1
|
Shastry RP, Abhinand CS. Targeting the Pseudomonas aeruginosa quorum sensing system to inhibit virulence factors and eradicate biofilm formation using AHL-analogue phytochemicals. J Biomol Struct Dyn 2024; 42:1956-1965. [PMID: 37097921 DOI: 10.1080/07391102.2023.2202270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/09/2023] [Indexed: 04/26/2023]
Abstract
Quorum sensing plays a major role in the expression of virulence and development of biofilm in the human pathogen Pseudomonas aeruginosa. Natural compounds are well-known for their antibacterial characteristics by blocking various metabolic pathways. The goal of this study is to find natural compounds that mimic AHL (Acyl homoserine lactone) and suppress virulence in P. aeruginosa, which is triggered by quorum sensing-dependent pathways as an alternative drug development strategy. To support this rationale, functional network analysis and in silico investigations were carried out to find natural AHL analogues, followed by molecular docking studies. Out of the 16 top-hit AHL analogues derived from phytochemicals, seven ligands were found to bind to the quorum sensing activator proteins. Cassialactone, an AHL analogue, exhibited the highest binding affinity for RhlI, RhlR, and PqsE of P. aeruginosa, with a docking score of -9.4, -8.9, and -8.7 kcal/mol, respectively. 2(5H)-Furanone, a well-known inhibitor, was also docked to compare the docking score and intermolecular interactions between the ligand and the target protein. Furthermore, molecular dynamics simulations and binding free energy calculations were performed to determine the stability of the docked complexes. Additionally, the ADME properties of the analogues were also analyzed to evaluate the pharmacological parameters. Functional network analysis further showed that the interconnectedness of proteins such as RhlI, RhlR, LasI, and PqsE with the virulence and biofilm phenotype of the pathogen could offer potential as a therapeutic target.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
2
|
Banerjee S, Bajire SK, Mithun HK, Shastry RP. 3-(Bromoacetyl) coumarin is a potential therapeutic agent against neonatal sepsis-associated Pseudomonas extremorientalis. Arch Microbiol 2023; 205:312. [PMID: 37603073 DOI: 10.1007/s00203-023-03653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Neonatal sepsis is a severe bacterial infection that can lead to life-threatening complications in newborns. Pseudomonas extremorientalis is a Gram-negative bacterium and these Gram-negative organisms have been identified as a major cause of neonatal sepsis. The virulence factors produced by this bacterium play a crucial role in its pathogenicity. Therefore, targeting these virulence factors could be a potential strategy to treat neonatal sepsis caused by P. extremorientalis. In this study, we investigated the efficacy of 3-(bromoacetyl) coumarin (3-BC) in reducing the virulence factors of P. extremorientalis strains isolated from neonatal sepsis. Our results showed that 3-BC effectively reduced the production of various virulence factors, including protease, elastase, siderophore, and exopolysaccharide in these strains. Furthermore, at a concentration of 125 µg/ml, 3-BC also inhibited the biofilm formation ability of these strains in combination with ciprofloxacin. It was discovered that 3-BC was functionally effective in protecting C. elegans against bacterial infection. Moreover, the in vitro and in vivo outcomes were strongly correlated with docking studies of various activator proteins. Overall, our findings suggest that 3-BC could be a potential therapeutic agent for the treatment of neonatal sepsis caused by P. extremorientalis. Further studies are needed to explore the mechanism of action of 3-BC and its potential use in clinical settings.
Collapse
Affiliation(s)
- Shukla Banerjee
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - H K Mithun
- Department of Pediatrics, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
3
|
Bajire SK, Prabhu A, Bhandary YP, Irfan KM, Shastry RP. 7-Ethoxycoumarin rescued Caenorhabditis elegans from infection of COPD derived clinical isolate Pseudomonas aeruginosa through virulence and biofilm inhibition via targeting Rhl and Pqs quorum sensing systems. World J Microbiol Biotechnol 2023; 39:208. [PMID: 37231227 DOI: 10.1007/s11274-023-03655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Pseudomonas aeruginosa is an ambidextrous Gram-negative contagium with density convoluted network defined quorum sensing, which enables the persistent survival within the host environment, contributing to various lung related diseases including Chronic Obstructive Pulmonary Disease (COPD). It is clear that P. aeruginosa is a powerful, exquisite pathogen that has adopted a variety of virulence properties through quorum sensing (QS) regulated phenomenon and that it dominates both in the development and exacerbations of COPD. Interestingly, 7-Ethoxycoumarin (7-EC), a compound that adequately mimics QS signaling molecule of P. aeruginosa, was introduced as part of the process of developing novel ways to treat the severe exacerbations. The results showed that, introduction of 7-EC significantly decreased exopolysaccharide-mediated biofilm development of strains isolated from COPD sputum, as evidenced by SEM analysis. Furthermore, 7-EC was able to modulate a variety of virulence factors and motility without subjecting planktonic cells to any selection pressure. Bacterial invasion assay revealed the potential activity of the 7-EC in preventing the active entry to A549 cells without causing any damage to the cells and found functionally active in protecting the C. elegans from P. aeruginosa infection and being non-toxic to the worms. Docking analysis was further proved that 7-EC to be the potential anti-QS compound competing specifically with Rhl and Pqs Systems. Therefore, 7-EC in the utilisation against the P. aeruginosa based infections, may open an avenue for the futuristic mechanistic study in chronic respiratory diseases and a initiator for the development of non-antibiotic based antibacterial therapy.
Collapse
Affiliation(s)
- Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - Yashodhar P Bhandary
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - K M Irfan
- Department of Pulmonary Medicine, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
4
|
Saisin S, Panthong K, Hongthong S, Kuhakarn C, Thanasansurapong S, Chairoungdua A, Suksen K, Akkarawongsapat R, Napaswad C, Prabpai S, Nuntasaen N, Reutrakul V. Pyranonaphthoquinones and Naphthoquinones from the Stem Bark of Ventilago harmandiana and Their Anti-HIV-1 Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:498-507. [PMID: 36787536 PMCID: PMC10043937 DOI: 10.1021/acs.jnatprod.2c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 06/18/2023]
Abstract
Seven previously undescribed compounds, including five pyranonaphthoquinones (ventilanones L-P) and two naphthoquinones (ventilanones Q and R), along with 15 known compounds were isolated from the stem bark of Ventilago harmandiana (Rhamnaceae). The structures were established by extensive analysis of their spectroscopic data. The absolute configuration of ventilanone L was established from single crystal X-ray crystallographic analysis using Cu Kα radiation and from its electronic circular dichroism data. Anti-HIV-1 activity using a syncytium inhibition assay and the cytotoxic activities of some isolated compounds were evaluated. Compounds 12, 13, 15, and 16 showed activity against syncytium formation with half maximal effective concentration (EC50) values ranging from 9.9 to 47 μM (selectivity index (SI) 2.4-4.5).
Collapse
Affiliation(s)
- Suwannee Saisin
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Kanda Panthong
- Division
of Physical Sciences and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Prince
of Songkla University, Songkhla 90112, Thailand
| | - Sakchai Hongthong
- Division
of Chemistry, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao 24000, Thailand
| | - Chutima Kuhakarn
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Sariyarach Thanasansurapong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Arthit Chairoungdua
- Department
of Physiology, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Kanoknetr Suksen
- Department
of Physiology, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Radeekorn Akkarawongsapat
- Department
of Microbiology, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Chanita Napaswad
- Department
of Microbiology, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Samran Prabpai
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Narong Nuntasaen
- The Forest
Herbarium National Park, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Bangkok 10900, Thailand
| | - Vichai Reutrakul
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Culture dependent and independent detection of multiple extended beta-lactamase producing and biofilm forming Salmonella species from leafy vegetables. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Shastry RP, Kanekar S, Pandial AS, Rekha PD. Isoeugenol suppresses multiple quorum sensing regulated phenotypes and biofilm formation of Pseudomonas aeruginosa PAO1. Nat Prod Res 2021; 36:1663-1667. [PMID: 33719769 DOI: 10.1080/14786419.2021.1899174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The potential strategy to prevent bacterial pathogenicity is disabling quorum sensing circuits with structural mimicking molecules. Here, we analyzed a synthetic molecule isoeugenol, for inhibition of quorum sensing regulated phenotype and biofilm formation. Isoeugenol was an effective inhibitor, i.e., more than 70% of virulence factors were inhibited including pyocyanin, rhamnolipid, exopolysaccharide, swarming motility and biofilm formation. Interestingly, these quorum sensing regulated phenotypes in Pseudomonas aeruginosa PAO1 were inhibited without affecting the planktonic cells. Moreover, the presence of isoeugenol exhibited more than 70% inhibition of biofilm formation through inhibition of the quorum sensing systems. Furthermore, docking studies suggest that isoeugenol bound to the quorum sensor regulators such as LasI, LasR PqsE and SidA with considerable binding interactions. Our results demonstrate the utility of isoeugenol as a blocker of quorum sensing, which will be functioning as an antivirulence compound.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | - Saptami Kanekar
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | - Aleema Suzna Pandial
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | - P D Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| |
Collapse
|
7
|
Shastry RP, Ghate SD, Sukesh Kumar B, Srinath BS, Kumar V. Vanillin derivative inhibits quorum sensing and biofilm formation in Pseudomonas aeruginosa: a study in a Caenorhabditis elegans infection model. Nat Prod Res 2021; 36:1610-1615. [PMID: 33615940 DOI: 10.1080/14786419.2021.1887866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Vanillin and its derivative, (4-((E)-(4-hydroxy-2-methylphenylimino) methyl)-2-methoxyphenol (MMP) were showed clear inhibition of violacein and pyocyanin at sub-MICs indicating a possible quorum quenching effect of both the compounds. MMP was able to inhibit the biofilm formation in Pseudomonas aeruginosa PAO1 at 125 μg/mL (p < 0.05), while vanillin at 250 μg/mL (p < 0.05) indicating that they act against quorum sensing regulated biofilm formation. The inhibition of biofilm was confirmed by visualization through fluorescence microscopy followed by docking analysis of molecules against quorum sensing activator proteins. Caenorhabditis elegans survival assay revealed that vanillin and MMP were able to increase survival of C. elegans from P. aeruginosa PAO1 infection. The study showed that the potent features of the MMP and vanillin in inhibiting the quorum sensing regulated virulence and biofilm, which was proved in C. elegans infection model as well as molecular docking studies.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - Sudeep D Ghate
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - B Sukesh Kumar
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - B S Srinath
- Department of Studies and Research in Microbiology, Post Graduate Centre, Mangalore University, Kodagu, Mangalore, Karnataka, India
| | - Vasanth Kumar
- PG Department of Chemistry, Shri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, Karnataka, India
| |
Collapse
|
8
|
Shastry RP, Arunrenganathan R, Rai VR. Characterization of probiotic Enterococcus lactis RS5 and purification of antibiofilm enterocin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Molecular characterization of enterocin EF35 against human pathogens and its in-silico analysis against human cancer proteins TOP1 and PI3K. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Ouerghemmi S, Sebei H, Siracusa L, Ruberto G, Saija A, Khebour Allouche F, Dhaouadi K, Cimino F, Cristani M. LC-DAD-ESI-MS and HPLC-DAD phytochemical investigation and in vitro antioxidant assessment of Rosa sp. stem pruning products from different northern areas in Tunisia. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:98-111. [PMID: 31343123 DOI: 10.1002/pca.2870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/08/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Saloua Ouerghemmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Contrada Annunziata, 98168, Messina, Italy
- Laboratoire de Systèmes de Production Agricoles et Développement Durable, Ecole Supérieure d'Agriculture de Mograne, Université de Carthage, 1121 Mograne, Zaghouan, Tunisia
| | - Houcine Sebei
- Laboratoire de Systèmes de Production Agricoles et Développement Durable, Ecole Supérieure d'Agriculture de Mograne, Université de Carthage, 1121 Mograne, Zaghouan, Tunisia
| | - Laura Siracusa
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare (CNR-ICB), Via Paolo Gaifami, 18 - 95126, Catania, Italy
| | - Giuseppe Ruberto
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare (CNR-ICB), Via Paolo Gaifami, 18 - 95126, Catania, Italy
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Contrada Annunziata, 98168, Messina, Italy
| | - Faiza Khebour Allouche
- Horticultural Science and Landscape Department, Higher Institute of Agronomy of Chott-Mariem, University of Sousse, B. P 47, 4042 Chott Mariem, Sousse, Tunisia
| | - Karima Dhaouadi
- Laboratoire de Systèmes de Production Agricoles et Développement Durable, Ecole Supérieure d'Agriculture de Mograne, Université de Carthage, 1121 Mograne, Zaghouan, Tunisia
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Contrada Annunziata, 98168, Messina, Italy
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Contrada Annunziata, 98168, Messina, Italy
| |
Collapse
|
11
|
Tharsius Raja WR, Antony S, Pachaiyappan S, Amalraj J, Narasimhan P, Keduki B, Veeramuthu D, Perumal P, Savarimuthu I. Antibacterial Activity study of Musizin isolated from Rhamnus wightii Wight and Arn. Bioinformation 2018; 14:511-520. [PMID: 31223211 PMCID: PMC6563663 DOI: 10.6026/97320630014511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 11/27/2022] Open
Abstract
The crude extracts and the compounds isolated from traditional medicinal plants are used to treat infectious diseases caused by bacteria, fungi, and viruses. An attempt has been made in the present investigation to evaluate the antibacterial activity of musizin isolated from Rhamnus wightii, (Family: Rhamnaceae) against Gram-positive (Bacillus cereus, Staphylococcus aureus, Streptococcus faecalis), and Gramnegative (Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) bacteria. The tested compound showed more pronounced antibacterial activity against the tested pathogens than the standard antibiotics like streptomycin and gentamycin with the lowest minimum inhibitory concentration (MIC). Molecular docking analysis was performed to study the effectiveness of musizin compared to the standard antibiotics; it showed a significant interaction with the target proteins such asalgR (P. arginosa), divIVA (E. faecalis), icaA (S. aureus), plcR(B. cereus), treC (K. pneumonia) and ftsl (E. coli) and found that musizin showed higher potential with least binding energy. It has also been found that musizin had better ADMET properties than the standard drugs. Thus,musizin acts as an inhibitor of bacterial growth for consideration as a drug to treat bacterial infections.
Collapse
Affiliation(s)
| | - Stalin Antony
- 2Division of Bioinformatics,Entomology Research Institute, Loyola College, Chennai
- Centre of Advanced Studies in Botany and Centre for Herbal Sciences,University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Jackson Amalraj
- Division of Microbiology, Entomology Research Institute, LoyolaCollege, Chennai - Chennai
| | - Poorva Narasimhan
- Centre of Advanced Studies in Botany and Centre for Herbal Sciences,University of Madras, Guindy Campus, Chennai 600 025, India
| | - Balakrishna Keduki
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai
| | - Duraipandiyan Veeramuthu
- Division of Microbiology, Entomology Research Institute, LoyolaCollege, Chennai - Chennai
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies Collegeof Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Palani Perumal
- Centre of Advanced Studies in Botany and Centre for Herbal Sciences,University of Madras, Guindy Campus, Chennai 600 025, India
| | - Ignacimuthu Savarimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai
- International Scientific Partnership Program, King Saud University, PostBox 2455, Riyadh 1011 11451, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
dos Santos CM, Campos JF, dos Santos HF, Balestieri JBP, Silva DB, de Picoli Souza K, Carollo CA, Estevinho LM, dos Santos EL. Chemical Composition and Pharmacological Effects of Geopropolis Produced by Melipona quadrifasciata anthidioides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8320804. [PMID: 29213354 PMCID: PMC5682095 DOI: 10.1155/2017/8320804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022]
Abstract
Stingless bees produce geopropolis, which is popularly described for its medicinal properties, but for which few scientific studies have demonstrated pharmacological effects. The objective of this study was to investigate the chemical composition of the geopropolis of Melipona quadrifasciata anthidioides and to evaluate its antioxidant, antimutagenic, anti-inflammatory, and antimicrobial activities. The composition of the hydroethanolic extract of geopropolis (HEG) included di- and trigalloyl and phenylpropanyl heteroside derivatives, flavanones, diterpenes, and triterpenes. HEG showed antioxidant action via the direct capture of free radicals and by inhibiting the levels of oxidative hemolysis and malondialdehyde in human erythrocytes under oxidative stress. HEG also reduced the frequency of gene conversion and the number of mutant colonies of S. cerevisiae. The anti-inflammatory action of HEG was demonstrated by the inhibition of hyaluronidase enzyme activity. In addition, HEG induced cell death in all evaluated gram-positive bacteria, gram-negative bacteria, and yeasts, including clinical isolates with antimicrobial drug resistance. Collectively, these results demonstrate the potential of M. q. anthidioides geopropolis for the prevention and treatment of various diseases related to oxidative stress, mutagenesis, inflammatory processes, and microbial infections.
Collapse
Affiliation(s)
- Cintia Miranda dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Helder Freitas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - José Benedito Perrella Balestieri
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil
| | - Leticia M. Estevinho
- Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
- Molecular and Environmental Biology Centre (CBMA), Universidade do Minho, Campus de Gualtar, 4710 057 Braga, Portugal
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| |
Collapse
|