1
|
Cai F, Wang C. Comprehensive review of the phytochemistry, pharmacology, pharmacokinetics, and toxicology of alkamides (2016-2022). PHYTOCHEMISTRY 2024; 220:114006. [PMID: 38309452 DOI: 10.1016/j.phytochem.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Alkamides refer to a class of natural active small-molecule products composed of fatty acids and amine groups. These compounds are widely distributed in plants, and their unique structures and various pharmacological activities have caught the attention of scholars. This review provides a collection of literatures related to the phytochemistry, pharmacological effects, pharmacokinetics, and toxicity of alkamides published in 2016-2022 and their summary to provide references for further development of this class of ingredients. A total of 234 components (including chiral isomers) were summarized, pharmacological activities, such as anti-inflammatory, antitumor, antidiabetic, analgesic, neuroprotective, insecticidal, antioxidant, and antibacterial, and miscellaneous properties of alkamides were discussed. In addition, the pharmacokinetic characteristics and toxicity of alkamides were reviewed. However, information on the pharmacological mechanisms of the action, drug safety, and pharmacokinetics of alkamides is limited and thus requires further investigation and evaluation.
Collapse
Affiliation(s)
- Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Balakrishnan R, Azam S, Kim IS, Choi DK. Neuroprotective Effects of Black Pepper and Its Bioactive Compounds in Age-Related Neurological Disorders. Aging Dis 2023; 14:750-777. [PMID: 37191428 PMCID: PMC10187688 DOI: 10.14336/ad.2022.1022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/22/2022] [Indexed: 11/18/2022] Open
Abstract
Age-related neurological disorders (ANDs), including neurodegenerative diseases, are multifactorial disorders whose risk increases with age. The main pathological hallmarks of ANDs include behavioral changes, excessive oxidative stress, progressive functional declines, impaired mitochondrial function, protein misfolding, neuroinflammation, and neuronal cell death. Recently, efforts have been made to overcome ANDs because of their increased age-dependent prevalence. Black pepper, the fruit of Piper nigrum L. in the family Piperaceae, is an important food spice that has long been used in traditional medicine to treat various human diseases. Consumption of black pepper and black pepper-enriched products is associated with numerous health benefits due to its antioxidant, antidiabetic, anti-obesity, antihypertensive, anti-inflammatory, anticancer, hepatoprotective, and neuroprotective properties. This review shows that black pepper's major bioactive neuroprotective compounds, such as piperine, effectively prevent AND symptoms and pathological conditions by modulating cell survival signaling and death. Relevant molecular mechanisms are also discussed. In addition, we highlight how recently developed novel nanodelivery systems are vital for improving the efficacy, solubility, bioavailability, and neuroprotective properties of black pepper (and thus piperine) in different experimental AND models, including clinical trials. This extensive review shows that black pepper and its active ingredients have therapeutic potential for ANDs.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea.
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea.
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea.
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea.
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea.
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
3
|
Mad-adam N, Madla S, Lailerd N, Hiransai P, Graidist P. Piper nigrum Extract: Dietary Supplement for Reducing Mammary Tumor Incidence and Chemotherapy-Induced Toxicity. Foods 2023; 12:2053. [PMID: 37238871 PMCID: PMC10216990 DOI: 10.3390/foods12102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
A low piperine fractional Piper nigrum extract (PFPE) was prepared by mixing cold-pressed coconut oil and honey in distilled water, namely, PFPE-CH. In this study, PFPE-CH was orally administered as a dietary supplement to decrease the risk of tumor formation and reduce the side effects of chemotherapeutic drugs during breast cancer treatment. The toxicity study demonstrated no mortality or adverse effects after administrating PFPE-CH at 5000 mg/kg during a 14-day observation period. Additionally, PFPE-CH at 86 mg/kg BW/day did not cause any harm to the kidney or liver function of the rats for six months. In a cancer prevention study, treatment with PFPE-CH at 100 mg/kg BW for 101 days induced oxidative stress and increased the immune response by altering the levels of cancer-associated cytokines (IL-4, IL-6, and IFN-g), leading to a reduction in the tumor incidence of up to 71.4% without any adverse effects. In combination with doxorubicin, PFPE-CH did not disrupt the anticancer effects of the drug in rats with mammary tumors. Surprisingly, PFPE-CH reduced chemotherapy-induced toxicity by improving some hematological and biochemical parameters. Therefore, our results suggest that PFPE-CH is safe and effective in reducing breast tumor incidence and toxicity of chemotherapeutic drugs during cancer treatment in mammary tumor rats.
Collapse
Affiliation(s)
- Nadeeya Mad-adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Siribhon Madla
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Poonsit Hiransai
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
4
|
Sharma H, Sharma N, An SSA. Black Pepper ( Piper nigrum) Alleviates Oxidative Stress, Exerts Potential Anti-Glycation and Anti-AChE Activity: A Multitargeting Neuroprotective Agent against Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12051089. [PMID: 37237954 DOI: 10.3390/antiox12051089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a family of disorders that cause progressive structural and functional degeneration of neurons. Among all the organs in the body, the brain is the one that is the most affected by the production and accumulation of ROS. Various studies have shown that an increase in oxidative stress is a common pathophysiology for almost all NDs, which further affects various other pathways. The available drugs lack the wide spectrum necessary to confront these complexities altogether. Hence, a safe therapeutic approach to target multiple pathways is highly desirable. In the present study, the hexane and ethyl acetate extracts of Piper nigrum (black pepper), an important spice, were evaluated for their neuroprotective potential in hydrogen peroxide-induced oxidative stress in human neuroblastoma cells (SH-SY5Y). The extracts were also subjected to GC/MS to identify the important bioactives present. The extracts exhibited neuroprotection by significantly decreasing the oxidative stress and restoring the mitochondrial membrane potential in the cells. Additionally, the extracts displayed potent anti-glycation and significant anti-Aβ fibrilization activities. The extracts were competitive inhibitors of AChE. The multitarget neuroprotective mechanism displayed by Piper nigrum indicates it as a potential candidate in the treatment of NDs.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Norouzkhani N, Karimi AG, Badami N, Jalalifar E, Mahmoudvand B, Ansari A, Pakrou Sariyarighan N, Alijanzadeh D, Aghakhani S, Shayestehmehr R, Arzaghi M, Sheikh Z, Salami Y, Marabi MH, Abdi A, Deravi N. From kitchen to clinic: Pharmacotherapeutic potential of common spices in Indian cooking in age-related neurological disorders. Front Pharmacol 2022; 13:960037. [PMID: 36438833 PMCID: PMC9685814 DOI: 10.3389/fphar.2022.960037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Aging is described as an advanced time-related collection of changes that may negatively affect with the risk of several diseases or death. Aging is a main factor of several age-related neurological disorders, including neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, and dementia), stroke, neuroinflammation, neurotoxicity, brain tumors, oxidative stress, and reactive oxygen species (ROS). Currently available medications for age-related neurological disorders may lead to several side effects, such as headache, diarrhea, nausea, gastrointestinal (GI) diseases, dyskinesia, and hallucinosis. These days, studies on plant efficacy in traditional medicine are being conducted because herbal medicine is affordable, safe, and culturally acceptable and easily accessible. The Indian traditional medicine system called Ayurveda uses several herbs and medicinal plants to treat various disorders including neurological disorders. This review aims to summarize the data on the neuroprotective potential of the following common Indian spices widely used in Ayurveda: cumin (Cuminum cyminum (L.), Apiaceae), black cumin (Nigella sativa (L.), Ranunculaceae), black pepper (Piper nigrum (L.), Piperaceae), curry leaf tree (Murraya koenigii (L.), Spreng Rutaceae), fenugreek (Trigonella foenum-graecum (L.), Fabaceae), fennel (Foeniculum vulgare Mill, Apiaceae), cardamom (Elettaria cardamomum (L.) Maton, Zingiberaceae), cloves (Syzygium aromaticum (L.) Merr. & L.M.Perry, Myrtaceae), and coriander (Coriandrum sativum (L.), Apiaceae) in age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arian Ghannadi Karimi
- Preclinical, Cardiovascular Imaging Core Facility, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Badami
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Erfan Jalalifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mahmoudvand
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Dorsa Alijanzadeh
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Aghakhani
- Student Research Committee, Esfahan University of Medical Sciences, Esfahan, Iran
| | - Reza Shayestehmehr
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Zahra Sheikh
- Babol University of Medical Sciences, Babol, Iran
| | - Yasaman Salami
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hesam Marabi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Niloofar Deravi, ,
| |
Collapse
|
6
|
Liu Y, Tu Y, Kang Y, Zhu C, Wu C, Chen G, Liu Z, Li Y. Biological evaluation, molecular modeling and dynamics simulation of phenanthrenes isolated from Bletilla striata as butyrylcholinesterase inhibitors. Sci Rep 2022; 12:13649. [PMID: 35953511 PMCID: PMC9372051 DOI: 10.1038/s41598-022-17912-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
As part of our continuous studies on natural cholinesterase inhibitors from plant kingdom, the 95% ethanol extract from tubers of Bletillastriata showed promising butyrylcholinesterase (BChE) inhibition (IC50 = 8.6 μg/mL). The extracts with different polarities (petroleum ether, ethyl acetate, n-butanol, and water) were prepared and evaluated for their inhibition of cholinesterases. The most active ethyl acetate extract was subjected to a bioassay-guided isolation and afforded twenty-two bibenzyls and phenanthrenes (1–22). All isolates were further evaluated for their BChE inhibition activity, and five phenanthrenes presented promising capacity (IC50 < 10 μM). Further kinetic studies indicated their modes of inhibition. Compounds 6, 8, and 14 were found to be mixed-type inhibitors, while compounds 10 and 12 could be classified as non-competitive inhibitors. The potential interaction mechanism of them with BChE was demonstrated by molecular docking and molecular dynamics simulation, showing that they could interact with catalytic active site and peripheral anionic site of BChE. These natural phenanthrenes provide new scaffold for the further design and optimization, with the aim to discover new selective BChE inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yanbei Tu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yunyao Kang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Zhu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuanhai Wu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Gang Chen
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646106, China.,Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646106, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646106, China.,Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646106, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
7
|
Saleh-E-In MM, Choi YE. Anethum sowa Roxb. ex fleming: A review on traditional uses, phytochemistry, pharmacological and toxicological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:113967. [PMID: 33640440 DOI: 10.1016/j.jep.2021.113967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum sowa Roxb. ex Fleming (Syn. Peucedanum sowa Roxb. ex Fleming, Family: Apiaceae) is a pharmacologically important as aromatic and medicinal plant. Various parts of this plant are used in traditional medicine systems for carminative, uterine and colic pain, digestion disorder, flatulence in babies, appetite-stimulating agent and used to treat mild flue and cough. The essential oil is used for aromatherapy. It is also used as a spice for food flavouring and culinary preparations in many Asian and European countries. AIM OF THE REVIEW This review aims to provide a comprehensive and critical assessment from the reported traditional and pharmaceutical uses and pharmacological activities of the extracts, essential oil and phytoconstituents with emphasis on its therapeutic potential as well as toxicological evaluation of A. sowa. MATERIALS AND METHODS Online search engines such as SciFinder®, GoogleScholar®, ResearchGate®, Web of Science®, Scopus®, PubMed and additional data from books, proceedings and local prints were searched using relevant keywords and terminologies related to A. sowa for critical analyses. RESULTS The literature studies demonstrated that A. sowa possesses several ethnopharmacological activities, including pharmaceutical prescriptions, traditional applications, and spice in food preparations. The phytochemical investigation conducted on crude extracts has been characterized and identified various classes of compounds, including coumarins, anthraquinone, terpenoids, alkaloid, benzodioxoles, phenolics, polyphenols, phenolic and polyphenols, fatty acids, phthalides and carotenoids. The extracts and compounds from the different parts of A. sowa showed diverse in vitro and in vivo biological activities including antioxidant, antiviral, antibacterial, analgesic and anti-inflammatory, Alzheimer associating neuromodulatory, cytotoxic, anticancer, antidiabetes, insecticidal and larvicidal. CONCLUSION A. sowa is a valuable medicinal plant which is especially used in food flavouring and culinary preparations. This review summarized the pertinent information on A. sowa and its traditional and culinary uses, as well as potential pharmacological properties of essential oils, extracts and isolated compounds. The traditional uses of A. sowa are supported by in vitro/vivo pharmacological studies; however, further investigation on A. sowa should be focused on isolation and identification of more active compounds and establish the links between the traditional uses and reported pharmacological activities with active compounds, as well as structure-activity relationship and in vivo mechanistic studies before integrated into the medicine. The toxicological report confirmed its safety. Nonetheless, pharmacokinetic evaluation tests to validate its bioavailability should be encouraged.
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
8
|
Cardiovascular protective effect of black pepper (Piper nigrum L.) and its major bioactive constituent piperine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Insights into the Phytochemical and Multifunctional Biological Profile of Spices from the Genus Piper. Antioxidants (Basel) 2021; 10:antiox10101642. [PMID: 34679776 PMCID: PMC8533580 DOI: 10.3390/antiox10101642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/26/2023] Open
Abstract
Piper spices represent an inexhaustible reservoir of bioactive compounds that may act as drug leads in natural product research. The aim of this study was to investigate a series of methanolic fruit extracts obtained from P. nigrum (black, green, white and red), P. longum and P. retrofractum in comparative phytochemical and multi-directional biological (antimicrobial, antioxidant, anti-enzymatic and anti-melanogenic) assays. The metabolite profiling revealed the presence of 17 piperamides, with a total content of 247.75-591.42 mg piperine equivalents/g. Among the 22 tested microorganism strains, Piper spices were significantly active (MIC < 0.1 mg/mL) against the anaerobes Actinomyces israelii and Fusobacterium nucleatum. The antioxidant and anti-enzymatic activities were evidenced in DPPH (10.64-82.44 mg TE/g) and ABTS (14.20-77.60 mg TE/g) radical scavenging, CUPRAC (39.94-140.52 mg TE/g), FRAP (16.05-77.00 mg TE/g), chelating (0-34.80 mg EDTAE/g), anti-acetylcholinesterase (0-2.27 mg GALAE/g), anti-butyrylcholinesterase (0.60-3.11 mg GALAE/g), anti-amylase (0.62-1.11 mmol ACAE/g) and anti-glucosidase (0-1.22 mmol ACAE/g) assays. Several Piper extracts (10 μg/mL) inhibited both melanin synthesis (to 32.05-60.65% of αMSH+ cells) and release (38.06-45.78% of αMSH+ cells) in αMSH-stimulated B16F10 cells, partly explained by their tyrosinase inhibitory properties. Our study uncovers differences between Piper spices and sheds light on their potential use as nutraceuticals or cosmeceuticals for the management of different diseases linked to bacterial infections, Alzheimer's dementia, type 2 diabetes mellitus or hyperpigmentation.
Collapse
|
10
|
Ademuyiwa OH, Fasogbon BM, Adebo OA. The potential role of Piper guineense (black pepper) in managing geriatric brain aging: a review. Crit Rev Food Sci Nutr 2021; 63:2840-2850. [PMID: 34609267 DOI: 10.1080/10408398.2021.1980764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Brain aging is one of the unavoidable aspects of geriatric life. As one ages, changes such as the shrinking of certain parts (particularly the frontal cortex, which is vital to learning and other complex mental activities) of the brain may occur. Consequently, communications between neurons are less effective, and blood flow to the brain could also decrease. Efforts made at the biological level for repair become inadequate, leading to the accumulation of β-amyloid peptide in the brain faster than its probable degradation mechanism, resulting in cognitive malfunction. Subsequent clinical usage of drugs in battling related brain-aging ailments has been associated with several undesirable side effects. However, recent research has investigated the potential use of natural compounds from food in combating such occurrences. This review provides information about the use of Piper guineense (black pepper) as a possible agent in managing brain aging because of its implications for practical brain function. P. guineense contains an alkaloid (piperine) reported to be an antioxidant, anti-depressant, and central nervous system stimulant. This alkaloid and other related compounds are neuroprotective agents that reduce lipid oxidation and inhibit tangles in the brain tissues.
Collapse
Affiliation(s)
| | - Beatrice Mofoluwaso Fasogbon
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doorfontein, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doorfontein, Gauteng, South Africa
| |
Collapse
|
11
|
Teymuori M, Yegdaneh A, Rabbani M. Effects of Piper nigrum fruit and Cinnamum zeylanicum bark alcoholic extracts, alone and in combination, on scopolamine-induced memory impairment in mice. Res Pharm Sci 2021; 16:474-481. [PMID: 34522195 PMCID: PMC8407161 DOI: 10.4103/1735-5362.323914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/13/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background and purpose: Alzheimer’s disease is a progressive brain disorder that is thought to be triggered via disruption of cholinergic neurons and enhanced oxidative stress. Therefore, antioxidant phytochemicals with the ability to fortify cholinergic function should help in preventing the progress of the disease. This study aimed at evaluating the combinational effects of two popular herbs one with anticholinesterase activity namely Piper nigrum and the other with antioxidant capacity, Cinnamomum zeylanicum. Experimental approach: In this study, P. nigrum extract (PN) (50, 100 mg/kg, ip) and C. zeylanicum extract (CZ) (100, 200, 400 mg/kg, ip) and their combinations were administered for 8 days before the injection of scopolamine (1 mg/kg, ip). Mice were then tested for their memory using two behavioral models, namely the object recognition test and the passive avoidance task. Findings/Results: Administration of scopolamine significantly impaired memory performance in both memory paradigms. In the passive avoidance test (PAT) model, PN at doses up to 100 mg/kg and CZ at doses up to 400 mg/kg did not significantly alter the memory impairment induced by scopolamine. The combination of these two plant extracts did not change the PAT parameters. In the object recognition test (ORT) model, however, administration of 100 mg/kg CZ alone and a combination of PN (50 mg/kg) with CZ (400 mg/kg), significantly increased the recognition index (P < 0.05). Conclusion and implications: Two plant extracts when administered alone or in combinations affected the memory performance differently in two memory paradigms. In the PAT model, the extracts did not show any memory improvement, in ORT, however, some improvements were observed after plant extracts.
Collapse
Affiliation(s)
- Mohammad Teymuori
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Afsaneh Yegdaneh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
12
|
Potential therapeutic natural products against Alzheimer's disease with Reference of Acetylcholinesterase. Biomed Pharmacother 2021; 139:111609. [PMID: 33915501 DOI: 10.1016/j.biopha.2021.111609] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), is the most common type of dementia primarily affecting the later years of life. Its prevalence is likely to increase in any aging population and will be a major burden on healthcare system by the mid of the century. Despite scientific and technological breakthroughs in the last 50 years, that have expanded our understanding of the disease on a system, cellular and molecular level, therapies that could stop or slow the progression of the disease are still unavailable. The Food and Drug Administration (FDA), has approved acetylcholinesterase (AChE) inhibitors (donepezil, galantamine, tacrine and rivastigmine) and glutamate receptor antagonist (memantine) for the treatment of AD. In this review we summarize the studies reporting phytocompounds and extracts from medicinal plants that show AChE inhibitory activities and could be of potential benefit in AD. Future research directions are suggested and recommendations made to expand the use of medicinal plants and their formulations to prevent, mitigate and treat AD.
Collapse
|
13
|
Khatami Z, Herdlinger S, Sarkhail P, Zehl M, Kaehlig H, Schuster D, Adhami HR. Isolation and Characterization of Acetylcholinesterase Inhibitors from Piper longum and Binding Mode Predictions. PLANTA MEDICA 2020; 86:1118-1124. [PMID: 32668479 DOI: 10.1055/a-1199-7084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Restoration of cholinergic function is considered a rational approach to enhance cognitive performance. Acetylcholinesterase inhibitors are still the best therapeutic option for Alzheimer's disease. The fruits of Piper longum have been used in traditional medicines for the treatment of memory loss. It was demonstrated that the dichloromethane extract of these fruits is able to inhibit acetylcholinesterase. Thus, the aim of this study was to identify the contained acetylcholinesterase inhibitors. The active zones were presented via TLC-bioautography, and five compounds were isolated in the process of a bioassay-guided phytochemical investigation. Their structures were characterized as piperine, methyl piperate, guineenisine, pipercide, and pellitorine using spectroscopy and spectrometry methods (UV, IR, MS, 1H-, and 13C-NMR). In vitro acetylcholinesterase inhibitory activities of the isolates and their IC50 values were determined via a colorimetric assay. Three of them exhibited enzyme inhibitory activities, with piperine being the most potent compound (IC50 of 0.3 mM). In order to investigate the binding mode of the tested compounds, docking studies were performed using the X-ray crystal structure of acetylcholinesterase from Tetronarce californica with the Protein Data Bank code 1EVE. The content of the active compounds in the extract was determined by a developed HPLC method. Piperine was present in the maximum quantity in the fruits (0.57%), whereas methyl piperate contained the minimum content (0.10%).
Collapse
Affiliation(s)
- Zakie Khatami
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Sonja Herdlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
| | - Parisa Sarkhail
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Martin Zehl
- Mass Spectrometry Centre & Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Hanspeter Kaehlig
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
| | - Hamid-Reza Adhami
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
14
|
Pei H, Xue L, Tang M, Tang H, Kuang S, Wang L, Ma X, Cai X, Li Y, Zhao M, Peng A, Ye H, Chen L. Alkaloids from Black Pepper ( Piper nigrum L.) Exhibit Anti-Inflammatory Activity in Murine Macrophages by Inhibiting Activation of NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2406-2417. [PMID: 32031370 DOI: 10.1021/acs.jafc.9b07754] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Black pepper (Piper nigrum L.) has been commonly utilized in food preparation and traditional medicine in several countries. Seven new amide alkaloids, pipernigramides A-G (3, 10, 38, and 41-44), a new piperic ester, pipernigrester A (48), along with 47 known compounds were isolated from the EtOH extract of P. nigrum. The inhibitory effects on nitric oxide (NO) of all compounds were then evaluated. Among the tested compounds, three of them (42-44) significantly inhibited inducible nitric oxide synthase (iNOS)-mediated NO (IC50 = 4.74 ± 0.18, 4.08 ± 0.19, and 3.71 ± 0.32 μM, respectively), and IL-1β, IL-6, TNF-α, and PGE2 release in RAW 264.7 cells stimulated by lipopolysaccharide. Moreover, 42-44 suppressed IκB degradation and further inhibited the cytosol-nucleus translocation of the p65 subunit by targeting IKK-β. In the carrageenan-induced paw edema test, 42-44 demonstrated anti-inflammatory effects as well. These results indicate that all three compounds from P.nigrum have the potential anti-inflammatory effects.
Collapse
Affiliation(s)
- Heying Pei
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Linlin Xue
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Minghai Tang
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Huan Tang
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Shuang Kuang
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Lun Wang
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China.,School of Chemical Engineering , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Xu Ma
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Xiaoying Cai
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Yan Li
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China.,School of Chemical Engineering , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Min Zhao
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Aihua Peng
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Haoyu Ye
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| | - Lijuan Chen
- Laboratory of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital , Sichuan University , Chengdu 610041 , People's Republic of China
| |
Collapse
|
15
|
Gómez-Calvario V, Rios MY. 1 H and 13 C NMR data, occurrence, biosynthesis, and biological activity of Piper amides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:994-1070. [PMID: 30779382 DOI: 10.1002/mrc.4857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Alkamides are the major and characteristic chemical compounds of the plants belonging to the Piper genus. These compounds are responsible for the flavor of pepper spices and for its broad use in cuisine across many regions of the world. Humans are in contact every day with these substances, which additionally show a broad variety of pharmacological activities, making them an important research target. A large amount of NMR data for these natural products is dispersed throughout literature. Its organization will help those research groups interested in their identification and structural elucidation. This review summarizes the 1 H and 13 C NMR data of 268 Piper amides in a systematic and orderly way, with a discussion on their biological activities, biosynthetic aspects, and NMR analysis of typical and relevant aspects of this information.
Collapse
Affiliation(s)
- Víctor Gómez-Calvario
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - María Yolanda Rios
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
16
|
Ren T, Zuo Z. Role of piperine in CNS diseases: pharmacodynamics, pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol 2019; 15:849-867. [DOI: 10.1080/17425255.2019.1672658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tianjing Ren
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
17
|
Wu C, Tu YB, Li Z, Li YF. Highly selective carbamate-based butyrylcholinesterase inhibitors derived from a naturally occurring pyranoisoflavone. Bioorg Chem 2019; 88:102949. [DOI: 10.1016/j.bioorg.2019.102949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/19/2023]
|
18
|
Takooree H, Aumeeruddy MZ, Rengasamy KRR, Venugopala KN, Jeewon R, Zengin G, Mahomoodally MF. A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications. Crit Rev Food Sci Nutr 2019; 59:S210-S243. [PMID: 30740986 DOI: 10.1080/10408398.2019.1565489] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Considered as the "King of spices", black pepper (Piper nigrum L.) is a widely used spice which adds flavor of its own to dishes, and also enhances the taste of other ingredients. Piper nigrum has also been extensively explored for its biological properties and its bioactive phyto-compounds. There is, however, no updated compilation of these available data to provide a complete profile of the medicinal aspects of P. nigrum. This study endeavors to systematically review scientific data on the traditional uses, phytochemical composition, and pharmacological properties of P. nigrum. Information was obtained using a combination of keywords via recognized electronic databases (e.g., Science Direct and Google Scholar). Google search was also used. Books and online materials were also considered, and the literature search was restricted to the English language. The country with the highest number of traditional reports of P. nigrum for both human and veterinary medicine was India, mostly for menstrual and ear-nose-throat disorders in human and gastrointestinal disorders in livestock. The seeds and fruits were mostly used, and the preferred mode of preparation was in powdered form, pills or tablets, and paste. Piper nigrum and its bioactive compounds were also found to possess important pharmacological properties. Antimicrobial activity was recorded against a wide range of pathogens via inhibition of biofilm, bacterial efflux pumps, bacterial swarming, and swimming motilities. Studies also reported its antioxidant effects against a series of reactive oxygen and nitrogen species including the scavenging of superoxide anion, hydrogen peroxide, nitric oxide, DPPH, ABTS, and reducing effect against ferric and molybdenum (VI). Improvement of antioxidant enzymes in vivo has also been reported. Piper nigrum also exhibited anticancer effect against a number of cell lines from breast, colon, cervical, and prostate through different mechanisms including cytotoxicity, apoptosis, autophagy, and interference with signaling pathways. Its antidiabetic property has also been confirmed in vivo as well as hypolipidemic activity as evidenced by decrease in the level of cholesterol, triglycerides, and low-density lipoprotein and increase in high-density lipoprotein. Piper nigrum also has anti-inflammatory, analgesic, anticonvulsant, and neuroprotective effects. The major bioactive compound identified in P. nigrum is piperine although other compounds are also present including piperic acid, piperlonguminine, pellitorine, piperolein B, piperamide, piperettine, and (-)-kusunokinin, which also showed biological potency. Most pharmacological studies were conducted in vitro (n = 60) while only 21 in vivo and 1 clinical trial were performed. Hence, more in vivo experiments using a pharmacokinetic and pharmacokinetic approach would be beneficial. As a conclusive remark, P. nigrum should not only be regarded as "King of spices" but can also be considered as part of the kingdom of medicinal agents, comprising a panoply of bioactive compounds with potential nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Heerasing Takooree
- a Department of Health Sciences , Faculty of Science, University of Mauritius , Moka , Mauritius
| | - Muhammad Z Aumeeruddy
- a Department of Health Sciences , Faculty of Science, University of Mauritius , Moka , Mauritius
| | | | - Katharigatta N Venugopala
- c Department of Biotechnology and Food Technology , Durban University of Technology , Durban , South Africa
| | - Rajesh Jeewon
- a Department of Health Sciences , Faculty of Science, University of Mauritius , Moka , Mauritius
| | - Gokhan Zengin
- d Science Faculty, Department of Biology, Campıus , Selcuk University , Konya , Turkey
| | - Mohamad F Mahomoodally
- a Department of Health Sciences , Faculty of Science, University of Mauritius , Moka , Mauritius
| |
Collapse
|
19
|
Lima JA, Hamerski L. Alkaloids as Potential Multi-Target Drugs to Treat Alzheimer's Disease. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64183-0.00008-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
20
|
Xu S, Liu Y, Xiang L, Zhou F, Li H, Su Y, Xu X, Wang Q. Metabolites Identification of Bioactive Compounds Daturataturin A, Daturametelin I, N-Trans-Feruloyltyramine, and Cannabisin F From the Seeds of Datura metel in Rats. Front Pharmacol 2018; 9:731. [PMID: 30050436 PMCID: PMC6052896 DOI: 10.3389/fphar.2018.00731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/18/2018] [Indexed: 11/20/2022] Open
Abstract
Datura metel L. is a widely used traditional herbal medicine, and withanolides and amides are the two groups of main bioactive constituents in Datura metel seeds. This study aimed to elucidate the metabolism of four representative bioactive compositions containing daturataturin A (1), daturametelin I (2), N-trans-feruloyltyramine (3), and cannabisin F (4) in rats. After separately oral administration of 20 mg/kg withanolides (1, 2) and amides (3, 4) to rats, a total of 12, 24, and 21 metabolites were detected in the plasma, urine, and fecal samples, respectively. Among them, three hydroxylated metabolites, 1-M3, 2-M2, and 3-M5, were detected in plasma and rat liver microsome incubation system in high abundance. Two metabolites of 1 and 2 were unambiguously identified by comparing with reference standards. Particularly, the methylated metabolite 27α-methoxy-(22R)-22,26-epoxy-27-[(β-D-glucopyranosyl)oxy]ergosta-2,4,6,24-tetraene-1,26-dione (daturametelin L) is a new compound. The withanolides could readily get hydroxylation or methylation metabolism. Meanwhile, the phase II metabolism (glucuronidation or sulfation) was the major reaction for the amides. This is the first study on in vivo metabolism of these active compounds in seeds of Datura metel.
Collapse
Affiliation(s)
- Silun Xu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Xiang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fan Zhou
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongyu Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yongjian Su
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xinyi Xu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Tu Y, Huang J, Li Y. Anticholinesterase, antioxidant, and beta-amyloid aggregation inhibitory constituents from Cremastra appendiculata. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2108-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Song JL, Li BL, Yuan Y, Nie LH, Niu J, Chiu D, Xu ZF, Wu JW, Qiu SX. Yangonindimers A-C, three new kavalactone dimers from Piper methysticum (kava). Nat Prod Res 2017; 31:2459-2466. [DOI: 10.1080/14786419.2017.1312395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jia-Ling Song
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bai-Lin Li
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Yuan
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Hui Nie
- College Of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Niu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - David Chiu
- Intern, High School Junior of Davis Senior High School, Davis, CA, USA
| | - Zhi-Fang Xu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jie-Wei Wu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sheng-Xiang Qiu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|