1
|
Liu SQ, Xie QL, Deng YS, Liang L, Yuan HW, Li B, Yu HH, Tian X, Qiu YX, Paulin Kemayou Mouthe G, Shehla N, Zhang Y, Cai ZB, Wang W, Yang YP. Targeted isolation of lignans and triterpenoids from kadsura coccinea by molecular networking and anti-RA-FLS activity. PHYTOCHEMISTRY 2025; 231:114341. [PMID: 39613277 DOI: 10.1016/j.phytochem.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In this study, six compounds (four triterpenoids named heilaohutriterpenes A-D and two lignans name heilaohusuins F and G) together with 21 known compounds were isolated from roots of Kadsura coccinea (Lem.) A. C. Smith guided by molecular networking. Their structures were determined using a combination of HR-ESI-MS, 1D, 2D-NMR anatysis, NMR calculation, and electronic circular dichroism (ECD) calculations. Moreover, the ability of the isolated compounds to inhibit the proliferation of rheumatoid arthritis-fibroblastoid synovial (RA-FLS) cells was evaluated in vitro. Heilaohutriterpene B (2), heilaohutriterpene D (4), coccinone B (7), and kadsuralignan H (24) demonstrated significant inhibitory activities against RA-FLS cells, with IC50 values of 9.57 ± 0.84, 16.22 ± 1.71, 3.08 ± 1.59, and 19.09 ± 2.42 μM, respectively. Meanwhile, western blotting analysis revealed that compound 2 down-regulated the level of P-NF-κB p65 and up-regulated that of Bax and IκBα. These results collectively suggest that compound 2 promoted the apoptosis of RA-FLS cells by inhibiting the NF-κB pathway. Taken together, this study contributed to the structural diversity of compounds derived from K. coccinea and lays a basis for further anti-RA-related studies.
Collapse
Affiliation(s)
- Shi-Qi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qing-Ling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ya-Si Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ling Liang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Han-Wen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yi-Xing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Guy Paulin Kemayou Mouthe
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Nuzhat Shehla
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ye Zhang
- Shenzhen Futian District Maternal and Child Health Hospital, Shenzhen, 518016, China
| | - Ze-Bo Cai
- Shenzhen Futian District Maternal and Child Health Hospital, Shenzhen, 518016, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yu-Pei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Zhang S, Huang J, Fu J, Qin Y, Zhang X, Yao X, Zhu L, Liu H. Structurally Diverse Phenylpropanamides from Cannabis Fructus and Their Potential Neuroprotective Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12100-12118. [PMID: 38748649 DOI: 10.1021/acs.jafc.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
This study aimed to investigate the chemical components and potential health benefits of the fruits of Cannabis sativa L. Fourteen new phenylpropanamides designated as cannabisin I-XIV (1-14) and 40 known analogs were isolated and characterized via nuclear magnetic resonance spectroscopy, high-resolution electrospray ionization mass spectrometry, and electronic circular dichroism. In vitro bioassay using H2O2-induced PC12 cell damage models demonstrated that hempseeds extract and compounds 1, 3, 15, 26, 30, 36, 41, and 48 exhibited neuroprotective properties. 3,3'-Demethylgrossamide (30) displayed encouraging protection activity, which was further investigated to relieve the oxidative stress and apoptosis of PC12 cells treated with H2O2. The isolation and characterization of these neuroprotective phenylpropanamides from the fruits of C. sativa provide insights into its health-promoting properties as a healthy food and herbal medicine for preventing and treating neurodegenerative diseases, especially Alzheimer's disease.
Collapse
Affiliation(s)
- Shipeng Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jintian Huang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiahui Fu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou 310006, PR China
| | - Yu Qin
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xue Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinsheng Yao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lingjuan Zhu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongwei Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
3
|
Shen GD, Zhang YY, Yang NQ, Yang T, Wang T, Lu SC, Wang JY, Wang YS, Yang JH. N-alkylamides from Litsea cubeba (Lour.) Pers. with potential anti-inflammatory activity. Nat Prod Res 2024; 38:1727-1738. [PMID: 37328937 DOI: 10.1080/14786419.2023.2222216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Six amides, including a new N-alkylamide (1), four known N-alkylamides (2-5) and one nicotinamide (6) were isolated from Litsea cubeba (Lour.) Pers., which is a pioneer herb traditionally utilized in medicine. Their structures were elucidated on the basis of 1D and 2D NMR experiments and by comparison of their spectroscopic and physical data with the literature values. Cubebamide (1) is a new cinnamoyltyraminealkylamide and possessed obvious anti-inflammatory activity against NO production with IC50 values of 18.45 μM. Further in-depth pharmacophore-based virtual screening and molecular docking were carried out to reveal the binding mode of the active compound inside the 5-LOX enzyme. The results indicate that L. cubeba, and the isolated amides might be useful in the development of lead compounds for the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Guo-Dong Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Yin-Yan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Nian-Qi Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Tong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Ting Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Shi-Cheng Lu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jin-Yun Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Yun-Song Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jing-Hua Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| |
Collapse
|
4
|
Li K, Xia T, Jiang Y, Wang N, Lai L, Xu S, Yue X, Xin H. A review on ethnopharmacology, phytochemistry, pharmacology and potential uses of Portulaca oleracea L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117211. [PMID: 37739100 DOI: 10.1016/j.jep.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Portulaca oleracea L. (PO), popularly known as purslane, has been documented in ethnopharmacology in various countries and regions. Traditional application records indicated that PO might be used extensively to treat the common cold, dysentery, urinary tract infections, coughing, eye infections, skin problems, gynecological diseases, and pediatric illnesses. AIM OF THE REVIEW This paper includes a systematic review of the traditional usage, phytochemicals, pharmacological activity, and potential uses of PO to provide an overview of the research for further exploitation of PO resources. MATERIALS AND METHODS This article uses "Portulaca oleracea L." and "purslane" as the keywords and collects relevant information on PO from different databases, including PubMed, Web of Science, Springer, Science Direct, ACS, Wiley, CNKI, Baidu Scholar, Google Scholar, and ancient meteria medica. RESULTS PO is a member of the Portulacaceae family and is grown worldwide. Traditional Chinese medicine believes that purslane has the effect of improving eyesight, eliminating evil qi, quenching thirst, purgation, diuresis, hemostasis, regulating qi, promoting hair growth, detoxifying, and avoiding epidemic qi. Recent phytochemical investigations have shown that PO is a rich source of flavonoids, homoisoflavonoids, alkaloids, organic acids, esters, lignans, terpenoids, catecholamines, sterols, and cerebrosides. The purslane extracts or compounds have exhibited numerous biological activities such as anti-inflammatory, immunomodulatory, antimicrobial, antiviral, antioxidant, anticancer, renoprotective, hepatoprotective, gastroprotective, metabolic, muscle relaxant, anti-asthmatic and anti-osteoporosis properties. The significant omega-3 fatty acids, vital amino acids, minerals, and vitamins found in purslane also provide nutritional benefits. Purslane as a food/feed additive in the food industry and animal husbandry has caused concern. Its global wide distribution and tolerance to abiotic stress characteristics make it in the future sustainable development of agriculture a certain position. CONCLUSIONS Based on traditional usage, phytochemicals, and pharmacological activity, PO is a potential medicinal and edible plant with diverse pharmacological effects. Due to purslane's various advantages, it may have vast application potential in the food and pharmaceutical industries and animal husbandry.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
5
|
Liu P, Lan X, Tao X, Tian J, Ying X, Stien D. A new alkaloid and two organic acids from Portulaca oleracea L. and their bioactivities. Nat Prod Res 2024; 38:68-77. [PMID: 35876167 DOI: 10.1080/14786419.2022.2103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
A new alkaloid, identified as 1-benzyl-2-nitroso-1,2,3,4-tetrahydroisoquinoline-6,7-diol, named oleraisoquinoline (1), and five organic acids and two esters, identified as 5-(hydroxymethyl)furan-2-carboxylic acid (2), 1H-pyrrole-2,5-dicarboxylic acid (3), (7E,10E)-octadeca-7,10-dienoic acid (4), (10E,13E)-octadeca-10,13-dienoic acid (5), (7E,10E)-hexadeca-7,10-dienoic acid (6), methyl tridecanoate (7) and methyl (9E,12E)-octadeca-9,12-dienoate (8), were isolated from Portulaca oleracea L., among which compounds 2 and 4‒7 were isolated for the first time. Moreover, the anti-inflammatory activities of compounds 1‒3 were studied, especially, compound 1 presented good inhibitory effects on the production of inflammatory factors IL-1β and TNF-α.
Collapse
Affiliation(s)
- Peishan Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xiujuan Lan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xiaojun Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Jiayin Tian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, UAR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| |
Collapse
|
6
|
Tian J, Zhang M, Zhao Y, Zhang C, Ying X. Two new ester alkaloids from Portulaca oleracea L. and their bioactivities. Nat Prod Res 2023; 37:3915-3922. [PMID: 36577017 DOI: 10.1080/14786419.2022.2161542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Two new ester alkaloids were isolated from Portulaca oleracea L., identified as (5-aminofuran-2-yl) methyl acetate (1) named oleracone N and 4(S)-ethyl 3-acetamido-3-(dihydroxyamino) propanoate (2) named oleracone O. The structures were elucidated via spectroscopic methods, including 1 D and 2 D NMR, UHPLC-ESI-QTOF/MS and CD spectrometry technique. It was suggested that both oleracone N and oleracone O could significantly inhibit inflammatory factors IL-1β and TNF-α in RAW 264.7 cells induced by LPS.
Collapse
Affiliation(s)
- Jiayin Tian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Mingbo Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Yingdai Zhao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Chaoshen Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, P.R. China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| |
Collapse
|
7
|
Li W, Mei S, Zhou H, Salman Farid M, Hu T, Wu T. Metabolite fingerprinting of the ripening process in Pixian douban using a feature-based molecular network and metabolomics analysis. Food Chem 2023; 418:135940. [PMID: 36965392 DOI: 10.1016/j.foodchem.2023.135940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/27/2023]
Abstract
The unique flavor of Pixian douban (PXDB) is widely acknowledged to be associated with its maturation process. However, there is limited knowledge about the non-volatile metabolites that contribute to this flavor. To bridge this gap, this study employed a metabolomics approach and a feature-based molecular network (FBMN) analysis to investigate the non-volatile metabolite fingerprints of PXDB during its two-year maturation process. Specifically, the FBMN tool was utilized to annotate the flavonoid, amide derivatives, and lipid components of PXDB for the first time. Subsequently, the MolNetEnhancer tool was employed to complement the FBMN annotation and identify eight substructural components. Finally, metabolomics analysis was carried out to identify 45 key metabolites involved in flavor formation across 10 major metabolic pathways (p < 0.05). Overall, the findings of this study have significantly expanded our understanding of the non-volatile metabolite fingerprinting and flavor formation mechanisms.
Collapse
Affiliation(s)
- Weili Li
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, No.999 Guangchang Road, Chengdu 610039, China
| | - Sen Mei
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, No.999 Guangchang Road, Chengdu 610039, China
| | - Huanzhen Zhou
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, No.999 Guangchang Road, Chengdu 610039, China
| | - Muhammad Salman Farid
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Tao Hu
- Sichuan Teway Food Group Co., Ltd., No. 333, Tengfei 1st Road, Xihangangangang Street, Chengdu 610207, China
| | - Tao Wu
- Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, No.999 Guangchang Road, Chengdu 610039, China.
| |
Collapse
|
8
|
Brześkiewicz J, Loska R. Synthesis of Isoindole N-Oxides by Palladium-Catalyzed C-H Functionalization of Aldonitrones. J Org Chem 2023; 88:2385-2392. [PMID: 36704962 DOI: 10.1021/acs.joc.2c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A palladium-catalyzed strategy for isoindole N-oxide ring construction by C-H functionalization of aldonitrones is described. Our protocol is of general character, providing isoindole N-oxides with a variety of functional groups, including very sterically congested products. Further transformations into spirocyclic isoindolines, isoindoles, or a polycyclic isoquinolinium salt have been demonstrated as well. A mechanistic study suggests that the catalytic process proceeds via a Heck-type addition to the double C═N bond.
Collapse
Affiliation(s)
- Jakub Brześkiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Rafał Loska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
9
|
Kumar A, Sreedharan S, Kashyap AK, Singh P, Ramchiary N. A review on bioactive phytochemicals and ethnopharmacological potential of purslane ( Portulaca oleracea L.). Heliyon 2022; 8:e08669. [PMID: 35028454 PMCID: PMC8741462 DOI: 10.1016/j.heliyon.2021.e08669] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
The Portulaca oleracea L. commonly known as purslane is distributed all over the world and easily grows in diverse soil and climatic conditions. It has been traditionally used as a nutritious and ethnomedicinal food across the globe. Various studies have shown that the plant is a rich source of various important phytochemicals such as flavonoids, alkaloids, terpenoids, proteins, carbohydrates, and vitamins such as A, C, E, and B, carotenoids and minerals such as phosphorus, calcium, magnesium and zinc. It is particularly very important because of the presence of a very high concentration of omega-3- fatty acids especially α-linolenic acid, gamma-linolenic acid and linoleic acid, which are not generally synthesized in terrestrial plants. Various parts of purslane are known for ethnomedicinal and pharmacological uses because of its anti-inflammatory, antidiabetic, skeletal muscle relaxant, antitumor, hepatoprotective, anticancer, antioxidant, anti-insomnia, analgesic, gastroprotective, neuroprotective, wound healing and antiseptic activities. Due to multiple benefits of purslane, it has become an important wonder crop and various scientists across the globe have shown much interest in it as a healthy food for the future. In this review, we provide an update on the phytochemical and nutritional composition of purslane, its usage as nutritional and an ethnomedicinal plant across the world. We further provide a detailed account on ethnopharmacological studies that have proved the ethnomedicinal properties of purslane.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Sajana Sreedharan
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Arun Kumar Kashyap
- Department of Biotechnology, Government E. Raghavendra Rao Postgraduate Science College, Bilaspur, Chhattisgarh, India
| | - Pardeep Singh
- Department of Environmental Science, PGDAV College, University of Delhi, New Delhi, 110065, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
10
|
Evidente A, Masi M. Natural Bioactive Cinnamoyltyramine Alkylamides and Co-Metabolites. Biomolecules 2021; 11:1765. [PMID: 34944409 PMCID: PMC8698393 DOI: 10.3390/biom11121765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/03/2022] Open
Abstract
Natural products are a vital source for agriculture, medicine, cosmetic and other fields. Among them alkylamides are a broad and expanding group found in at least 33 plant families. Frequently, they possess a simple carbon skeleton architecture but show broad structural variability and important properties such as immunomodulatory, antimicrobial, antiviral, larvicidal, insecticidal and antioxidant properties, amongst others. Despite to these several and promising biological activities, up to today, only two reviews have been published on natural alkylamides. One focuses on their potential pharmacology application and their distribution in the plant kingdom and the other one on the bioactive alkylamides specifically found in Annona spp. The present review is focused on the plant bioactive cinnamoyltyramine alkylamides, which are subject of several works reported in the literature. Furthermore, the co-metabolites isolated from the same natural sources and their biological activities are also reported.
Collapse
Affiliation(s)
- Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Naples, Italy;
| | | |
Collapse
|
11
|
Song M, Ying Z, Ying X, Jia L, Yang G. Three novel alkaloids from Portulaca oleracea L. and their anti-inflammatory bioactivities. Fitoterapia 2021; 156:105087. [PMID: 34798165 DOI: 10.1016/j.fitote.2021.105087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/12/2023]
Abstract
Three novel alkaloids, identified as (E)-N-((2R)-3-(2,5-dihydroxy-4-((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-2-hydroxypropanoyl)-3-(4-hydroxyphenyl)acrylamide (1), named oleracrylimide A, (E)-N-((2R)-3-(2,5-dihydroxy-4-((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-2-hydroxypropanoyl)-3-(4-hydroxy-3-methoxyphenyl)acrylamide (2), named oleracrylimide B, and (E)-N-((2R)-3-(2,5-dihydroxy-4-((3,4,5-trihydroxy-6-(((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-2-hydroxypropanoyl)-3-(4-hydroxy-3-methoxyphenyl)acrylamide (3), named oleracrylimide C were isolated from Portulaca oleracea L. and the structures of the three novel compounds were determined by 1D and 2D NMR, circular dichroism, and UHPLC-ESI-QTOF/MS spectroscopic methods. Moreover, the bioactivities of anti-inflammation of the three compounds were investigated via testing RAW 264.7 macrophage cell stimulated by Lipopolysaccharide.
Collapse
Affiliation(s)
- Mingyang Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China
| | - Zhengming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China.
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China.
| |
Collapse
|
12
|
Liu X, Wu H, Tao X, Ying X, Stien D. Two amide glycosides from Portulaca oleracea L. and its bioactivities. Nat Prod Res 2021; 35:2655-2659. [PMID: 34414848 DOI: 10.1080/14786419.2019.1660333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two novel amide glycosides, named oleraciamide E (1) and oleraciamide F (2), were isolated from the Portulaca oleracea L. Their structures were determined by means of 1D and 2D NMR spectroscopic and UHPLC-ESI-TOF-MS methods. Oleraciamide E (1) exhibited anticholinesterase activity with IC50 values of 52.43 ± 0.33 μM, and presented scavenging activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical quenching assay, with the IC50 values of 24.64 ± 0.33 μM.
Collapse
Affiliation(s)
- Xilong Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Haibo Wu
- Cancer Intervention Department, Shenyang Sujiatun District Central Hospital, Shenyang, P.R. China
| | - Xiaojun Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, Banyuls-sur-mer, France
| |
Collapse
|
13
|
Duan Y, Ying Z, He F, Ying X, Jia L, Yang G. A new skeleton flavonoid and a new lignan from Portulaca oleracea L. and their activities. Fitoterapia 2021; 153:104993. [PMID: 34284073 DOI: 10.1016/j.fitote.2021.104993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/15/2022]
Abstract
A new skeleton flavonoid, identified as (5aR)-10-hydroxy-8-methoxy-5aH,11H-chromeno[2,3-b]chromen-11-one (1), named oleracone G, and a new lignan, confirmed as 8-(4-hydroxy-3-methoxyphenyl)-3-methoxynaphthalen-2-ol (2), named oleralignan B, were isolated from Portulaca oleracea L., and the structures of them were determined using spectroscopic methods including UV, IR, 1D NMR, 2D NMR, and UHPLC-ESI-QTOF/MS. In addition, compounds 1-2 were applied to investigate the anti-inflammatory activities on lipopolysaccharide-stimulated macrophages and scavenging effects in 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical. The results showed that the two compounds at 10 μM and 20 μM could dose-dependently decrease the secretion of interleukin 1β in RAW 264.7 cells by enzyme-linked immunosorbent assay, moreover, presented remarkable antioxidant activities with IC50 values of 27.57, 20.12 μM, respectively.
Collapse
Affiliation(s)
- Yang Duan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China
| | - Zheming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Fan He
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China.
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China.
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| |
Collapse
|
14
|
Fu J, Wang H, Dong C, Xi C, Xie J, Lai S, Chen R, Kang J. Water-soluble alkaloids isolated from Portulaca oleracea L. Bioorg Chem 2021; 113:105023. [PMID: 34091292 DOI: 10.1016/j.bioorg.2021.105023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Fifteen new water-soluble alkaloids were obtained from the fresh herbs of Portulaca oleracea L. The structures of 15 alkaloids 1-15 were established according to spectroscopic data, and the stereoconfigurations were determined based on experimental and calculated electronic circular dichroism (ECD) data and single crystal X-ray diffraction. Alkaloids 1-15 were found to display good anti-inflammatory activity at 10 μM and could significantly reduce the interleukin-6 (IL-6) and nitric oxide (NO) levels induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Jia Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Hongqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Chaoxuan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, 613 W. Huangpu Avenue, Guangzhou, Guangdong Province 510630, China
| | - Chuchu Xi
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Jun Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Shengtian Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Ruoyun Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Jie Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
15
|
Duan Y, Ying Z, Zhang M, Ying X, Yang G. Two new homoisoflavones from Portulaca oleracea L. and their activities. Nat Prod Res 2020; 36:1765-1773. [DOI: 10.1080/14786419.2020.1815742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yang Duan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| | - Zheming Ying
- School of The First Clinic, , Shenyang, PR China
| | - Mingbo Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, PR China
| | - Guanlin Yang
- School of The First Clinic, , Shenyang, PR China
| |
Collapse
|
16
|
Mahmoud AB, Danton O, Kaiser M, Han S, Moreno A, Abd Algaffar S, Khalid S, Oh WK, Hamburger M, Mäser P. Lignans, Amides, and Saponins from Haplophyllum tuberculatum and Their Antiprotozoal Activity. Molecules 2020; 25:E2825. [PMID: 32575379 PMCID: PMC7355546 DOI: 10.3390/molecules25122825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
A screening of Sudanese medicinal plants for antiprotozoal activities revealed that the chloroform and water fractions of the ethanolic root extract of Haplophyllum tuberculatum exhibited appreciable bioactivity against Leishmania donovani. The antileishmanial activity was tracked by HPLC-based activity profiling, and eight compounds were isolated from the chloroform fraction. These included lignans tetrahydrofuroguaiacin B (1), nectandrin B (2), furoguaiaoxidin (7), and 3,3'-dimethoxy-4,4'-dihydroxylignan-9-ol (10), and four cinnamoylphenethyl amides, namely dihydro-feruloyltyramine (5), (E)-N-feruloyltyramine (6), N,N'-diferuloylputrescine (8), and 7'-ethoxy-feruloyltyramine (9). The water fraction yielded steroid saponins 11-13. Compounds 1, 2, and 5-13 are reported for the first time from Haplophyllum species and the family Rutaceae. The antiprotozoal activity of the compounds plus two stereoisomeric tetrahydrofuran lignans-fragransin B2 (3) and fragransin B1 (4)-was determined against Leishmania donovani amastigotes, Plasmodium falciparum, and Trypanosoma brucei rhodesiense bloodstream forms, along with their cytotoxicity to rat myoblast L6 cells. Nectandrin B (2) exhibited the highest activity against L. donovani (IC50 4.5 µM) and the highest selectivity index (25.5).
Collapse
Affiliation(s)
- Abdelhalim Babiker Mahmoud
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland;
- Faculty of Science, University of Basel, 4001 Basel, Switzerland; (O.D.); (M.H.)
- Faculty of Pharmacy, University of Khartoum, 11111 Khartoum, Sudan;
| | - Ombeline Danton
- Faculty of Science, University of Basel, 4001 Basel, Switzerland; (O.D.); (M.H.)
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland;
| | - Sohee Han
- Korea Bioactive Natural Material Bank, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.); (W.K.O.)
| | | | - Shereen Abd Algaffar
- Faculty of Pharmacy, University of Science and Technology, 14411 Omdurman, Sudan;
| | - Sami Khalid
- Faculty of Pharmacy, University of Khartoum, 11111 Khartoum, Sudan;
- Faculty of Pharmacy, University of Science and Technology, 14411 Omdurman, Sudan;
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.); (W.K.O.)
| | - Matthias Hamburger
- Faculty of Science, University of Basel, 4001 Basel, Switzerland; (O.D.); (M.H.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland;
- Faculty of Science, University of Basel, 4001 Basel, Switzerland; (O.D.); (M.H.)
| |
Collapse
|
17
|
Hou Y, Wang M, Sun C, Peng C, Zhang Y, Li X. Tunicyclin L, a cyclic peptide from Psammosilene tunicoides: Isolation, characterization, conformational studies and biological activity. Fitoterapia 2020; 145:104628. [PMID: 32433930 DOI: 10.1016/j.fitote.2020.104628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/19/2020] [Accepted: 05/10/2020] [Indexed: 11/30/2022]
Abstract
Tunicyclin L (1), cyclo (L-Pro1-Gly-L-Phe1-L-Ile-L-Pro2-L-Phe2 -L-Thr-L-Val), and 11 known compounds, including one cyclic peptide (2), eight carboline alkaloids (3 -10), one lignan (11) and one flavone (12) were isolated from the roots of Psammosilene tunicoides. Their structures were elucidated on the basis of extensive UV, IR, MS, NMR spectroscopic data and comparison with literature. Single-crystal X-ray diffraction results revealed the stereochemistry of the 24-membered ring cyclic peptide (1). Among these known compounds, compound 6 was found to be a new natural product, and compounds 3, 4, and 11 were isolated from this plant for the first time. Five compounds (1, 3, 4, 7, and 9) showed moderate anti-acetylcholinesterase (AChE) activity.
Collapse
Affiliation(s)
- Yinhuan Hou
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chongzhi Sun
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ying Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
18
|
Xu W, Ying Z, Tao X, Ying X, Yang G. Two new amide alkaloids from Portulaca oleracea L. and their anticholinesterase activities. Nat Prod Res 2020; 35:3794-3800. [DOI: 10.1080/14786419.2020.1739040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Zheming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P.R. China
| | - Xiaojun Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P.R. China
| |
Collapse
|
19
|
Phytochemical Investigation of Tradescantia Albiflora and Anti-Inflammatory Butenolide Derivatives. Molecules 2019; 24:molecules24183336. [PMID: 31540241 PMCID: PMC6767271 DOI: 10.3390/molecules24183336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
Phytochemical investigation of the whole plant of Tradescantia albiflora Kunth led to the isolation and characterization of a butanolide, rosmarinosin B (1), that was isolated from natural sources for the first time, a new butenolide, 5-O-acetyl bracteanolide A (2), and a new apocarotenoid, 2β-hydroxyisololiolide (11), together with 25 known compounds (compounds 3–10 and 12–28). The structures of the new compounds were elucidated by analysis of their spectroscopic data, including MS, 1D, and 2D NMR experiments, and comparison with literature data of known compounds. Furthermore, four butenolides 4a–4d were synthesized as novel derivatives of bracteanolide A. The isolates and the synthesized derivatives were evaluated for their preliminary anti-inflammatory activity against lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW 264.7 cells. Among them, the synthesized butenolide derivative n-butyl bracteanolide A (4d) showed enhanced NO inhibitory activity compared to the original compound, with an IC50 value of 4.32 ± 0.09 μg/mL.
Collapse
|
20
|
Ma Y, Li X, Zhang W, Ying X, Stien D. A trace alkaloid, oleraisoindole A from Portulaca oleracea L. and its anticholinesterase effect. Nat Prod Res 2019; 35:350-353. [PMID: 31180242 DOI: 10.1080/14786419.2019.1627356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new trace alkaloid possessing the lignan structure, named oleraisoindole A, was obtained from the extract of the Portulaca oleracea L.. The structure of oleraisoindole A was elucidated by 1D and 2D NMR and high resolution electrospray ionization time-of-flight mass spectroscopic methods. The compound presented an anticholinesterase effect with the IC50 value of 60.4 μM.
Collapse
Affiliation(s)
- Yifei Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xuetao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Wenjie Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Didier Stien
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France
| |
Collapse
|
21
|
Ma Y, Bao Y, Zhang W, Ying X, Stien D. Four lignans from Portulaca oleracea L. and its antioxidant activities. Nat Prod Res 2018; 34:2276-2282. [DOI: 10.1080/14786419.2018.1534852] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yifei Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P. R. China
| | - Yongrui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P. R. China
| | - Wenjie Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P. R. China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P. R. China
| | - Didier Stien
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Paris, France
| |
Collapse
|
22
|
Xiu F, Ying Z, Ying X, Yang G. Pharmacokinetic studies of soyalkaloid A from Portulaca oleracea
L. using ultra high-performance liquid chromatography electrospray ionization quadrupole-time of flight mass spectrometry and its antioxidant activity. Biomed Chromatogr 2018; 33:e4399. [DOI: 10.1002/bmc.4399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Fen Xiu
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian China
| | - Zheming Ying
- School of The First Clinic; Liaoning University of Traditional Chinese Medicine; Shenyang Liaoning China
| | - Xixiang Ying
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian China
| | - Guanlin Yang
- School of The First Clinic; Liaoning University of Traditional Chinese Medicine; Shenyang Liaoning China
| |
Collapse
|
23
|
Yang X, Ying Z, Liu H, Ying X, Yang G. A new homoisoflavone from Portulaca oleracea L. and its antioxidant activity. Nat Prod Res 2018; 33:3500-3506. [DOI: 10.1080/14786419.2018.1484465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xu Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine , Dalian, P.R. China
| | - Zheming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine , Shenyang, P.R. China
| | - Hairong Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University , Shenyang, P.R. China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine , Dalian, P.R. China
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine , Shenyang, P.R. China
| |
Collapse
|