1
|
Kim Y, Kim HW, Sung J, Kim Y. Optimal extraction conditions and quantification of lignan phytoestrogens in cereal grains using targeted LC-MS/MS. Front Nutr 2024; 11:1409309. [PMID: 38933882 PMCID: PMC11201688 DOI: 10.3389/fnut.2024.1409309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Lignans are phytoestrogens found in various forms such as glycosides, ester-linked oligomers, and aglycones in a variety of foods, including soy products, legumes, grains, nuts, vegetables, and fruits. This study aimed to optimize the extraction of lignans from cereal grains using response surface methodology (RSM). Lignans, including secoisolariciresinol (Seco), matairesinol (Mat), pinoresinol (Pin), lariciresinol (Lar), and syringaresinol (Syr), were quantified using high-performance liquid chromatography-tandem mass spectrometry. A Box-Behnken design was employed to determine the optimal values for three extraction parameters: temperature (X1: 20°C-60°C), methanol concentration (X2: 60%-100%), and extraction time (X3: 30-90 min). The highest lignan contents were obtained at X1 = 44.24°C, X2 = 84.64%, and X3 = 53.63 min. To apply these experimental conditions to the actual experiment, the optimal conditions were slightly adjusted to X1 = 40°C, X2 = 80%, and X3 = 60 min. The predicted results closely matched the experimental results obtained using the modified optimal extraction conditions. The highest lignan content found in barley sprouts (85.930 μg/100 g), however, most grains exhibited relatively low concentrations of lignans. These findings provide valuable insights into the lignan content of grains and contribute to the generation of reliable data in this field.
Collapse
Affiliation(s)
- Yoonjeong Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, Republic of Korea
| | - Heon-Woong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jeehye Sung
- Department of Food Science and Biotechnology, Andong National University, Andong, Republic of Korea
| | - Younghwa Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, Republic of Korea
- Food and Life Science Research Institute, Kyungsung University, Busan, Republic of Korea
| |
Collapse
|
2
|
Javed A, Alam MB, Naznin M, Ahmad R, Lee CH, Kim S, Lee SH. RSM- and ANN-Based Multifrequency Ultrasonic Extraction of Polyphenol-Rich Sargassum horneri Extracts Exerting Antioxidative Activity via the Regulation of MAPK/Nrf2/HO-1 Machinery. Antioxidants (Basel) 2024; 13:690. [PMID: 38929129 PMCID: PMC11200430 DOI: 10.3390/antiox13060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Sargassum horneri (SH) is widely consumed as a healthy seaweed food in the Asia-Pacific region. However, the bioactive components contributing to its biological activity remain unknown. Herein, we optimized multifrequency ultrasonic-assisted extraction conditions to achieve higher antioxidant activity using a response surface methodology and an artificial neural network. High-resolution mass spectrometry (HRMS; negative mode) was used to tentatively identify the secondary metabolites in the optimized SH extract, which were further tested against oxidative stress in RAW264.7 cells. Additionally, the identified compounds were analyzed in silico to determine their binding energies with the Keap1 protein (4L7B). We identified 89 compounds using HRMS, among which 19 metabolites (8 polyphenolics, 2 flavonoids, 2 lignans, 2 terpenes, 2 tannins, 2 sulfolipids, and 1 phospholipid) were putatively reported for the first time in SH. The in vitro results revealed that optimized SH extract inhibited oxidative stress via the Nrf2/MAPKs/HO-1 pathway in a dose-dependent manner. This result was validated by performing in silico simulation, indicating that sargaquinoic acid and glycitein-7-O-glucuronide had the highest binding energies (-9.20 and -9.52 Kcal/mol, respectively) toward Keap1 (4L7B). This study offers a unique approach for the scientific community to identify potential bioactive compounds by optimizing the multivariant extraction processing conditions, which could be used to develop functional and nutraceutical foods.
Collapse
Affiliation(s)
- Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Raees Ahmad
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea;
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Debnath S, Nath M, Sarkar A, Roy G, Chakraborty SK, Debnath B. Phytochemical characterization of Styrax benzoin resin extract, molecular docking, ADME, and antibacterial activity study. Nat Prod Res 2024; 38:1263-1268. [PMID: 36214683 DOI: 10.1080/14786419.2022.2132244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
Styrax benzoin fumes have a spiritual aspect from ancient times, magical essence like a pleasant perfume, and are employed in religious ceremonies in India. This study aims to identify the volatile compounds in S. benzoin extract, their binding affinity to the bacterial target proteins, and study the antibacterial activity of the potential extract. The compounds obtained from GC-MS analysis of S. benzoin extract were subjected to molecular docking studies against DHFR of Staphylococcus aureus, tRNA synthetase of Escherichia coli, DHPS of Mycobacterium tuberculosis. Molecular docking studies revealed that seventeen compounds out of 20 compounds exhibited higher binding affinity than co-ligand (-7.00 kcal/mol) against the Staphylococcus aureus enzyme DHFR. Consequently, the crude extracts were evaluated for antibacterial activity against S. aureus, and the acetone extract showed promising findings. S. benzoin fumes might replace synthetic room fresheners, and promising compounds could be exploited in the cosmetics industry.
Collapse
Affiliation(s)
- Sudhan Debnath
- Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur, India
| | - Moumita Nath
- Department of Forestry and Biodiversity, Tripura University, Agartala, India
| | - Alekhya Sarkar
- Department of Forestry and Biodiversity, Tripura University, Agartala, India
| | - Gourab Roy
- Department of Zoology, MBB College, Agartala, India
| | | | - Bimal Debnath
- Department of Forestry and Biodiversity, Tripura University, Agartala, India
| |
Collapse
|
5
|
Lee MS, Shim HJ, Cho YY, Lee JY, Kang HC, Song IS, Lee HS. Comparative metabolism of aschantin in human and animal hepatocytes. Arch Pharm Res 2024; 47:111-126. [PMID: 38182943 DOI: 10.1007/s12272-023-01483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
Aschantin, a tetrahydrofurofuran lignan with a 1,3-benzodioxole group derived from Flos Magnoliae, exhibits antioxidant, anti-inflammatory, cytotoxic, and antimicrobial activities. This study compared the metabolic profiles of aschantin in human, dog, mouse, and rat hepatocytes using liquid chromatography-high-resolution mass spectrometry. The hepatic extraction ratio of aschantin among the four species was 0.46-0.77, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. Hepatocyte incubation of aschantin produced 4 phase 1 metabolites, including aschantin catechol (M1), O-desmethylaschantin (M2 and M3), and hydroxyaschantin (M4), and 14 phase 2 metabolites, including O-methyl-M1 (M5 and M6) via catechol O-methyltransferase (COMT), six glucuronides of M1, M2, M3, M5, and M6, and six sulfates of M1, M2, M3, M5, and M6. Enzyme kinetic studies using aschantin revealed that the production of M1, a major metabolite, via O-demethylenation is catalyzed by cytochrome 2C8 (CYP2C8), CYP2C9, CYP2C19, CYP3A4, and CYP3A5 enzymes; the formation of M2 (O-desmethylaschantin) is catalyzed by CYP2C9 and CYP2C19; and the formation of M4 is catalyzed by CYP3A4 enzyme. Two glutathione (GSH) conjugates of M1 were identified after incubation of aschantin with human and animal liver microsomes in the presence of nicotinamide adenine dinucleotide phosphate and GSH, but they were not detected in the hepatocytes of all species. In conclusion, aschantin is extensively metabolized, producing 18 metabolites in human and animal hepatocytes catalyzed by CYP, COMT, UDP-glucuronosyltransferase, and sulfotransferase. These results can help in clarifying the involvement of metabolizing enzymes in the pharmacokinetics and drug interactions of aschantin and in elucidating GSH conjugation associated with the reactive intermediate formed from M1 (aschantin catechol).
Collapse
Affiliation(s)
- Min Seo Lee
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyun Joo Shim
- College of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-Sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
6
|
Orabi MAA, Abdelhamid RA, Elimam H, Elshaier YAMM, Ali AA, Aldabaan N, Alhasaniah AH, Refaey MS. Furofuranoid-Type Lignans and Related Phenolics from Anisacanthus virgularis (Salisb.) Nees with Promising Anticholinesterase and Anti-Ageing Properties: A Study Supported by Molecular Modelling. PLANTS (BASEL, SWITZERLAND) 2024; 13:150. [PMID: 38256704 PMCID: PMC10820861 DOI: 10.3390/plants13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Lignan phytomolecules demonstrate promising anti-Alzheimer activity by alleviating dementia and preserving nerve cells. The purpose of this work is to characterize the lignans of Anisacanthus virgularis and explore their potential anti-acetylcholinesterase and anti-ageing effects. Phytochemical investigation of A. virgularis aerial parts afforded a new furofuranoid-type lignan (1), four known structural analogues, namely pinoresinol (2), epipinoresinol (3), phillyrin (4), and pinoresinol 4-O-β-d-glucoside (5), in addition to p-methoxy-trans-methyl cinnamate (6) and 1H-indole-3-carboxaldehyde (7). The structures were established from thorough spectroscopic analyses and comparisons with the literature. Assessment of the anticholinesterase activity of the lignans 1-5 displayed noticeable enzyme inhibition of 1 (IC50 = 85.03 ± 4.26 nM) and 5 (64.47 ± 2.75 nM) but lower activity of compounds 2-4 as compared to the reference drug donepezil. These findings were further emphasized by molecular docking of 1 and 5 with acetylcholinesterase (AChE). Rapid overlay chemical similarity (ROCS) and structure-activity relationships (SAR) analysis highlighted and rationalized the anti-AD capability of these compounds. Telomerase activation testing of the same isolates revealed 1.64-, 1.66-, and 1.72-fold activations in cells treated with compounds 1, 5, and 4, respectively, compared to untreated cells. Our findings may pave the way for further investigations into the development of anti-Alzheimer and/or anti-ageing drugs from furofuranoid-type lignans.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 66454, Saudi Arabia
| | - Reda A. Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt;
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt;
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt;
| | - Ahmed A. Ali
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Nayef Aldabaan
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 66454, Saudi Arabia;
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 66454, Saudi Arabia;
| | - Mohamed S. Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt
| |
Collapse
|
7
|
Yaragorla S, Ithu SR, Arun D, Srivardhan V. Calcium-Catalyzed Synthesis of Fused Furo[2,3- b]furans and Substituted Furans from 2-Oxo Aldehydes and Cyclic Enols. J Org Chem 2023. [PMID: 38039073 DOI: 10.1021/acs.joc.3c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
We report here an atom-economical, syn-diastereoselective synthesis of naphtho-fused furo[2,3-b]furans along with naphthofurans at room temperature using readily available 2-naphthols and 2-oxo aldehydes using an alkaline earth catalyst [Ca(OTf)2]. 2-Oxo aldehydes having both aryl and alkyl substitutions reacted well. A good number of arenols responded to give fused furans, but selected arenols gave only furofurans. Synthetic applications and gram-scale synthesis were also demonstrated to strengthen this strategy.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Sanyasi Rao Ithu
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Doma Arun
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Valmuri Srivardhan
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
8
|
Yang MJ, Luo SH, Liu Y, Li SH. Defensive furofuran lignans localized to the oil cells of Neocinnamomum delavayi and their metabolism by a specialist insect. PHYTOCHEMISTRY 2023; 215:113852. [PMID: 37690698 DOI: 10.1016/j.phytochem.2023.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Neocinnamomum delavayi (Lauraceae) leaves with abundant oil cells are seldom attacked by insects, but their chemical constituent and biological function remain obscure. Three furofuran lignans, including (+)-eudesmin (3), (+)-magnolin (4), and demethoxyaschantin (5), were identified to be the major specialized metabolites in the oil cells of N. delavayi leaves through laser microdissection coupled with NMR analysis. Compounds 3 and 4 exhibited obvious antifeedant activity against a generalist insect Spodoptera exigua, and their natural contents in the leaves could effectively defend against generalist insects. Intriguingly, three specific metabolites 9-11, the O-demethylation derivates of compounds 3-5, were identified from a native specialist insect Dindica polyphaenaria feeding with N. delavayi leaves, implying an adaptation mechanism of specialist insects to plant defensive compounds. The results revealed a chemical connection between plants and insects, which would contribute to our understanding of plant-insect interaction and insect management.
Collapse
Affiliation(s)
- Min-Jie Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
9
|
Maia MDS, Mendonça-Junior FJB, Rodrigues GCS, da Silva AS, de Oliveira NIP, da Silva PR, Felipe CFB, Gurgel APAD, Nayarisseri A, Scotti MT, Scotti L. Virtual Screening of Different Subclasses of Lignans with Anticancer Potential and Based on Genetic Profile. Molecules 2023; 28:6011. [PMID: 37630263 PMCID: PMC10459202 DOI: 10.3390/molecules28166011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a multifactorial disease that continues to increase. Lignans are known to be important anticancer agents. However, due to the structural diversity of lignans, it is difficult to associate anticancer activity with a particular subclass. Therefore, the present study sought to evaluate the association of lignan subclasses with antitumor activity, considering the genetic profile of the variants of the selected targets. To do so, predictive models were built against the targets tyrosine-protein kinase ABL (ABL), epidermal growth factor receptor erbB1 (EGFR), histone deacetylase (HDAC), serine/threonine-protein kinase mTOR (mTOR) and poly [ADP-ribose] polymerase-1 (PARP1). Then, single nucleotide polymorphisms were mapped, target mutations were designed, and molecular docking was performed with the lignans with the best predicted biological activity. The results showed more anticancer activity in the dibenzocyclooctadiene, furofuran and aryltetralin subclasses. The lignans with the best predictive values of biological activity showed varying binding energy results in the presence of certain genetic variants.
Collapse
Affiliation(s)
- Mayara dos Santos Maia
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Francisco Jaime Bezerra Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, State Universtiy of Paraiba, João Pessoa 58071-160, PB, Brazil
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
| | | | - Adriano Soares da Silva
- Program in Ecology and Environmental Monitoring, Federal University of Paraíba, João Pessoa 58059-900, PB, Brazil; (A.S.d.S.); (N.I.P.d.O.)
| | - Niara Isis Pereira de Oliveira
- Program in Ecology and Environmental Monitoring, Federal University of Paraíba, João Pessoa 58059-900, PB, Brazil; (A.S.d.S.); (N.I.P.d.O.)
| | - Pablo Rayff da Silva
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
| | - Cícero Francisco Bezerra Felipe
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
| | | | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Bioscience, Indore 452010, Madhya Pradesh, India;
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
- Laboratory of Cheminformatics, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
- Laboratory of Cheminformatics, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil
| |
Collapse
|
10
|
Chi Y, He HW, Chen CY, Zhao SY, Zhou H, Xu D, Liu X, Xu G. Furofuran Lignans for Plant Protection: Discovery of Sesamolin and Its Derivatives as Novel Anti-Tobacco Mosaic Virus and Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37418668 DOI: 10.1021/acs.jafc.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Natural products have been a valuable source of efficient and low-risk pesticides. In this work, a series of novel sesamolin derivatives A0-A31 and B0-B4 were designed and synthesized via structural simplification of furofuran lignan phrymarolin II, and their antiviral and antibacterial activities were systematically evaluated. The bioassay results showed that compound A24 displayed remarkable inactivation activity against tobacco mosaic virus (TMV) with an EC50 value of 130.4 μg/mL, which was superior to that of commercial ningnanmycin (EC50 = 202.0 μg/mL). The antiviral mode of action assays suggested that compound A24 may obstruct self-assembly by binding to TMV coat protein (CP), thus resisting the TMV infection. In addition, compound A25 possessed prominent antibacterial activities, especially against Ralstonia solanacearum with an EC50 value of 43.8 μg/mL, which is better than those of commercial bismerthiazol and thiodiazole copper. This research lays a solid foundation for the utilization of furofuran lignans in crop protection.
Collapse
Affiliation(s)
- Yuan Chi
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Hong-Wei He
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Cai-Yun Chen
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Si-Ying Zhao
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Huan Zhou
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Dan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Javed A, Alam MB, Naznin M, Shafique I, Kim S, Lee SH. Tyrosinase inhibitory activity of Sargassum fusiforme and characterisation of bioactive compounds. PHYTOCHEMICAL ANALYSIS : PCA 2023. [PMID: 37183174 DOI: 10.1002/pca.3233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Sargassum fusiforme (Harvey) Setchell, also known as Tot (in Korean) and Hijiki (in Japanese), is widely consumed in Korea, Japan, and China due to its health promoting properties. However, the bioactive component behind the biological activity is still unknown. OBJECTIVES We aimed to optimise the extraction conditions for achieving maximum tyrosinase inhibition activity by using two sophisticated statistical tools, that is, response surface methodology (RSM) and artificial neural network (ANN). Moreover, high-resolution mass spectrometry (HRMS) was used to tentatively identify the components, which are then further studied for molecular docking study using 2Y9X protein. METHODOLOGY RSM central composite design was used to conduct extraction using microwave equipment, which was then compared to ANN. Electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was used to tentatively identify bioactive components, which were then docked to the 2Y9X protein using AutoDock Vina and MolDock software. RESULTS Maximum tyrosinase inhibition activity of 79.530% was achieved under optimised conditions of time: 3.27 min, temperature: 128.885°C, ethanol concentration: 42.13%, and microwave intensity: 577.84 W. Furthermore, 48 bioactive compounds were tentatively identified in optimised Sargassum fusiforme (OSF) extract, and among them, seven phenolics, five flavonoids, five lignans, six terpenes, and five sulfolipids and phospholipids were putatively reported for the first time in Sargassum fusiforme. Among 48 bioactive components, trifuhalol-A, diphlorethohydroxycarmalol, glycyrrhizin, and arctigenin exhibited higher binding energies for 2Y9X. CONCLUSION Taken together, these findings suggest that OSF extract can be used as an effective skin-whitening source on a commercial level and could be used in topical formulations by replacing conventional drugs.
Collapse
Affiliation(s)
- Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, Korea
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Centre, Kyungpook National University, Daegu, Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Imran Shafique
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, Korea
- Mass Spectroscopy Converging Research Centre, Green Nano Materials Research Centre, Kyungpook National University, Daegu, Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Centre, Kyungpook National University, Daegu, Korea
| |
Collapse
|
12
|
Chemical Constituents of Litsea cubeba. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Baldi S, Tristán Asensi M, Pallecchi M, Sofi F, Bartolucci G, Amedei A. Interplay between Lignans and Gut Microbiota: Nutritional, Functional and Methodological Aspects. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010343. [PMID: 36615537 PMCID: PMC9822457 DOI: 10.3390/molecules28010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Lignans are non-flavonoid polyphenols present in a wide range of foods frequently consumed in the Western world, such as seeds, vegetables and fruits, and beverages such as coffee, tea and wine. In particular, the human gut microbiota (GM) can convert dietary lignans into biologically active compounds, especially enterolignans (i.e., enterolactone and enterodiol), which play anti-inflammatory and anti-oxidant roles, act as estrogen receptor activators and modulate gene expression and/or enzyme activity. Interestingly, recent evidence documenting those dietary interventions involving foods enriched in lignans have shown beneficial and protective effects on various human pathologies, including colorectal and breast cancer and cardiovascular diseases. However, considering that more factors (e.g., diet, food transit time and intestinal redox state) can modulate the lignans bioactivation by GM, there are usually remarkable inter-individual differences in urine, fecal and blood concentrations of enterolignans; hence, precise and validated analytical methods, especially gas/liquid chromatography coupled to mass spectrometry, are needed for their accurate quantification. Therefore, this review aims to summarize the beneficial roles of enterolignans, their interaction with GM and the new methodological approaches developed for their evaluation in different biological samples, since they could be considered future promising nutraceuticals for the prevention of human chronic disorders.
Collapse
Affiliation(s)
- Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marta Tristán Asensi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
- Correspondence: ; Tel.: +39-055-2758330
| |
Collapse
|
14
|
Saraux N, Cretton S, Kilicaslan OS, Occioni C, Ferro A, Quirós-Guerrero L, Karimou S, Christen P, Cuendet M. Isolation and Structure Elucidation of Compounds from Sesamum alatum and Their Antiproliferative Activity against Multiple Myeloma Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:2706-2713. [PMID: 36512676 DOI: 10.1021/acs.jnatprod.2c00406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The phytochemical investigation of the dichloromethane root extract of Sesamum alatum led to the isolation of 18 compounds. Among these, compounds 3-8, defined as 9-hydroxy-2,2-dimethyl-2H-benzo[g]chromene-5,10-dione 6-O-β-d-glucopyranoside (3), (2S,3R)-3,4,7-trihydroxy-2-(3'-methylbut-2'-en-1'-yl)-2,3-dihydro-1H-inden-1-one (4), (Z)-2-(1',4'-dihydroxy-4'-methylpent-2'-en-1'-ylidene)-4,7-dihydroxy-1H-indene-1,3(2H)-dione (5), (S)-2,5,8-trihydroxy-3-(2'-hydroxy-3'-methylbut-3'-en-1'-yl)naphthalene-1,4-dione (6), 6-hydroxy-3-(3'-methylbut-2'-en-1'-yl)-4-oxo-4H-chromene-5-carboxylic acid (7), and (S)-2-(1'-hydroxy-4'-methylpent-3'-en-1'-yl)anthracene-9,10-dione (8), respectively, have not yet been described. Their structures were elucidated based on spectroscopic data analysis, including IR, NMR, HRESIMS and ECD measurements. Additional known compounds, namely, hydroxysesamone (1), anthrasesamone A (2), 2,6-dimethoxy-1,4-benzoquinone (9), syringic acid (10), syringaresinol (11), 2,3-epoxysesamone 8-O-β-d-glucopyranoside (12), 2,3-diacetylmartinoside (13), 2,3-epoxy-4,5,8-trihydroxy-2-prenyl-1-tetralone (14), ursolic acid (15), chlorosesamone (16), 2,3-epoxysesamone (17), and 2-(4-methyl-3-pentenyl)anthraquinone (18) were isolated. The antiproliferative activity of the compounds was tested against the RPMI 8226 multiple myeloma cell line. When compounds presented an IC50 value <10 μM, they were tested against two other multiple myeloma cell lines, MM.1S and MM.1R. Compound 17 was found to be the most potent, with IC50 values of 0.6, 0.7, and 0.9 μM, respectively, for the three cell lines.
Collapse
Affiliation(s)
- Noémie Saraux
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
| | - Sylvian Cretton
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
| | - Ozlem Sevik Kilicaslan
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
| | - Coralie Occioni
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
| | - Angelica Ferro
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
| | - Luis Quirós-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
| | | | - Philippe Christen
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Xiong L, Wu H, Zhong T, Luo F, Li Q, Li M, Fan Y. Design, Synthesis and Evaluation of Novel 1,4-Disubstituted Piperazine-2,5-dione Derivatives as Antioxidants against H 2O 2-Induced Oxidative Injury via the IL-6/Nrf2 Loop Pathway. Antioxidants (Basel) 2022; 11:2014. [PMID: 36290737 PMCID: PMC9598289 DOI: 10.3390/antiox11102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Excessive reactive oxygen species (ROS) production leads to oxidative stress in cells, impairing the function of mitochondria and finally inducing cell apoptosis. Considering the essential role of oxidative stress in the pathogenesis of various neurodegenerative diseases and psychiatric disorders, the discovery of novel antioxidants has attracted increasing attention. Herein, a series of novel 1,4-disubstituted piperazine-2,5-dione derivatives were designed, synthesized and evaluated for their antioxidative activity. The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay indicated that none of the tested compounds showed significant toxicity to SH-SY5Y cells at concentrations up to 80 μM. Cell counting via flow cytometry revealed that most of the tested compounds could effectively protect SH-SY5Y cells from H2O2-induced oxidative damage at 20 μM. Among these compounds, compound 9r exhibited the best antioxidative activity. Further mechanistic investigation indicated that 9r decreased ROS production and stabilized the mitochondrial membrane potential to restrain cell apoptosis, and promoted cell survival via an IL-6/Nrf2 positive-feedback loop. These results suggested the potential of compound 9r as a novel antioxidative candidate for the treatment of diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Liang Xiong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Hongshan Wu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Fang Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Qing Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Mei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| |
Collapse
|
16
|
Li M, Liu Y, Zhang YJ. Route to Chiral Tetrahydrofuran Acetals via Pd-Catalyzed Asymmetric Allylic Cycloaddition of Vinyl Epoxides with β-Keto Enol Ethers. Org Lett 2022; 24:6716-6721. [PMID: 36094345 DOI: 10.1021/acs.orglett.2c02437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient method for the synthesis of functionalized chiral tetrahydrofuran (THF) acetals via Pd-catalyzed asymmetric allylic cycloaddition has been developed. With a palladium catalyst coordinated by a chiral phosphine ligand, the protocol is enabled to combine readily available vinyl epoxides and β-keto enol ethers to produce THF acetals bearing three stereocenters in a broad substrate scope with uniformly high levels of enantio- and diastereoselectivity.
Collapse
Affiliation(s)
- Meiqi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yiming Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
17
|
Li Y, Wang R, Pei Y, Yu W, Wu W, Li D, Hu Z. Phylogeny and functional characterization of the cinnamyl alcohol dehydrogenase gene family in Phryma leptostachya. Int J Biol Macromol 2022; 217:407-416. [PMID: 35841957 DOI: 10.1016/j.ijbiomac.2022.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Phryma leptostachya has attracted increasing attention because it is rich in furofuran lignans with a wide range of biological activities. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, one of the monolignol. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step of monolignol biosynthesis, reducing cinnamyl aldehydes to cinnamyl alcohol. As it is in the terminal position of monolignol biosynthesis, its type and activity can cause significant changes in the total amount and composition of lignans. Herein, combined with bioinformatics analysis and in vitro enzyme assays, we clarified that CAD in P. leptostachya belonged to a multigene family, and identified nearly the entire CAD gene family. Our in-depth characterization about the functions and structures of two major CAD isoforms, PlCAD2 and PlCAD3, showed that PlCAD2 exhibited the highest catalytic activity, and coniferyl aldehyde was its preferred substrate, followed by PlCAD3, and sinapyl aldehyde was its preferred substrate. Considering the accumulation patterns of furofuran lignans and expression patterns of PlCADs, we speculated that PlCAD2 was the predominant CAD isoform responsible for furofuran lignans biosynthesis in P. leptostachya. Moreover, these CADs found here can also provide effective biological parts for lignans and lignins biosynthesis.
Collapse
Affiliation(s)
- Yankai Li
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Rui Wang
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Yakun Pei
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Wenwen Yu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Wenjun Wu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Ding Li
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Bravo-Arrepol G, Becerra J, Ortiz L, Cabrera-Pardo J, Schmidt B, Heydenreich M, Kelling A, Sperlich E, Karpiński TM, Paz C. Bromination of eudesmin isolated from araucaria araucana induces epimerization and give bromine derivatives with loss of anti-Candida activity. Nat Prod Res 2022:1-6. [PMID: 35707900 DOI: 10.1080/14786419.2022.2089140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Furofuran lignanes show important biological activities for the treatment of infectious diseases, inflammatory and metabolic pathologies. They have been isolated from leaves and barks of many plants. In Chile the native conifer Araucaria araucana produces eudesmin, matairesinol, secoisolariciresinol and lariciresinol in stemwood, branchwood and knotwood. These compounds were previously isolated by laborious flash chromatography on silica gel. Here we report the easy isolation of eudesmin by soxhlet extraction from milled knots of Araucaria araucana with hexane, followed by cryo-crystallization at -20 °C. Upon bromination of the isolated eudesmin epimerization at one benzylic position occurs, giving epieudesmin and the corresponding mono and di-brominated derivatives. The structures were determined by 1D, 2D NMR and X-ray diffraction. The analysis of products against Candida yeast showed that eudesmin has a moderate activity against different strains of Candida from 62.5 to 500 µg/mL. This activity decreases for epieudesmin, while bromine derivatives are not active.
Collapse
Affiliation(s)
- Gastón Bravo-Arrepol
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - José Becerra
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Bernd Schmidt
- Institut für Chemie, Universität Potsdam, Potsdam, Germany
| | | | | | - Eric Sperlich
- Institut für Chemie, Universität Potsdam, Potsdam, Germany
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Centre CEBIM, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
19
|
Anti-Inflammatory Effects of Mitrephora sirikitiae Leaf Extract and Isolated Lignans in RAW 264.7 Cells. Molecules 2022; 27:molecules27103313. [PMID: 35630789 PMCID: PMC9147141 DOI: 10.3390/molecules27103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/05/2022] Open
Abstract
Mitrephora sirikitiae Weeras., Chalermglin & R.M.K. Saunders has been reported as a rich source of lignans that contribute to biological activities and health benefits. However, cellular anti-inflammatory effects of M. sirikitiae leaves and their lignan compounds have not been fully elucidated. Therefore, this study aimed to investigate the anti-inflammatory activities of methanol extract of M. sirikitiae leaves and their lignan constituents on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 mouse macrophage cells. Treatment of RAW 264.7 cells with the methanol extract of M. sirikitiae leaves and its isolated lignans, including (−)-phylligenin (2) and 3′,4-O-dimethylcedrusin (6) significantly decreased LPS-induced prostaglandin E2 (PGE2) and nitric oxide (NO) productions. These inhibitory effects of the extract and isolated lignans on LPS-induced upregulation of PGE2 and NO productions were derived from the suppression of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) production, respectively. In addition, treatment with 2-(3,4-dimethoxyphenyl)-6-(3,5-dimethoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane (3) and mitrephoran (5) was able to suppress LPS-induced tumor necrosis factor alpha (TNF-α) secretion and synthesis in RAW 264.7 cells. These results demonstrated that M. sirikitiae leaves and some isolated lignans exhibited potent anti-inflammatory activity through the inhibition of secretion and synthesis of PGE2, NO, and TNF-α.
Collapse
|
20
|
Yumin S, Jun W, Heng Y. Therapeutic potential of naturally occurring lignans as anticancer agents. Curr Top Med Chem 2022; 22:1393-1405. [PMID: 35546769 DOI: 10.2174/1568026622666220511155442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Cancer as a long-lasting and dramatic pandemic affects almost a third of the human being worldwide. At present, chemotherapy is the main clinical treatment strategy, but it is difficult to achieve satisfactory efficacy due to drug resistance and side effects. Natural products are becoming increasingly popular in cancer therapy due to their potent broad-spectrum anticancer potency and slight side effects. Lignans are complex diphenolic compounds, comprising a family of secondary metabolites existing widely in plants. Naturally occurring lignans have the potential to act on cancer cells by a range of mechanisms of action and could inhibit the colony formation, arrest the cell cycle in different phases, induce apoptosis, and suppress migration, providing privileged scaffolds for the discovery of novel anticancer agents. In recent five years, a variety of naturally occurring lignans were isolated and screened for their in vitro and/or in vivo anticancer efficacy, and some of them exhibited promising potential. This review has systematically summarized the resources, anticancer activity, and mechanisms of action of naturally occurring lignans, covering articles published between January 2017 and January 2022.
Collapse
Affiliation(s)
- Shi Yumin
- Hubei Engineering Research Center for Fragrant Plants, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei, 437100, PR China
| | - Wang Jun
- Hubei Engineering Research Center for Fragrant Plants, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei, 437100, PR China
| | - Yan Heng
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430070, PR China
| |
Collapse
|
21
|
Han J, Choi H, Choi J, Lee K. Total Synthesis of Gymnothelignan K via a One-Pot Homologative γ-Butyrolactonization. Org Lett 2022; 24:2926-2930. [PMID: 35412318 DOI: 10.1021/acs.orglett.2c00939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first total synthesis of tetrahydrofuran dilignan gymnothelignan K is disclosed. The approach is based on implementing an early stage one-carbon homologative lactonization, which we recently disclosed, for constructing the γ-butyrolactone scaffold with the requisite β,γ-trans-vicinal stereocenters. Other salient features of the synthesis include the acid-promoted dimerization and the Suzuki-Miyaura cross-coupling reaction to install the challenging diaryl skeleton that permits the effective assembly of the optically active gymnothelignan K in 8 steps from commercially available materials.
Collapse
Affiliation(s)
- Jongyeol Han
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Hosam Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Joohee Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Kiyoun Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
22
|
Gu X, Hao D, Xiao P. Research progress of Chinese herbal medicine compounds and their bioactivities: Fruitful 2020. CHINESE HERBAL MEDICINES 2022; 14:171-186. [PMID: 36117669 PMCID: PMC9476823 DOI: 10.1016/j.chmed.2022.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/20/2021] [Accepted: 08/17/2021] [Indexed: 01/26/2023] Open
Abstract
Traditional Chinese medicines (TCMs) have continued to be a treasure trove. The study of chemodiversity and versatility of bioactivities has always been an important content of pharmacophylogeny. There is amazing progress in the discovery and research of natural components with novel structures and significant bioactivities in 2020. In this paper we review 271 valuable natural products, including terpenoids, steroids, flavonoids, phenylpropanoids, phenolics, nitrogen containing compounds and essential oil, etc., isolated and identified from TCMs published in journals of Chinese Traditional and Herbal Drugs (Zhong Cao Yao) and Chinese Herbal Medicines (CHMs), and focus on their structures, source organisms, and relevant bioactivities, paying special attention to structural characteristics of novel compounds and newly revealed pharmacological properties of known compounds. It is worth noting that natural products with antitumor activity still constitute the primary object of research. Among the reported compounds, two new triterpenoids, i.e., ursolic acid 3-O-β-cis-caffeate and mollugoside E, display remarkable cytotoxicity against PC-9 and HL-60 cell lines, respectively. Three known phenolic compounds, i.e., pyoluteorin, 4-hydroxy-3-methoxy cinnamaldehyde and 3,7-dimethoxy-5-hydroxy-1,4-phenanthrenequinone, exhibit significant cytotoxicity against multiple cell lines. Numerous studies on the free radical scavenging activity of reported compounds are currently underway. In vitro, three known phenolic compounds, i.e., 3,4-O-dicaffeoylquinic acid methyl ester, 3,4,5-O-tricaffeoylquinic acid methyl ester and arbutin, had more considerable antioxidant activities than vitamin C. The anti-inflammatory, anti-diabetic, hypolipidemic, neuroprotective and antimicrobial activities of isolated compounds are also encouraging. The structural characteristics and bioactivities of TCM compounds highlighted here reflect the enormous progress of CHM research in 2020 and will play a positive role in the future drug discovery and development. According to pharmacophylogeny, the phylogenetic distribution of compounds with different natures and flavors can be explored, with view to better mining TCM resources.
Collapse
Affiliation(s)
- Xiaojie Gu
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Dacheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
23
|
Li H, Khan I, Li Q, Zhang YJ. Pd-Catalyzed Asymmetric Three-Component Allenol Carbopalladation and Allylic Cycloaddition Cascade: A Route to Functionalized Tetrahydrofurans. Org Lett 2022; 24:2081-2086. [PMID: 35274964 DOI: 10.1021/acs.orglett.2c00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first Pd-catalyzed asymmetric three-component reaction of 2,3-allenol, aryl iodides, and 2-arylmethylenemolononitriles has been developed via an allenol carbopalladation and an allylic cycloaddition cascade. This process allows rapid access to substituted tetrahydrofurans bearing diverse functional groups in good yields with high diastereoselectivities and excellent enantioselectivities. The concise total synthesis of a lignan, (-)-2-episesaminone, has been achieved by the elaboration of a functionalized tetrahydrofuran obtained from this reaction.
Collapse
Affiliation(s)
- Hongfang Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ijaz Khan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P. R. China
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
24
|
Choi H, Choi J, Han J, Lee K. Divergent Total Syntheses of Gymnothelignan N, Beilschmin A, and Eupomatilones 1, 3, 4, and 7. J Org Chem 2022; 87:4316-4322. [DOI: 10.1021/acs.joc.1c03167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hosam Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Joohee Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Jongyeol Han
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Kiyoun Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
25
|
Sen B, Roy S, Garai S, Roy S, Anoop A, Hajra S. Stereochemistry of the Benzylidene γ-Butyrolactone Dictates the Reductive Heck Cyclization Mode in the Asymmetric Synthesis of Aryltetralin Lignans: A Detailed Experimental and Theoretical Study. J Org Chem 2022; 87:3910-3921. [PMID: 35130698 DOI: 10.1021/acs.joc.1c02174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reductive Heck cyclization of nonracemic benzylidene γ-butyrolactone is studied toward the asymmetric synthesis of aryltetralin lignans, where the stereochemistry of the benzylidene lactone is found to control the mode of cyclization. The Z-isomer undergoes mostly 6-endo-cyclization and provides the desired (-)-isopodophyllotoxin along with a minor amount of 5-exo-cyclized product, but the E-isomer goes through exclusively 5-exo-cyclization, leading to the undesired dihydroindenolactone compound instead of (-)-podophyllotoxin. The experimental results are well-supported by the DFT studies.
Collapse
Affiliation(s)
- Biswajit Sen
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Saikat Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sujay Garai
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.,Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayan Roy
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Saumen Hajra
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
26
|
N B, K R C. Antiviral, Anticancer and Hypotensive Potential of Diphyllin Glycosides and their Mechanisms of Action. Mini Rev Med Chem 2022; 22:1752-1771. [PMID: 35040401 DOI: 10.2174/1389557522666220117122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Diphyllin glycosides (DG) are the type of arylnaphthalene lignans isolated from different plants and their synthetic derivatives have shown effective antiviral, cytotoxic, hypotensive and diuretic effects at very low concentrations similar to standard drugs that are under clinical use. The biological activities of the DG interfere with signaling pathways of viral infection and cancer induction. The sugar moieties of DG enhance bioavailability and pharmacological activities. The promising results of DG at nanomolar concentrations under in vitro and in vivo conditions should be explored further with clinical trials to determine its toxic effects, pharmacokinetics and pharmacodynamics. This may identify suitable antiviral and anticancer drugs in the near future. Considering all these activities, the present review is focused on the chemical aspects of DG with a detailed account on the mechanisms of action of DG. An attempt is also made to comment on the status of clinical trials of DG along with the possible limitations in studies based on available literature through September 2020.
Collapse
Affiliation(s)
- Bhagya N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore-575018, Karnataka, India
| | - Chandrashekar K R
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore-575018, Karnataka, India
| |
Collapse
|
27
|
Higbee J, Solverson P, Zhu M, Carbonero F. The emerging role of dark berry polyphenols in human health and nutrition. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jerome Higbee
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Patrick Solverson
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Meijun Zhu
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Franck Carbonero
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| |
Collapse
|
28
|
Zhang X, Cao J, Yang YN, Jiang JS, Feng ZM, yuan X, Zhang PC. Difurofuranoid A-F: six unprecedented furofuran lignan dimers from Forsythia suspensa. NEW J CHEM 2022. [DOI: 10.1039/d2nj02095e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Difurofuranoid A-F (1-6), six novel furofuran lignan dimers that polymerized through the unusual connection of C5-C5′′, were isolated from the fruits of Forsythia suspensa. Their structures, including the absolute configurations...
Collapse
|
29
|
Streptoglycerides E-H, Unsaturated Polyketides from the Marine-Derived Bacterium Streptomyces specialis and Their Anti-Inflammatory Activity. Mar Drugs 2022; 20:md20010044. [PMID: 35049899 PMCID: PMC8781396 DOI: 10.3390/md20010044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/02/2023] Open
Abstract
Four new streptoglycerides E-H (1-4), with a rare 6/5/5/-membered ring system, were isolated from a marine-derived actinomycete Streptomyces specialis. The structures of 1-4 were elucidated by detailed analysis of HRESIMS, 1D and 2D NMR data and ECD spectra as well as comparison of their spectroscopic data with those reported in literature. Compounds 1-4 showed significant anti-inflammatory activity by inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) production in Raw 264.7 cells with IC50 values ranging from 3.5 to 10.9 µM. Especially, 2 suppressed mRNA expression levels of iNOS and IL-6 without cytotoxicity.
Collapse
|
30
|
Chi Y, Zhou H, He HW, Ma YD, Li B, Xu D, Gao JM, Xu G. Total Synthesis and Anti-Tobacco Mosaic Virus Activity of the Furofuran Lignan (±)-Phrymarolin II and Its Analogues. JOURNAL OF NATURAL PRODUCTS 2021; 84:2937-2944. [PMID: 34730370 DOI: 10.1021/acs.jnatprod.1c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phrymarolin II, a furofuran lignan isolated from Phryma leptostachya L., features a 3,7-dioxabicyclo[3.3.0]octane skeleton. Herein, we report an alternative total synthesis of (±)-phrymarolin II (2), which was performed in 9 steps from commercially available sesamol. The key steps of the synthesis included a zinc-mediated Barbier-type allylation and a copper-catalyzed anomeric O-arylation. Our total synthesis allowed the synthesis of analogues of (±)-phrymarolin II. Most derivatives displayed good to excellent in vivo activity against tobacco mosaic virus (TMV). (±)-Phrymarolin II (2) and compounds (±)-31d and (±)-31g exhibited similar or higher activity than commercial ningnanmycin, which indicated that phrymarolin lignans are a promising new class of plant virus inhibitors.
Collapse
Affiliation(s)
- Yuan Chi
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Huan Zhou
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Hong-Wei He
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yi-Dan Ma
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Bo Li
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Dan Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| |
Collapse
|
31
|
Li W, Yang HJ. Phenolic Constituents from Platycodon grandiflorum Root and Their Anti-Inflammatory Activity. Molecules 2021; 26:4530. [PMID: 34361683 PMCID: PMC8348564 DOI: 10.3390/molecules26154530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Six lignols (1-6), including two new compounds (+)-(7R,8R)-palmitoyl alatusol D (1) and (+)-(7R,8R)-linoleyl alatusol D (2), along with four phenolics (7-10), a neolignan (11), three alkyl aryl ether-type lignans (12-14), two furofuran-type lignans (15-16), three benzofuran-type lignans (17-19), a tetrahydrofuran-type lignan (20), and a dibenzylbutane-type lignan (21) were isolated from the ethyl acetate-soluble fraction of the methanol extract of Platycodon grandiflorum (Jacq.) A. DC. root. The chemical structures of the obtained compounds were elucidated via high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy analyses. The obtained spectroscopic data agreed well with literature. Among the isolated compounds, eighteen (1-7 and 11-21) were isolated from P. grandiflorum and the Campanulaceae family for the first time. This is the first report on lignol and lignan components of P. grandiflorum. The anti-inflammatory effects of the isolated compounds were examined in terms of their ability to inhibit the production of pro-inflammatory cytokines IL-6, IL-12 p40, and TNF-α in lipopolysaccharide-stimulated murine RAW264.7 macrophage cells. Nine compounds (4-6, 12, and 15-19) exhibited inhibitory effects on IL-12 p40 production, eleven compounds (1-6, 12, 15-17, and 19) exhibited inhibitory activity on IL-6 production, and eleven compounds (1-6 and 15-19) exhibited inhibitory effects against TNF-α. These results warrant further investigation into the potential anti-inflammatory activity and general benefits of the phenolic constituents of P. grandiflorum root.
Collapse
Affiliation(s)
- Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea;
| | | |
Collapse
|
32
|
Andargie M, Vinas M, Rathgeb A, Möller E, Karlovsky P. Lignans of Sesame ( Sesamum indicum L.): A Comprehensive Review. Molecules 2021; 26:883. [PMID: 33562414 PMCID: PMC7914952 DOI: 10.3390/molecules26040883] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in Seseamum indicum and related plants; biosynthesis and genetics; biological activities; health-promoting properties; and biological functions. Finally, the improvement of lignan content in sesame seeds by breeding and biotechnology and the potential of hairy roots for manufacturing lignans in vitro are outlined.
Collapse
Affiliation(s)
- Mebeaselassie Andargie
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Maria Vinas
- Centro para Investigaciones en Granos y Semillas (CIGRAS), University of Costa Rica, 2060 San Jose, Costa Rica;
| | - Anna Rathgeb
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Evelyn Möller
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, 37073 Goettingen, Germany; (A.R.); (E.M.)
| |
Collapse
|
33
|
Hao ZY, Ni G, Liang D, Liu YF, Zhang CL, Wang Y, Zhang QJ, Chen RY, Yu DQ. A New Brominated Norsesquiterpene Glycoside From the Rhizomes of Acorus tatarinowii Schott. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21992266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A new brominated norsesquiterpene glycoside, acoruside (1), has been isolated from the rhizomes of Acorus tatarinowii Schott, together with 8 known compounds (2-9). Their structures were elucidated mainly based on 1-dimensional (1D) and 2D nuclear magnetic resonance spectra. The absolute configuration of compound 1 was determined by comparing its experimental and calculated electronic circular dichroism spectra. The in vitro tests indicated that at 10 µM, compounds 2, 3, and 4 aggravated serum deprivation injuries of PC12 cells, compound 2 aggravated rotenone-induced injuries of PC12 cells, and compounds 3 and 4 aggravated the oxygen-glucose deprivation-induced injuries of PC12 cells.
Collapse
Affiliation(s)
- Zhi-You Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Ni
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chun-Lei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing-Jian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruo-Yun Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - De-Quan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Choi BK, Cho DY, Choi DK, Shin HJ. Miharadienes A–D with unique cyclic skeletons from a marine-derived Streptomyces miharaensis. Org Chem Front 2021. [DOI: 10.1039/d1qo00773d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new type of natural products, miharadienes A–D (1–4), was isolated from the marine-derived Streptomyces miharaensis 151KO-143.
Collapse
Affiliation(s)
- Byeoung-Kyu Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| |
Collapse
|
35
|
Zhao C, Khan I, Zhang YJ. Enantioselective total synthesis of furofuran lignans via Pd-catalyzed asymmetric allylic cycloadditon of vinylethylene carbonates with 2-nitroacrylates. Chem Commun (Camb) 2020; 56:12431-12434. [PMID: 32939529 DOI: 10.1039/d0cc05640e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a practical and efficient approach to tetrahydrofurans with three-stereocenters has been developed through Pd-catalyzed asymmetric allylic cycloaddition of vinylethylene carbonates (VECs) with 2-nitroacrylates under mild conditions. By using this asymmetric catalytic reaction as a key step, several furofuran lignans with stereodivergency have been effectively synthesized through 5- or 6-step sequences from readily available starting materials.
Collapse
Affiliation(s)
- Can Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Ijaz Khan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Yong Jian Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
36
|
Zhao W, Cong Y, Li HM, Li S, Shen Y, Qi Q, Zhang Y, Li YZ, Tang YJ. Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Nat Prod Rep 2020; 38:470-488. [PMID: 32895676 DOI: 10.1039/d0np00041h] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2020As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen Y, Xiao S, Huang J, Xue W, He S. A Synthetic View on Haedoxans and Related Neolignans From Phryma leptostachya. Front Chem 2020; 8:460. [PMID: 32626686 PMCID: PMC7311856 DOI: 10.3389/fchem.2020.00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/04/2020] [Indexed: 11/30/2022] Open
Abstract
Haedoxans are a series of sesquilignan natural products isolated from the traditional insecticidal plant Phryma leptostachya. Given their significant insecticidal activity, haedoxans and related analogs have been considered as potential agents for plant defense. Moreover, these compounds also exhibit promising antifungal, antibacterial, and anticancer activities. The present paper is a review of the structure, biological activity, and chemical synthesis of naturally occurring haedoxan-like molecules.
Collapse
Affiliation(s)
- Yang Chen
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Guiyang, China
| | - Shu Xiao
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Huang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Guiyang, China
| | - Wei Xue
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Guiyang, China
| | - Shuzhong He
- Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
38
|
Chhillar H, Chopra P, Ashfaq MA. Lignans from linseed ( Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect. Crit Rev Food Sci Nutr 2020; 61:2719-2741. [PMID: 32619358 DOI: 10.1080/10408398.2020.1784840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lignans are complex diphenolic compounds representing phytoestrogens and occur widely across the plant kingdom. Formed by the coupling of two coniferyl alcohol residues, lignans constitute major plant "specialized metabolites" with exceptional biological attributes that aid in plant defence and provide health benefits in humans by reducing the risk of ailments such as cancer, diabetes etc. Linseed (Linum usitatissimum L.) is one of the richest sources of lignans followed by cereals and legumes. Among the various types of lignans, secoisolariciresinol diglucoside (SDG) is considered as the essential and nutrient rich lignan in linseed. Lignans exhibit established antimitotic, antiviral and anti-tumor properties that contribute to their medicinal value. The present review seeks to provide a holistic view of research in the past and present times revolving around lignans from linseed and its allied species. This review attempts to elucidate sources, structures and functional properties of lignans, along with detailed biosynthetic mechanisms operating in plants. It summarizes various methods for the determination of lignan content in plants. Biotechnological interventions (in planta and in vitro) aimed at enriching lignan content and adoption of integrative approaches that might further enhance lignan content and medicinal and nutraceutical value of Linum spp. have also been discussed.
Collapse
Affiliation(s)
- Himanshu Chhillar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Priyanka Chopra
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashraf Ashfaq
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
39
|
Virtual Screening and the In Vitro Assessment of the Antileishmanial Activity of Lignans. Molecules 2020; 25:molecules25102281. [PMID: 32408657 PMCID: PMC7288103 DOI: 10.3390/molecules25102281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/25/2023] Open
Abstract
Leishmaniasis is endemic in at least 98 countries. Due to the high toxicity and resistance associated with the drugs, we chose lignans as an alternative, due to their favorable properties of absorption, distribution, metabolism, excretion, and toxicity (ADMET). To investigate their leishmanicidal potential, the biological activities of a set of 160 lignans were predicted using predictive models that were built using data for Leishmania major and L. (Viannia) braziliensis. A combined analysis, based on ligand and structure, and several other computational approaches were used. The results showed that the combined analysis was able to select 11 lignans with potential activity against L. major and 21 lignans against L. braziliensis, with multitargeting effects and low or no toxicity. Of these compounds, four were isolated from the species Justicia aequilabris (Nees) Lindau. All of the identified compounds were able to inhibit the growth of L. braziliensis promastigotes, with the most active compound, (159) epipinoresinol-4-O-β-d-glucopyranoside, presenting an IC50 value of 5.39 µM and IC50 value of 36.51 µM for L. major. Our findings indicated the potential of computer-aided drug design and development and demonstrated that lignans represent promising prototype compounds for the development of multitarget drugs against leishmaniasis.
Collapse
|
40
|
Dziwornu GA, Attram HD, Gachuhi S, Chibale K. Chemotherapy for human schistosomiasis: how far have we come? What's new? Where do we go from here? RSC Med Chem 2020; 11:455-490. [PMID: 33479649 PMCID: PMC7593896 DOI: 10.1039/d0md00062k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023] Open
Abstract
Globally, schistosomiasis threatens more than 700 million lives, mostly children, in poor localities of tropical and sub-tropical areas with morbidity due to acute and chronic pathological manifestations of the disease. After a century since the first antimonial-based drugs were introduced to treat the disease, anti-schistosomiasis drug development is again at a bottleneck with only one drug, praziquantel, available for treatment purposes. This review focuses on promising chemotypes as potential starting points in a drug discovery effort to meet the urgent need for new schistosomicides.
Collapse
Affiliation(s)
- Godwin Akpeko Dziwornu
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Henrietta Dede Attram
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Samuel Gachuhi
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Kelly Chibale
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
- Drug Discovery and Development Centre (H3D) , University of Cape Town , Rondebosch 7701 , South Africa
- Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit , University of Cape Town , Rondebosch 7701 , South Africa
| |
Collapse
|
41
|
Kobayashi M, Ueno H, Yoshida N, Ouchi H, Asakawa T, Yoshimura F, Inai M, Kan T. Diastereodivergent and Regiodivergent Total Synthesis of Princepin and Isoprincepin in Both (7″R,8″R) and (7″S,8″S) Isomers. J Org Chem 2019; 84:14227-14240. [DOI: 10.1021/acs.joc.9b01965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manami Kobayashi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroya Ueno
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Naoto Yoshida
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hitoshi Ouchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asakawa
- Tokai University Institute of Innovative Science and Technology, 4-1-1, Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan
| | - Fumihiko Yoshimura
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
42
|
Frezza C, Venditti A, Toniolo C, Vita DD, Serafini I, Ciccòla A, Franceschin M, Ventrone A, Tomassini L, Foddai S, Guiso M, Nicoletti M, Bianco A, Serafini M. Pedicularis L. Genus: Systematics, Botany, Phytochemistry, Chemotaxonomy, Ethnopharmacology, and Other. PLANTS (BASEL, SWITZERLAND) 2019; 8:E306. [PMID: 31461963 PMCID: PMC6784095 DOI: 10.3390/plants8090306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
In this review, the relevance of the plant species belonging to the Pedicularis L. genus has been considered from different points of view. Particular emphasis was given to phytochemistry and ethnopharmacology, since several classes of natural compounds have been reported within this genus and many of its species are well known to be employed in the traditional medicines of many Asian countries. Some important conclusions on the chemotaxonomic and chemosystematic aspects of the genus have also been provided for the first time. Actually, this work represents the first total comprehensive review on this genus.
Collapse
Affiliation(s)
- Claudio Frezza
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Alessandro Venditti
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Toniolo
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniela De Vita
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Serafini
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Ciccòla
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Franceschin
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonio Ventrone
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lamberto Tomassini
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sebastiano Foddai
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marcella Guiso
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marcello Nicoletti
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Armandodoriano Bianco
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Mauro Serafini
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
43
|
Lucioli S, Pastorino F, Nota P, Ballan G, Frattarelli A, Fabbri A, Forni C, Caboni E. Extracts from Cell Suspension Cultures of Strawberry ( Fragaria x ananassa Duch): Cytotoxic Effects on Human Cancer Cells. Molecules 2019; 24:E1738. [PMID: 31060218 PMCID: PMC6540091 DOI: 10.3390/molecules24091738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
Natural compounds are emerging as agents for the treatment of malignant diseases. We previously showed that extracts from in vitro cell suspension cultures of strawberry reduced murine melanoma cell proliferation, as shown for fruit extracts. In this work, chromatographic, mass spectrometric, and spectrophotometric analyses were carried out to identify the bioactive compound exerting the detected cytotoxic activity. Moreover, aiming to confirm the anti-proliferative activity of the extracts against both paediatric and adult human tumors, cytotoxic experiments were performed on neuroblastoma, colon, and cervix carcinoma cell lines. Extracts from in vitro cell suspension cultures of strawberry induced a statistically significant reduction of cell growth in all the tumor cell lines tested. Interestingly, human fibroblasts from healthy donors were not subjected to this cytotoxic effect, highlighting the importance of further preclinical investigations. The accurate mass measurement, fragmentation patterns, and characteristic mass spectra and mass losses, together with the differences in chromatographic retention times and absorbance spectra, led us to hypothesize that the compound acting as an anti-proliferative agent could be a novel acetal dihydrofurofuran derivative (C8H10O3, molecular mass 154.0630 amu).
Collapse
Affiliation(s)
- Simona Lucioli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Via di Fioranello 52, 00134 Rome, Italy.
| | - Fabio Pastorino
- Laboratorio di Terapie Sperimentali in Oncologia, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy.
| | - Paolo Nota
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Via di Fioranello 52, 00134 Rome, Italy.
| | - Giulia Ballan
- Centro Nazionale per la Salute Globale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Andrea Frattarelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Via di Fioranello 52, 00134 Rome, Italy.
| | - Alessia Fabbri
- Centro Nazionale per la Salute Globale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Cinzia Forni
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Emilia Caboni
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Via di Fioranello 52, 00134 Rome, Italy.
| |
Collapse
|
44
|
López-Rodríguez R, Herrera-Ruiz M, Trejo-Tapia G, Domínguez-Mendoza BE, González-Cortazar M, Zamilpa A. In Vivo Gastroprotective and Antidepressant Effects of Iridoids, Verbascoside and Tenuifloroside from Castilleja tenuiflora Benth. Molecules 2019; 24:molecules24071292. [PMID: 30987044 PMCID: PMC6479932 DOI: 10.3390/molecules24071292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023] Open
Abstract
Stress is an important factor in the etiology of some illnesses such as gastric ulcers and depression. Castilleja tenuiflora Benth. (Orobanchaceae) is used in Mexican traditional medicine for the treatment of gastrointestinal diseases and nervous disorders. Previous studies indicated that organic extracts from C. tenuiflora had gastroprotective effects and antidepressant activity. In this study, we aimed to evaluate the gastroprotective and antidepressant activity of fractions and isolated compounds from the methanolic extract (MECt) of C. tenuiflora in stressed mice. Chromatographic fractionation of MECt produced four fractions (FCt-1, FCt-2, CFt-3, and FCt-4) as well as four bioactive compounds which were identified using TLC, HPLC and NMR analyses. The cold restraint stress (CRS)-induced gastric ulcer model followed by the tail suspension test and the forced swim test were used to evaluate the gastroprotective effect and antidepressant activity of the extract fractions. FCt-2 and FCt-3 at 100 mg/kg had significant gastroprotective and antidepressant effects. All isolated compounds (verbascoside, teniufloroside and mixture geniposide/ musseanoside) displayed gastroprotective effects and antidepressant activity at 1 or 2 mg/kg. The above results allow us to conclude that these polyphenols and iridoids from C. tenuiflora are responsible for the gastroprotective and antidepressant effects.
Collapse
Affiliation(s)
- Ricardo López-Rodríguez
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Yautepec, Morelos C.P. 62731, Mexico.
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos C.P. 62790, Mexico.
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos C.P. 62790, Mexico.
| | - Gabriela Trejo-Tapia
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Yautepec, Morelos C.P. 62731, Mexico.
| | - Blanca Eda Domínguez-Mendoza
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico.
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos C.P. 62790, Mexico.
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec, Morelos C.P. 62790, Mexico.
| |
Collapse
|
45
|
Rodríguez-García C, Sánchez-Quesada C, Toledo E, Delgado-Rodríguez M, Gaforio JJ. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019; 24:E917. [PMID: 30845651 PMCID: PMC6429205 DOI: 10.3390/molecules24050917] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary guidelines universally advise adherence to plant-based diets. Plant-based foods confer considerable health benefits, partly attributable to their abundant micronutrient (e.g., polyphenol) content. Interest in polyphenols is largely focused on the contribution of their antioxidant activity to the prevention of various disorders, including cardiovascular disease and cancer. Polyphenols are classified into groups, such as stilbenes, flavonoids, phenolic acids, lignans and others. Lignans, which possess a steroid-like chemical structure and are defined as phytoestrogens, are of particular interest to researchers. Traditionally, health benefits attributed to lignans have included a lowered risk of heart disease, menopausal symptoms, osteoporosis and breast cancer. However, the intake of naturally lignan-rich foods varies with the type of diet. Consequently, based on the latest humans' findings and gathered information on lignan-rich foods collected from Phenol Explorer database this review focuses on the potential health benefits attributable to the consumption of different diets containing naturally lignan-rich foods. Current evidence highlight the bioactive properties of lignans as human health-promoting molecules. Thus, dietary intake of lignan-rich foods could be a useful way to bolster the prevention of chronic illness, such as certain types of cancers and cardiovascular disease.
Collapse
Affiliation(s)
- Carmen Rodríguez-García
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
| | - Cristina Sánchez-Quesada
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- Agri-food Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Miguel Delgado-Rodríguez
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - José J Gaforio
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- Agri-food Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
46
|
Long L, Wang L, Qi S, Yang Y, Gao H. New sesquiterpenoid glycoside from the rhizomes of Atractylodes lancea. Nat Prod Res 2019; 34:1138-1145. [PMID: 30618310 DOI: 10.1080/14786419.2018.1553170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Six sesquiterpenoids and four lignans (1-10) were isolated from the n-BuOH extract of the rhizomes of Atractylodes lancea. Among them, the new sesquiterpenoid glycoside named (4 R, 5S, 7R)-hinesolone-11-O-β-ᴅ-glucopyranoside (1), along with three known compounds (2-4) were first obtained from this genus. All the isolates were elucidated by spectroscopic analyses and chemical methods, and the absolute configurations were assigned by electronic circular dichroism spectroscopy technique. In addition, the cytotoxic bioassay of compound 1 was evaluated and results showed it had no significant antitumor activity against human cancer cell lines MCF-7, HepG-2 and Hela.
Collapse
Affiliation(s)
- Liping Long
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Lushan Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shizhou Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
47
|
Woo SY, Wong CP, Win NN, Hoshino S, Prema, Ngwe H, Abe I, Morita H. A New Tetrahydrofuran Lignan from Premna serratifolia Wood. Nat Prod Commun 2019. [DOI: 10.1177/1934578x1901400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phytochemical investigation of the CHCl3 extract of Premna serratifolia (syn: P. integrifolia) wood collected in Myanmar led to the isolation of a new tetrahydrofuran type lignan, 7,9-dihydroxydolichanthin B (1), together with two known triterpenoids, oleanonic acid (2) and (2a, 3α)-dihydroxyolean-12-en-28-oic acid (3). The structure of the new compound was determined using various spectroscopic techniques, mainly 1D- and 2D-NMR, HRESIMS, IR, and optical rotation, and by comparisons with the reported literatures. Compounds 1-3 had anti-melanin deposition activities against IBMX and α-MSH induced B16-F10 mouse melanoma cell line with IC50 values of 18.4, 17.7 and 11.2 μM, respectively. However, 2 exhibited cytotoxicity at concentrations above 50 μM.
Collapse
Affiliation(s)
- So-Yeun Woo
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Chin Piow Wong
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Nwet Nwet Win
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Prema
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
- Department of Chemistry, University of Yangon, Yangon 11041, Myanmar
| | - Hla Ngwe
- Department of Chemistry, University of Yangon, Yangon 11041, Myanmar
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
48
|
Fang X, Hu X. Advances in the Synthesis of Lignan Natural Products. Molecules 2018; 23:E3385. [PMID: 30572693 PMCID: PMC6321261 DOI: 10.3390/molecules23123385] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/03/2023] Open
Abstract
Lignans comprise a family of secondary metabolites existing widely in plants and also in human food sources. As important components, these compounds play remarkable roles in plants' ecological functions as protection against herbivores and microorganisms. Meanwhile, foods rich in lignans have revealed potential to decrease of risk of cancers. To date, a number of promising bioactivities have been found for lignan natural products and their unnatural analogues, including antibacterial, antiviral, antitumor, antiplatelet, phosphodiesterase inhibition, 5-lipoxygenase inhibition, HIV reverse transcription inhibition, cytotoxic activities, antioxidant activities, immunosuppressive activities and antiasthmatic activities. Therefore, the synthesis of this family and also their analogues have attracted widespread interest from the synthetic organic chemistry community. Herein, we outline advances in the synthesis of lignan natural products in the last decade.
Collapse
Affiliation(s)
- Xianhe Fang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
49
|
Geethangili M, Ding ST. A Review of the Phytochemistry and Pharmacology of Phyllanthus urinaria L. Front Pharmacol 2018; 9:1109. [PMID: 30327602 PMCID: PMC6174540 DOI: 10.3389/fphar.2018.01109] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
The genus Phyllanthus (L.) is one of the most important groups of plants belonging to the Phyllantaceae family. Phyllanthus urinaria (L.) is an annual perennial herbal species found in tropical Asia, America, China, and the Indian Ocean islands. P. urinaria is used in folk medicine as a cure to treat jaundice, diabetes, malaria, and liver diseases. This review provides traditional knowledge, phytochemistry, and biological activities of P. urinaria. The literature reviewed for this article was obtained from the Web of Science, SciFinder, PubMed, ScienceDirect, and Google Scholar journal papers published prior to December 2017. Phytochemical investigations reveal that the plant is a rich source of lignans, tannins, flavonoids, phenolics, terpenoids, and other secondary metabolites. Pharmacological activities include anticancer, hepatoprotective, antidiabetic, antimicrobial, and cardioprotective effects. Thus, this present review summarizes the phytochemical constituents and their biological activities including biological studies on various crude extracts and fractions both in vitro and in vivo, and on clinical trial information about P. urinaria. This review compiles 93 naturally occurring compounds from P. urinaria along with their structures and pharmacological activities. The review is expected to stimulate further research on P. urinaria, and its pharmacological potential to yield novel therapeutic agents.
Collapse
Affiliation(s)
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|