either in an hydroalcoholic solution with chitosan oligomers (COS) or in a choline chloride:urea:glycerol deep eutectic solvent (DES). The new inclusion compounds were synthesized from stevioside and various polyphenols (gallic acid, silymarin, ferulic acid and curcumin), in a [6:1] ratio in the COS medium and in a [3:1] ratio in the DES medium, respectively. Their in vitro response against Phytophthora cinnamomi isolate MYC43 (at concentrations of 125, 250 and 500 µg·mL-1) was tested, which found a significant mycelial growth inhibition, particularly high for the composites prepared using DES. Therefore, these nanocomposites hold promise as an alternative to fosetyl-Al and metalaxyl conventional systemic fungicides.
Collapse
Affiliation(s)
- Petruta Mihaela Matei
- Department of Bioengineering of Horticultural and Viticultural Systems, University of Agricultural Sciences and Veterinary Medicine of Bucharest, Bulevardul Mărăști 59, București 011464, Romania.
- Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain.
| | - Jesús Martín-Gil
- Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain.
| | - Beatrice Michaela Iacomi
- Department of Bioengineering of Horticultural and Viticultural Systems, University of Agricultural Sciences and Veterinary Medicine of Bucharest, Bulevardul Mărăști 59, București 011464, Romania.
| | - Eduardo Pérez-Lebeña
- Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain.
| | - María Teresa Barrio-Arredondo
- Centro de Salud Barrio España, Sanidad de Castilla y León (SACYL), Calle de la Costa Brava, 4, 47010 Valladolid, Spain.
| | - Pablo Martín-Ramos
- Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en Ciencias Ambientales (IUCA), University of Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain.
| |
Collapse
|
31
|
Moteriya P, Chanda S. Biosynthesis of silver nanoparticles formation from Caesalpinia pulcherrima stem metabolites and their broad spectrum biological activities. J Genet Eng Biotechnol 2018; 16:105-113. [PMID: 30647712 PMCID: PMC6296618 DOI: 10.1016/j.jgeb.2017.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 02/03/2023]
Abstract
The present work illustrates eco-friendly, rapid and cost effective method of AgNPs synthesis using C. pulcherrima stem extract. Initially, various physico chemical factors were optimized. Characterization was done by different spectroscopic and microscopic analysis. AgNPs were spherical in shape with an average size of 8 nm. AgNPs showed good synergistic antimicrobial, antibiofilm and antioxidant activity. The cytotoxicity effect against HeLa cancer cell line was dose dependent while genotoxic study revealed the non toxic nature of AgNPs at lower concentration. The results suggest that AgNPs from C. pulcherrima stem extract have great potential in biomedical applications.
Collapse
|
32
|
Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res 2018; 9:1-16. [PMID: 30046482 PMCID: PMC6057238 DOI: 10.1016/j.jare.2017.10.008] [Citation(s) in RCA: 623] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
With the development of nanotechnology, silver nanoparticles (Ag-NPs) have become one of the most in-demand nanoparticles owing to their exponential number of uses in various sectors. The increased use of Ag-NPs-enhanced products may result in an increased level of toxicity affecting both the environment and living organisms. Several studies have used different model cell lines to exhibit the cytotoxicity of Ag-NPs, and their underlying molecular mechanisms. This review aimed to elucidate different properties of Ag-NPs that are responsible for the induction of cellular toxicity along with the critical mechanism of action and subsequent defense mechanisms observed in vitro. Our results show that the properties of Ag-NPs largely vary based on the diversified synthesis processes. The physiochemical properties of Ag-NPs (e.g., size, shape, concentration, agglomeration, or aggregation interaction with a biological system) can cause impairment of mitochondrial function prior to their penetration and accumulation in the mitochondrial membrane. Thus, Ag-NPs exhibit properties that play a central role in their use as biocides along with their applicability in environmental cleaning. We herein report a current review of the synthesis, applicability, and toxicity of Ag-NPs in relation to their detailed characteristics.
Collapse
Key Words
- Ag+, silver ions
- Ag-NPs, silver nanoparticles
- Cytotoxicity
- DNA, deoxyribonucleic acid
- GSH, glutathione
- LDH, lactate dehydrogenase
- Mechanism
- NPs, nanoparticles
- PVP, polyvinylpyrrolidone
- Physiochemical properties
- ROS, reactive oxygen species
- Silver nanoparticles
- TMRE, tetramethylrhodamine ethyl ester
- TT, toxicity threshold
- ppm, parts per million
Collapse
Affiliation(s)
- Mahmuda Akter
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Md. Tajuddin Sikder
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, 060-0810 Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0817, Japan
- Department of Public Health and Informatics, Jahangirnagar University, Bangladesh
| | - Md. Mostafizur Rahman
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - A.K.M. Atique Ullah
- Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | | | - Subrata Banik
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Toshiyuki Hosokawa
- Research Division of Higher Education, Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0817, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, 060-0810 Sapporo, Japan
| |
Collapse
|
33
|
Rasoulpour I, Jafarirad S. Synthesis of biocapped CuO nanoparticles: An investigation on biorganic-Cu2+ interactions, in vitro antioxidant and antimicrobial aspects. INORG NANO-MET CHEM 2017. [DOI: 10.1080/24701556.2017.1357615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ibrahim Rasoulpour
- Department of Biophysics, Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Saeed Jafarirad
- Department of Biophysics, Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| |
Collapse
|
34
|
Ghanbar F, Mirzaie A, Ashrafi F, Noorbazargan H, Dalirsaber Jalali M, Salehi S, Sadat Shandiz SA. Antioxidant, antibacterial and anticancer properties of phyto -synthesised Artemisia quttensis Podlech extract mediated AgNPs. IET Nanobiotechnol 2017; 11:485-492. [PMID: 28530200 DOI: 10.1049/iet-nbt.2016.0101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The focus of this study is on a rapid and cost-effective approach for the synthesis of silver nanoparticles (AgNPs) using Artemisia quttensis Podlech aerial parts extract and assessment of their antioxidant, antibacterial and anticancer activities. The prepared AgNPs were determined by ultraviolet-visible spectroscopy, X-ray diffraction, Fourier transform infra-red spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive spectroscopy, and dynamic light scattering and zeta-potential analysis. The AgNPs and A. quttensis extract were evaluated for their antiradical scavenging activity by 2, 2-diphenyl, 1-picryl hydrazyl assay and anticancer activity against colon cancer (human colorectal adenocarcinoma cell line 29) compared with normal human embryonic kidney (HEK293) cells. Also, the prepared AgNPs were studied for its antibacterial activity. The AgNPs revealed a higher antioxidant activity compared with A. quttensis extract alone. The phyto-synthesised AgNPs and A. quttensis extract showed a dose-response cytotoxicity effect against HT29 and HEK293 cells. As evidenced by Annexin V/propidium iodide staining, the number of apoptotic HT29 cells was significantly enhanced, following treatment with AgNPs as compared with untreated cells. Besides, the antibacterial property of the AgNPs indicated a significant effect against the selected pathogenic bacteria. These present obtained results show the potential applications of phyto-synthesised AgNPs using A. quttensis aerial parts extract.
Collapse
Affiliation(s)
- Farinaz Ghanbar
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Amir Mirzaie
- Young Researchers and Elite Club, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Dalirsaber Jalali
- Department of Microbiology, Faculty of Basic Science, Young Researcher Club, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Soheil Salehi
- Department of Phytochemistry and Essential Oils Technology, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | | |
Collapse
|
35
|
Karhan Ö, Ceran ÖB, Şara ON, Şimşek B. Response Surface Methodology Based Desirability Function Approach To Investigate Optimal Mixture Ratio of Silver Nanoparticles Synthesis Process. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Öznur Karhan
- Department
of Chemical Engineering, Faculty of Engineering, Çankırı Karatekin University, 18120 Çankırı, Turkey
| | - Özge Bildi Ceran
- Department
of Chemical Engineering, Faculty of Engineering, Çankırı Karatekin University, 18120 Çankırı, Turkey
| | - Osman Nuri Şara
- Department
of Chemical Engineering, Faculty of Natural Sciences Architecture
and Engineering, Bursa Technical University, 16310 Bursa, Turkey
| | - Barış Şimşek
- Department
of Chemical Engineering, Faculty of Engineering, Çankırı Karatekin University, 18120 Çankırı, Turkey
| |
Collapse
|
36
|
Anticancer Properties of Phyto-Synthesized Silver Nanoparticles from Medicinal Plant Artemisia tschernieviana Besser Aerial Parts Extract Toward HT29 Human Colon Adenocarcinoma Cells. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1272-1291. [PMID: 27825269 DOI: 10.1080/21691401.2016.1241792] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of reliable and eco-accommodating methods for the synthesis of nanoparticles is a vital step in the field of nanotechnology. Silver nanoparticles are important because of their exceptional chemical, physical, and biological properties, and hence applications. In the last decade, numerous efforts were made to develop green methods of synthesis to avoid the hazardous byproducts. This review describes the methods of green synthesis for Ag-NPs and their numerous applications. It also describes the comparison of efficient synthesis methods via green routes over physical and chemical methods, which provide strong evidence for the selection of suitable method for the synthesis of Ag-NPs.
Collapse
Affiliation(s)
- Muhammad Rafique
- a Department of Physics , University of Engineering and Technology , Lahore , Pakistan.,b Department of Physics , University of Gujrat , Gujrat , Pakistan
| | - Iqra Sadaf
- b Department of Physics , University of Gujrat , Gujrat , Pakistan
| | - M Shahid Rafique
- a Department of Physics , University of Engineering and Technology , Lahore , Pakistan
| | - M Bilal Tahir
- b Department of Physics , University of Gujrat , Gujrat , Pakistan
| |
Collapse
|
38
|
Rajendran N, Subramaniam S, Raja MRC, Brindha P, Kar Mahapatra S, Sivasubramanian A. Plant phenyl-propanoids-conjugated silver nanoparticles from edible plant Suaeda maritima (L.) dumort. Inhibit proliferation of K562-human myeloid leukemia cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1336-1342. [DOI: 10.1080/21691401.2016.1236803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Sadat Shandiz SA, Shafiee Ardestani M, Shahbazzadeh D, Assadi A, Ahangari Cohan R, Asgary V, Salehi S. Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1-10. [PMID: 27362495 DOI: 10.1080/21691401.2016.1202257] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the current study, in vitro biological feature of imatinib-loaded silver nanoparticles (IMAB-AgNPs) on human breast cancer cell line was investigated. The formation of synthesized silver nanoparticles (AgNPs) was characterized by UV-Visible spectroscopy, EDS, TEM imaging, SEM, FTIR, DLS and Zeta potentiometer. The developed IMAB-AgNPs with maximum percentage of loading efficiency was demonstrated in the average of 130 nm and mostly spherical. Additionally, in vitro drug release study showed a slow and continuous release of imatinib over a period of 80 h. We demonstrated that the synthesized IMAB-AgNPs exhibited a dose-dependent cytotoxicity against MCF-7 cell line. Then, real-time PCR method was also applied for the investigation of Bax and Bcl-2 gene expression in the cells. Comparing IMAB-AgNPs to AgNPs and Imatinib revealed the ability of IMAB-AgNPs to up-regulating Bax/Bcl-2 ratio. An induction of apoptosis was evidenced by Annexin-V/PI detection assay. Based on the current obtained data, the IMAB-AgNPs can exhibit inhibitory effect on viability through up regulation of apoptosis in MCF-7 cancer cells, which provides influencing evidence for the green synthesized AgNPs as a promising sustained drug delivery system.
Collapse
Affiliation(s)
| | - Mehdi Shafiee Ardestani
- b Department of Radiopharmacy, Faculty of Pharmacy , Tehran University of Medical Sciences, Tehran University of Medical Sciences , Tehran , Iran
| | - Delavar Shahbazzadeh
- c Biotechnology Research Center, Venom & Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran , Tehran , Iran
| | - Artin Assadi
- b Department of Radiopharmacy, Faculty of Pharmacy , Tehran University of Medical Sciences, Tehran University of Medical Sciences , Tehran , Iran
| | - Reza Ahangari Cohan
- d Department of Pilot Nanobiotechnology , New Technologies Research Group, Pasteur Institute of Iran , Tehran , Iran
| | - Vahid Asgary
- e Department of Immunology , School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Soheil Salehi
- f Department of Phytochemistry and Essential Oils Technology, Faculty of Pharmaceutical Chemistry , Pharmaceutical Sciences Branch, Islamic Azad University , Tehran , Iran
| |
Collapse
|
40
|
Djahaniani H, Rahimi-Nasrabadi M, Saiedpour M, Nazarian S, Ganjali M, Batooli H. Facile synthesis of silver nanoparticles using Tribulus longipetalus extract and their antioxidant and antibacterial activities. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1188826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Govindarajan M, Rajeswary M, Hoti SL, Nicoletti M, Benelli G. Facile synthesis of mosquitocidal silver nanoparticles using Mussaenda glabra leaf extract: characterisation and impact on non-target aquatic organisms. Nat Prod Res 2016; 30:2491-4. [DOI: 10.1080/14786419.2016.1185721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, India
| | - Mohan Rajeswary
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, India
| | - S. L. Hoti
- Regional Medical Research Centre, Belgaum, India
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
42
|
Salehi S, Shandiz SAS, Ghanbar F, Darvish MR, Ardestani MS, Mirzaie A, Jafari M. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int J Nanomedicine 2016; 11:1835-46. [PMID: 27199558 PMCID: PMC4857832 DOI: 10.2147/ijn.s99882] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A rapid phytosynthesis of silver nanoparticles (AgNPs) using an extract from the aerial parts of Artemisia marschalliana Sprengel was investigated in this study. The synthesized AgNPs using A. marschalliana extract was analyzed by UV-visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy and further characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, and energy-dispersive spectroscopy. Characteristic absorption bands of AgNPs were found near 430 nm in the UV-vis spectrum. Energy-dispersive spectroscopy analysis of AgNPs in the energy range 2-4 keV confirmed the silver signal due to surface plasmon resonance. Scanning electron microscopy and transmission electron microscopy results revealed that the AgNPs were mostly spherical with an average size ranging from 5 nm to 50 nm. The zeta potential value of -31 mV confirmed the stability of the AgNPs. AgNPs produced using the aqueous A. marschalliana extract might serve as a potent in vitro antioxidant, as revealed by 2,2-diphenyl-1-picryl hydrazyl assay. The present study demonstrates the anticancer properties of phytosynthesized AgNPs against human gastric carcinoma AGS cells. AgNPs exerted a dose-dependent inhibitory effect on the viability of cells. Real-time polymerase chain reaction was used for the investigation of Bax and Bcl-2 gene expression in cancer and normal cell lines. Our findings show that the mRNA levels of pro-apoptotic Bax gene expression were significantly upregulated, while the expression of anti-apoptotic Bcl-2 was declined in cells treated with AgNPs compared to normal cells. In addition, flow cytometric analysis showed that the number of early and late apoptotic AGS cells was significantly enhanced following treatment with AgNPs as compared to untreated cells. In addition, the AgNPs showed strong antibacterial properties against tested pathogenic bacteria such as Staphylococcus aureus, Bacillus cereus, Acinetobacter baumannii, and Pseudomonas aeruginosa. Based on the obtained data, we suggest that phytosynthesized AgNPs are good alternatives in the treatment of diseases because of the presence of bioactive agents.
Collapse
Affiliation(s)
- Soheil Salehi
- Department of Phytochemistry and Essential Oils Technology, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran (IAUPS), Iran
| | | | | | | | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mirzaie
- Young Researchers and Elite Club, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Jafari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
43
|
Dhayalan M, Denison MIJ, L AJ, Krishnan K, N NG. In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using Embelia ribes. Nat Prod Res 2016; 31:465-468. [PMID: 27104858 DOI: 10.1080/14786419.2016.1166499] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent years, the green synthesis of gold (GNPs) and silver (SNPs) nanoparticles has gained great interest among chemists and researchers. The present study reports an eco-friendly, cost-effective, rapid and easy method for the synthesis of gold and silver nanoparticles using the seed extract of Embelia ribes (SEEr) as capping and reducing agent. The synthesised GNPs and SNPs were characterised using the following techniques: UV-vis spectroscopy, DLS, HR-TEM, FT-IR and XRD. The free radical scavenging potential of GNPs and SNPs was measured by DPPH assay and Phosphomolybdenum assay. Further, the antimicrobial activity against two micro-organisms were tested using disc diffusion method and cytotoxicity of GNPs and SNPs was determined against MCF-7 cell lines at different concentrations by MTT assay. Both the GNPs and SNPs prepared from E. ribes comparatively showed promising results thereby proving their clinical importance.
Collapse
Affiliation(s)
- Manikandan Dhayalan
- a Department of Chemical Engineering , Alagappa College of Technology, Anna University , Chennai , India
| | | | - Anitha Jegadeeshwari L
- a Department of Chemical Engineering , Alagappa College of Technology, Anna University , Chennai , India
| | | | - Nagendra Gandhi N
- a Department of Chemical Engineering , Alagappa College of Technology, Anna University , Chennai , India
| |
Collapse
|
44
|
Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN. Green Synthesis of Silver Nanoparticles: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/gsc.2016.61004] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Anbu P, Murugan K, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, Suresh U, Alarfaj AA, Munusamy MA, Higuchi A, Hwang JS, Kumar S, Nicoletti M, Benelli G. Green-synthesised nanoparticles from Melia azedarach seeds and the cyclopoid crustacean Cyclops vernalis: an eco-friendly route to control the malaria vector Anopheles stephensi? Nat Prod Res 2015; 30:2077-84. [DOI: 10.1080/14786419.2015.1114935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Priya Anbu
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Pari Madhiyazhagan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Devakumar Dinesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Jayapal Subramaniam
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Chellasamy Panneerselvam
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Udaiyan Suresh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Murugan A. Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Suresh Kumar
- Faculty of Medicine and Health Sciences, Department of Medical Microbiology and Parasitology, University Putra Malaysia, Serdang, Malaysia
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
46
|
Murugan K, Sanoopa CP, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, Roni M, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Kumar S, Perumalsamy H, Ahn YJ, Benelli G. Rapid biosynthesis of silver nanoparticles usingCrotalaria verrucosaleaves against the dengue vectorAedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses. Nat Prod Res 2015; 30:826-33. [DOI: 10.1080/14786419.2015.1074230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Maddah B, Shamsi J, Barsang MJ, Rahimi-Nasrabadi M. The chemiluminescence determination of 2-chloroethyl ethyl sulfide using luminol-AgNO3-silver nanoparticles system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 142:220-225. [PMID: 25703367 DOI: 10.1016/j.saa.2015.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
A highly sensitive chemiluminescence (CL) method for the determination of 2-chloroethyl ethyl sulfide (2-CEES) was presented. It was found that 2-chloroethyl ethyl sulfide (2-CEES) could inhibit the CL of the luminol-AgNO3 system in the presence of silver nanoparticles in alkaline solution, which made it applicable for determination of 2-CEES. The presented method is simple, convenient, rapid and sensitive. Under the optimized conditions, the calibration curve was linear in the range of 0.0001-1ngmL(-1), with the correlation coefficient of 0.992; while the limit of detection (LOD), based on signal-to-noise ratio (S/N) of 3, was 6×10(-6)ngmL(-1). Also, the relative standard deviation (RSD, n=5) for determination of 2-CEES (0.50ngmL(-1)) was 3.1%. The method was successfully applied for the determination of 2-CEES in environmental aqueous samples.
Collapse
Affiliation(s)
| | - Javad Shamsi
- Nanoscience Center, Imam Hossein University, Tehran, Iran
| | | | | |
Collapse
|