1
|
Benson MA, Peacock J, Sergison MD, Stich D, Tollin DJ. Neural and behavioral binaural hearing impairment and its recovery following moderate noise exposure. Hear Res 2025; 456:109166. [PMID: 39693785 PMCID: PMC11772110 DOI: 10.1016/j.heares.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Noise-induced cochlear synaptopathy has been studied for over 25 years with no known diagnosis for this disorder in humans. This type of "hidden hearing loss" induces a loss of synapses in the inner ear but no change in audiometric thresholds. Recent studies have shown that by two months post synaptopathy-inducing noise exposure, synapses in some animal species can regenerate. Animal studies to date have focused primarily on peripheral hearing measures to diagnose ribbon synapse loss, while suggesting binaural listening deficits such as speech-reception-in-noise result from this disorder, but haven't accounted for the possible regeneration of synapses. To address this, we measured binaural physiological and behavioral function, the latter utilizing the pre-pulse inhibition of acoustic startle method, in both male and female adult guinea pigs following exposure to noise that has been shown to induce cochlear synaptopathy. Physiological measurements extended to 2 months post noise exposure to characterize any deficit and subsequent recovery. While common audiological assessments showed temporary threshold shift, reduced evoked potential amplitudes indicative of synaptopathy and measurable binaural electrophysiological hearing deficits post exposure, all measures recovered by 2 months. Suspected regeneration of synaptic ribbons occurred by 2 months post exposure and cochlear histology revealed no synaptic loss 4 months post exposure. Our results show that the same noise exposure protocol demonstrated to cause synaptic loss in prior studies causes physiological binaural processing deficits in the brainstem and that the recovery of neural binaural processing coincides with the regeneration of synapses shown in previous studies and normal binaural hearing behavior.
Collapse
MESH Headings
- Animals
- Guinea Pigs
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/psychology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/etiology
- Female
- Male
- Auditory Threshold
- Cochlea/physiopathology
- Cochlea/pathology
- Recovery of Function
- Noise/adverse effects
- Acoustic Stimulation
- Synapses/pathology
- Behavior, Animal
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem
- Time Factors
- Reflex, Startle
- Hearing
- Prepulse Inhibition
- Evoked Potentials, Auditory
Collapse
Affiliation(s)
- Monica A Benson
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John Peacock
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew D Sergison
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominik Stich
- Neurotechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel J Tollin
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Iliadou E, Plack CJ, Pastiadis K, Bibas A. Serum Prestin Level May Increase Following Music Exposure That Induces Temporary Threshold Shifts: A Pilot Study. Ear Hear 2024; 45:1059-1069. [PMID: 38488693 PMCID: PMC11175746 DOI: 10.1097/aud.0000000000001499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
OBJECTIVES To determine if blood prestin level changes after exposure to music at high sound pressure levels, and if this change is associated with temporary threshold shift (TTS) and/or changes in distortion product (DP) amplitude. DESIGN Participants were exposed to pop-rock music at 100 dBA for 15 min monaurally through headphones. Pure-tone audiometry, DP amplitude, and blood prestin level were measured before and after exposure. RESULTS Fourteen adults (9 women; age range: 20 to 54 years, median age = 31 [Interquartile ratio = 6.75]) with normal hearing were included in the study. Mean prestin level increased shortly after exposure to music, then returned to baseline within 1 week, although this trend was not observed in all participants. All participants presented TTS or a decrease in DP amplitude in at least one frequency after music exposure. There was a statistically significant average threshold elevation at 4 min postexposure. Statistically significant DP amplitude shifts were observed at 4 and 6 kHz, 2 min following exposure. Mean baseline serum prestin level (mean: 140.00 pg/mL, 95% confidence interval (CI): 125.92 to 154.07) progressively increased following music exposure, reaching a maximum at 2 hr (mean: 158.29 pg/mL, 95% CI: 130.42 to 186.66) and returned to preexposure level at 1 week (mean: 139.18 pg/mL, 95% CI: 114.69 to 163.68). However, after correction for multiple comparisons, mean prestin level showed no statistically significant increase from baseline at any timepoint. No correlation between maximum blood prestin level change and average TTS or distortion product otoacoustic emission amplitude shift was found. However, in an exploratory analysis, TTS at 6 kHz (the frequency at which maximum TTS occurred) decreased significantly as baseline blood prestin level increased. CONCLUSIONS The results suggest that blood prestin level may change after exposure to music at high sound pressure levels, although statistical significance was not reached in this relatively small sample after correction. Baseline serum prestin level may also predict the degree of TTS. These findings thus suggest that the role of baseline serum prestin level as a proxy marker of cochlear susceptibility to intense music exposure should be further explored.
Collapse
Affiliation(s)
- Eleftheria Iliadou
- First Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christopher J. Plack
- Division of Psychology, Communication and Human Neuroscience, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Konstantinos Pastiadis
- First Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- School of Music Studies, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Bibas
- First Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Vijayakumar S, DiGuiseppi JA, Dabestani PJ, Ryan WG, Quevedo RV, Li Y, Diers J, Tu S, Fleegel J, Nguyen C, Rhoda LM, Imami AS, Hamoud ARA, Lovas S, McCullumsmith RE, Zallocchi M, Zuo J. In silico transcriptome screens identify epidermal growth factor receptor inhibitors as therapeutics for noise-induced hearing loss. SCIENCE ADVANCES 2024; 10:eadk2299. [PMID: 38896614 PMCID: PMC11186505 DOI: 10.1126/sciadv.adk2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Noise-induced hearing loss (NIHL) is a common sensorineural hearing impairment that lacks U.S. Food and Drug Administration-approved drugs. To fill the gap in effective screening models, we used an in silico transcriptome-based drug screening approach, identifying 22 biological pathways and 64 potential small molecule treatments for NIHL. Two of these, afatinib and zorifertinib [epidermal growth factor receptor (EGFR) inhibitors], showed efficacy in zebrafish and mouse models. Further tests with EGFR knockout mice and EGF-morpholino zebrafish confirmed their protective role against NIHL. Molecular studies in mice highlighted EGFR's crucial involvement in NIHL and the protective effect of zorifertinib. When given orally, zorifertinib was found in the perilymph with favorable pharmacokinetics. In addition, zorifertinib combined with AZD5438 (a cyclin-dependent kinase 2 inhibitor) synergistically prevented NIHL in zebrafish. Our results underscore the potential for in silico transcriptome-based drug screening in diseases lacking efficient models and suggest EGFR inhibitors as potential treatments for NIHL, meriting clinical trials.
Collapse
Affiliation(s)
- Sarath Vijayakumar
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Joseph A. DiGuiseppi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Parinaz Jila Dabestani
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - William G. Ryan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
| | - Rene Vielman Quevedo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Yuju Li
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jack Diers
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Shu Tu
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jonathan Fleegel
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Cassidy Nguyen
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Lauren M. Rhoda
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ali Sajid Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
| | | | - Sándor Lovas
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Ting Therapeutics, University of California San Diego, 9310 Athena Circle, San Diego, CA 92037, USA
| |
Collapse
|
4
|
Liu J, Stohl J, Overath T. Hidden hearing loss: Fifteen years at a glance. Hear Res 2024; 443:108967. [PMID: 38335624 DOI: 10.1016/j.heares.2024.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Hearing loss affects approximately 18% of the population worldwide. Hearing difficulties in noisy environments without accompanying audiometric threshold shifts likely affect an even larger percentage of the global population. One of the potential causes of hidden hearing loss is cochlear synaptopathy, the loss of synapses between inner hair cells (IHC) and auditory nerve fibers (ANF). These synapses are the most vulnerable structures in the cochlea to noise exposure or aging. The loss of synapses causes auditory deafferentation, i.e., the loss of auditory afferent information, whose downstream effect is the loss of information that is sent to higher-order auditory processing stages. Understanding the physiological and perceptual effects of this early auditory deafferentation might inform interventions to prevent later, more severe hearing loss. In the past decade, a large body of work has been devoted to better understand hidden hearing loss, including the causes of hidden hearing loss, their corresponding impact on the auditory pathway, and the use of auditory physiological measures for clinical diagnosis of auditory deafferentation. This review synthesizes the findings from studies in humans and animals to answer some of the key questions in the field, and it points to gaps in knowledge that warrant more investigation. Specifically, recent studies suggest that some electrophysiological measures have the potential to function as indicators of hidden hearing loss in humans, but more research is needed for these measures to be included as part of a clinical test battery.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Psychology and Neuroscience, Duke University, Durham, USA.
| | - Joshua Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, USA
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, Durham, USA
| |
Collapse
|
5
|
Iliadou E, Pastiadis K, Dimitriadis D, Plack CJ, Bibas A. Development and Validation of an Efficient and Safe Loud Music Exposure Paradigm. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:668-679. [PMID: 38295290 PMCID: PMC11000795 DOI: 10.1044/2023_jslhr-23-00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/19/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE The purpose of this study was to develop a time-efficient music exposure and testing paradigm that safely creates temporary cochlear dysfunction that could be used in future temporary threshold shift (TTS) studies. METHOD A 30-min audio compilation of pop rock music tracks was created. Adult volunteers with normal hearing were then exposed to this music material monaurally through headphones for 30 min at 97 dBA or 15 min at 100 dBA. Levels were measured from the ear of a manikin and are considered to provide an equivalent daily noise dose based on a 3-dB exchange. We assessed the changes in their hearing, by means of distortion product otoacoustic emission (DPOAE) testing, and standard and extended high-frequency pure-tone audiometry before and after exposure. There were 17 volunteers in total. In the first trial, eight volunteers (four females; Mdnage = 31 years [interquartile range, IQR = 4.25]) were included. Although TTS was observed in all eight participants for at least one frequency, a large variation in affected frequencies was observed. To address this issue, the audio material was further remastered to adjust levels across the different frequency bands. Fourteen adults (nine newly recruited and five from the first trial; seven females; Mdnage = 31 years [IQR = 5]) were exposed to the new material. RESULTS All but two of 17 participants presented clinically significant TTS or decrease in DPOAE amplitude in at least one frequency. Statistically significant average TTS of 7.43 dB was observed at 6 kHz. There were statistically significant average DPOAE amplitude shifts of -2.55 dB at 4 kHz, -4.97 dB at 6 kHz, and -3.14 dB at 8 kHz. No participant presented permanent threshold shift. CONCLUSIONS A monaural music paradigm was developed and shown to induce statistically significant TTS and DPOAE amplitude shifts, without evidence of permanent loss. This realistic and time-efficient paradigm may be considered a viable option for experimental studies of temporary music-induced hearing loss. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25016471.
Collapse
Affiliation(s)
- Eleftheria Iliadou
- First Department of Otorhinolaryngology—Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Konstantinos Pastiadis
- First Department of Otorhinolaryngology—Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Greece
- School of Music Studies, Aristotle University of Thessaloniki, Greece
| | - Dimitrios Dimitriadis
- First Department of Otorhinolaryngology—Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
- Department of Psychology, Lancaster University, United Kingdom
| | - Athanasios Bibas
- First Department of Otorhinolaryngology—Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
6
|
Grinn SK, Trevino M, Lobarinas E. Noise-Induced Hearing Threshold Shift Correlated with Body Weight and External-Ear Amplification in Chinchilla: a Preliminary Analysis. J Assoc Res Otolaryngol 2023; 24:563-574. [PMID: 38010580 PMCID: PMC10752858 DOI: 10.1007/s10162-023-00913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/11/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND External-ear amplification (EEA) has been shown to vary from 5-19 dB-A in large datasets of pediatric, adolescent, and adult human participants. However, variable EEA is an overlooked characteristic that likely plays a role in individual noise-induced hearing loss (NIHL) susceptibility. A noise exposure varying 5-19 dB-A translates to high-EEA individuals theoretically experiencing 3-4 times greater NIHL risk than low-EEA individuals. OBJECTIVE The purpose of this preliminary analysis was to test the hypothesis that higher EEA is correlated with increased noise-induced threshold shift susceptibility. DESIGN Nine chinchillas were exposed to 4-kHz octave-band noise at 89 dB-SPL for 24 h. Auditory brainstem response thresholds were obtained pre-exposure, 24-h post-exposure, and 4-week post-exposure. Relationships between EEA and threshold shift were analyzed. RESULTS Open-ear EEA ranged 11-19 dB-SPL, and occluded-ear EEA ranged 10-21 dB-SPL. Higher occluded-ear EEA was correlated with increased NIHL susceptibility (p = 0.04), as was lower body weight (p = 0.01). Male animals exhibited more threshold shift than female animals (p = 0.02), lower body weight than female animals (p = 0.02), and higher occluded-ear EEA (male mean = 18 dB; female mean = 15 dB). CONCLUSIONS Taken together, increased threshold shift susceptibility was observed in the smallest animals, animals with the highest occluded-ear EEA, and in male animals (which tended to have higher occluded-ear EEA). Given the established relationship between smaller body size and higher occluded-ear EEA, these preliminary results suggest that body size (and occluded-ear EEA; a function of body size) could be a potential, underlying driver of NIHL susceptibility differences, rather than true sex differences.
Collapse
Affiliation(s)
- Sarah K Grinn
- College of Health Professions, Central Michigan University, Mount Pleasant, MI, USA.
| | - Monica Trevino
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Edward Lobarinas
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
7
|
Samelli AG, Rocha CH, Kamita MK, Lopes MEP, Andrade CQ, Matas CG. Evaluation of Subtle Auditory Impairments with Multiple Audiological Assessments in Normal Hearing Workers Exposed to Occupational Noise. Brain Sci 2023; 13:968. [PMID: 37371447 PMCID: PMC10296706 DOI: 10.3390/brainsci13060968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies involving guinea pigs have shown that noise can damage the synapses between the inner hair cells and spiral ganglion neurons, even with normal hearing thresholds-which makes it important to investigate this kind of impairment in humans. The aim was to investigate, with multiple audiological assessments, the auditory function of normal hearing workers exposed to occupational noise. Altogether, 60 workers were assessed (30 in the noise-exposure group [NEG], who were exposed to occupational noise, and 30 in the control group [CG], who were not exposed to occupational noise); the workers were matched according to age. The following procedures were used: complete audiological assessment; speech recognition threshold in noise (SRTN); speech in noise (SN) in an acoustic field; gaps-in-noise (GIN); transient evoked otoacoustic emissions (TEOAE) and inhibitory effect of the efferent auditory pathway; auditory brainstem response (ABR); and long-latency auditory evoked potentials (LLAEP). No significant difference was found between the groups in SRTN. In SN, the NEG performed worse than the CG in signal-to-noise ratio (SNR) 0 (p-value 0.023). In GIN, the NEG had a significantly lower percentage of correct answers (p-value 0.042). In TEOAE, the NEG had smaller amplitude values bilaterally (RE p-value 0.048; LE p-value 0.045) and a smaller inhibitory effect of the efferent pathway (p-value 0.009). In ABR, the NEG had greater latencies of wave V (p-value 0.017) and interpeak intervals III-V and I-V in the LE (respective p-values: 0.005 and 0.04). In LLAEP, the NEG had a smaller P3 amplitude bilaterally (RE p-value 0.001; LE p-value 0.002). The NEG performed worse than the CG in most of the assessments, suggesting that the auditory function in individuals exposed to occupational noise is impaired, even with normal audiometric thresholds.
Collapse
Affiliation(s)
- Alessandra Giannella Samelli
- Department of Physical Therapy, Speech-Language-Hearing Sciences, and Occupational Therapy, Medical School (FMUSP), University of São Paulo, São Paulo 05360-160, SP, Brazil; (C.H.R.); (M.K.K.); (M.E.P.L.); (C.Q.A.); (C.G.M.)
| | | | | | | | | | | |
Collapse
|
8
|
Cross-species experiments reveal widespread cochlear neural damage in normal hearing. Commun Biol 2022; 5:733. [PMID: 35869142 PMCID: PMC9307777 DOI: 10.1038/s42003-022-03691-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Animal models suggest that cochlear afferent nerve endings may be more vulnerable than sensory hair cells to damage from acoustic overexposure and aging. Because neural degeneration without hair-cell loss cannot be detected in standard clinical audiometry, whether such damage occurs in humans is hotly debated. Here, we address this debate through co-ordinated experiments in at-risk humans and a wild-type chinchilla model. Cochlear neuropathy leads to large and sustained reductions of the wideband middle-ear muscle reflex in chinchillas. Analogously, human wideband reflex measures revealed distinct damage patterns in middle age, and in young individuals with histories of high acoustic exposure. Analysis of an independent large public dataset and additional measurements using clinical equipment corroborated the patterns revealed by our targeted cross-species experiments. Taken together, our results suggest that cochlear neural damage is widespread even in populations with clinically normal hearing. Cross-species experiments on chinchillas and at-risk humans suggest cochlear synaptopathy from noise exposure and aging are widespread even among individuals with clinically normal hearing status.
Collapse
|
9
|
Paik CB, Pei M, Oghalai JS. Review of blast noise and the auditory system. Hear Res 2022; 425:108459. [PMID: 35181171 PMCID: PMC9357863 DOI: 10.1016/j.heares.2022.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
The auditory system is particularly vulnerable to blast injury due to the ear's role as a highly sensitive pressure transducer. Over the past several decades, studies have used a variety of animal models and experimental procedures to recreate blast-induced acoustic trauma. Given the developing nature of this field and our incomplete understanding of molecular mechanisms underlying blast-related auditory disturbances, an updated discussion about these studies is warranted. Here, we comprehensively review well-established blast-related auditory pathology including tympanic membrane perforation and hair cell loss. In addition, we discuss important mechanistic studies that aim to bridge gaps in our current understanding of the molecular and microstructural events underlying blast-induced cochlear, auditory nerve, brainstem, and central auditory system damage. Key findings from the recent literature include the association between endolymphatic hydrops and cochlear synaptic loss, blast-induced neuroinflammatory markers in the peripheral and central auditory system, and therapeutic approaches targeting biochemical markers of blast injury. We conclude that blast is an extreme form of noise exposure. Blast waves produce cochlear damage that appears similar to, but more extreme than, the standard noise exposure protocols used in auditory research. However, experimental variations in studies of blast-induced acoustic trauma make it challenging to compare and interpret data across studies.
Collapse
Affiliation(s)
- Connie B Paik
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Michelle Pei
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA.
| |
Collapse
|
10
|
McLeod AR, Burton JA, Mackey CA, Ramachandran R. An assessment of ambient noise and other environmental variables in a nonhuman primate housing facility. Lab Anim (NY) 2022; 51:219-226. [PMID: 35896636 PMCID: PMC9511702 DOI: 10.1038/s41684-022-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Acoustic noise and other environmental variables represent potential confounds for animal research. Of relevance to auditory research, sustained high levels of ambient noise may modify hearing sensitivity and decrease well-being among laboratory animals. The present study was conducted to assess environmental conditions in an animal facility that houses nonhuman primates used for auditory research at the Vanderbilt University Medical Center. Sound levels, vibration, temperature, humidity and luminance were recorded using an environmental monitoring device placed inside of an empty cage in a macaque housing room. Recordings lasted 1 week each, at three different locations within the room. Vibration, temperature, humidity and luminance all varied within recommended levels for nonhuman primates, with one exception of low luminance levels in the bottom cage location. Sound levels at each cage location were characterized by a low baseline of 58-62 dB sound pressure level, with transient peaks up to 109 dB sound pressure level. Sound levels differed significantly across locations, but only by about 1.5 dB. The transient peaks beyond recommended sound levels reflected a very low noise dose, but exceeded startle-inducing levels, which could elicit stress responses. Based on these findings, ambient noise levels in the housing rooms in this primate facility are within acceptable levels and unlikely to contribute to hearing deficits in the nonhuman primates. Our results establish normative values for environmental conditions in a primate facility, can be used to inform best practices for nonhuman primate research and care, and form a baseline for future studies of aging and chronic noise exposure.
Collapse
Affiliation(s)
- Alexander R. McLeod
- Undergraduate Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Jane A. Burton
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA,Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chase A. Mackey
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA,Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ramnarayan Ramachandran
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Shehabi AM, Prendergast G, Plack CJ. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Front Aging Neurosci 2022; 14:877588. [PMID: 35813954 PMCID: PMC9260498 DOI: 10.3389/fnagi.2022.877588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
12
|
Kamerer AM, Harris SE, Kopun JG, Neely ST, Rasetshwane DM. Understanding Self-reported Hearing Disability in Adults With Normal Hearing. Ear Hear 2022; 43:773-784. [PMID: 34759207 PMCID: PMC9010339 DOI: 10.1097/aud.0000000000001161] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Despite a diagnosis of normal hearing, many people experience hearing disability (HD) in their everyday lives. This study assessed the ability of a number of demographic and auditory variables to explain and predict self-reported HD in people regarded as audiologically healthy via audiometric thresholds. DESIGN One-hundred eleven adults (ages 19 to 74) with clinically normal hearing (i.e., audiometric thresholds ≤25 dB HL at all octave and interoctave frequencies between 0.25 and 8 kHz and bilaterally symmetric hearing) were asked to complete the 12-item version of the Speech, Spatial, and Qualities of Hearing Scale (SSQ12) as a measure of self-reported HD. Patient history and a number of standard and expanded measures of hearing were assessed in a multivariate regression analysis to predict SSQ12 score. Patient history included age, sex, history of noise exposure, and tinnitus. Hearing-related measures included audiometry at standard and extended high frequencies, word recognition, otoacoustic emissions, auditory brainstem response, the Montreal Cognitive Assessment, and FM detection threshold. RESULTS History of impulse noise exposure, speech-intelligibility index, and FM detection threshold accurately predicted SSQ12 and were able to account for 40% of the SSQ12 score. These three measures were also able to predict whether participants self-reported HD with a sensitivity of 89% and specificity of 86%. CONCLUSIONS Although participant audiometric thresholds were within normal limits, higher thresholds, history of impulse noise exposure, and FM detection predicted self-reported HD.
Collapse
Affiliation(s)
| | | | - Judy G. Kopun
- Boys Town National Research Hospital, Omaha, NE 68131
| | | | | |
Collapse
|
13
|
Bramhall NF, McMillan GP, Kampel SD. Envelope following response measurements in young veterans are consistent with noise-induced cochlear synaptopathy. Hear Res 2021; 408:108310. [PMID: 34293505 PMCID: PMC10857793 DOI: 10.1016/j.heares.2021.108310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Animal studies have demonstrated that noise exposure can lead to the loss of the synapses between the inner hair cells and their afferent auditory nerve fiber targets without impacting auditory thresholds. Although several non-invasive physiological measures appear to be sensitive to cochlear synaptopathy in animal models, including auditory brainstem response (ABR) wave I amplitude, the envelope following response (EFR), and the middle ear muscle reflex (MEMR), human studies of these measures in samples that are expected to vary in terms of the degree of noise-induced synaptopathy have resulted in mixed findings. One possible explanation for the differing results is that synaptopathy risk is lower for recreational noise exposure than for occupational or military noise exposure. The goal of this analysis was to determine if EFR magnitude and ABR wave I amplitude are reduced among young Veterans with a history of military noise exposure compared with non-Veteran controls with minimal noise exposure. EFRs and ABRs were obtained in a sample of young (19-35 years) Veterans and non-Veterans with normal audiograms and robust distortion product otoacoustic emissions (DPOAEs). The statistical analysis is consistent with a reduction in mean EFR magnitude and ABR wave I amplitude (at 90 dB peSPL) for Veterans with a significant history of noise exposure compared with non-Veteran controls. These findings are in agreement with previous ABR wave I amplitude findings in young Veterans and are consistent with animal models of noise-induced cochlear synaptopathy.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, USA; Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Garnett P McMillan
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, USA; Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Sean D Kampel
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
14
|
Dose-Dependent Pattern of Cochlear Synaptic Degeneration in C57BL/6J Mice Induced by Repeated Noise Exposure. Neural Plast 2021; 2021:9919977. [PMID: 34221004 PMCID: PMC8211526 DOI: 10.1155/2021/9919977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
It is widely accepted that even a single acute noise exposure at moderate intensity that induces temporary threshold shift (TTS) can result in permanent loss of ribbon synapses between inner hair cells and afferents. However, effects of repeated or chronic noise exposures on the cochlear synapses especially medial olivocochlear (MOC) efferent synapses remain elusive. Based on a weeklong repeated exposure model of bandwidth noise over 2-20 kHz for 2 hours at seven intensities (88 to 106 dB SPL with 3 dB increment per gradient) on C57BL/6J mice, we attempted to explore the dose-response mechanism of prolonged noise-induced audiological dysfunction and cochlear synaptic degeneration. In our results, mice repeatedly exposed to relatively low-intensity noise (88, 91, and 94 dB SPL) showed few changes on auditory brainstem response (ABR), ribbon synapses, or MOC efferent synapses. Notably, repeated moderate-intensity noise exposures (97 and 100 dB SPL) not only caused hearing threshold shifts and the inner hair cell ribbon synaptopathy but also impaired MOC efferent synapses, which might contribute to complex patterns of damages on cochlear function and morphology. However, repeated high-intensity (103 and 106 dB SPL) noise exposures induced PTSs mainly accompanied by damages on cochlear amplifier function of outer hair cells and the inner hair cell ribbon synaptopathy, rather than the MOC efferent synaptic degeneration. Moreover, we observed a frequency-dependent vulnerability of the repeated acoustic trauma-induced cochlear synaptic degeneration. This study provides a sight into the hypothesis that noise-induced cochlear synaptic degeneration involves both afferent (ribbon synapses) and efferent (MOC terminals) pathology. The pattern of dose-dependent pathological changes induced by repeated noise exposure at various intensities provides a possible explanation for the complicated cochlear synaptic degeneration in humans. The underlying mechanisms remain to be studied in the future.
Collapse
|
15
|
Siu JM, Negandhi J, Harrison RV, Wolter NE, James A. Ultrasonic bone removal from the ossicular chain affects cochlear structure and function. J Otolaryngol Head Neck Surg 2021; 50:23. [PMID: 33810814 PMCID: PMC8017701 DOI: 10.1186/s40463-021-00491-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Ultrasonic bone removal devices (UBD) are capable of cutting through bony tissue without injury to adjacent soft tissue. The feasibility and safety of using this technology for removal of bone from an intact ossicular chain (as might be required for otosclerosis or congenital fixation) was investigated in an animal model. METHODS This was a prospective animal study conducted on seven anesthetised adult chinchillas. An UBD was used to remove bone from the malleus head in situ. Pre and post-operative distortion product otoacoustic emission (DPOAE) levels and auditory brainstem response (ABR) thresholds were recorded. Scanning electron microscopy (SEM) was used to assess cochlear haircell integrity. RESULTS Precise removal of a small quantity of bone from the malleus head was achieved by a 30s application of UBD without disruption of the ossicular chain or tympanic membrane. DPOAEs became undetectable after the intervention with signal-to-noise ratios (SNR) < 5 dB SPL in all ears. Furthermore, ABR thresholds were elevated > 85 dB SPL in 13 ears. SEM showed significant disruption of structural integrity of the organ of Corti, specifically loss and damage of outer haircells. CONCLUSIONS Although UBD can be used to reshape an ossicle without middle ear injury, prolonged contact with the ossicular chain can cause structural and functional injury to the cochlea. Extensive cochlea pathology was found, but we did not investigate for recovery from any temporary threshold shift. In the authors' opinion, further study should be undertaken before consideration is given to use of the device for release of ossicular fixation.
Collapse
Affiliation(s)
- Jennifer M Siu
- Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, Canada
| | - Jaina Negandhi
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Robert V Harrison
- Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Otolaryngology, Hospital for Sick Children, University of Toronto, 555 University Avenue, Room 6133, Burton Wing, Toronto, ON, M5G 1X8, Canada
| | - Nikolaus E Wolter
- Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, Canada
- Department of Otolaryngology, Hospital for Sick Children, University of Toronto, 555 University Avenue, Room 6133, Burton Wing, Toronto, ON, M5G 1X8, Canada
| | - Adrian James
- Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, Canada.
- Department of Otolaryngology, Hospital for Sick Children, University of Toronto, 555 University Avenue, Room 6133, Burton Wing, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
16
|
Moore BCJ. The Effect of Exposure to Noise during Military Service on the Subsequent Progression of Hearing Loss. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2436. [PMID: 33801367 PMCID: PMC7967570 DOI: 10.3390/ijerph18052436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022]
Abstract
This paper reviews and re-analyses data from published studies on the effects of noise exposure on the progression of hearing loss once noise exposure has ceased, focusing particularly on noise exposure during military service. The data are consistent with the idea that such exposure accelerates the progression of hearing loss at frequencies where the hearing loss is absent or mild at the end of military service (hearing threshold levels (HTLs) up to approximately 50 dB HL), but has no effect on or slows the progression of hearing loss at frequencies where the hearing loss exceeds approximately 50 dB. Acceleration appears to occur over a wide frequency range, including 1 kHz. However, each of the studies reviewed has limitations. There is a need for further longitudinal studies of changes in HTLs over a wide range of frequencies and including individuals with a range of HTLs and ages at the end of military service. Longitudinal studies are also needed to establish whether the progression of hearing loss following the end of exposure to high-level sounds depends on the type of noise exposure (steady broadband factory noises versus impulsive sounds).
Collapse
Affiliation(s)
- Brian C J Moore
- Cambridge Hearing Group, Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|
17
|
Sheppard A, Ralli M, Gilardi A, Salvi R. Occupational Noise: Auditory and Non-Auditory Consequences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8963. [PMID: 33276507 PMCID: PMC7729999 DOI: 10.3390/ijerph17238963] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022]
Abstract
Occupational noise exposure accounts for approximately 16% of all disabling hearing losses, but the true value and societal costs may be grossly underestimated because current regulations only identify hearing impairments in the workplace if exposures result in audiometric threshold shifts within a limited frequency region. Research over the past several decades indicates that occupational noise exposures can cause other serious auditory deficits such as tinnitus, hyperacusis, extended high-frequency hearing loss, and poor speech perception in noise. Beyond the audiogram, there is growing awareness that hearing loss is a significant risk factor for other debilitating and potentially life-threatening disorders such as cardiovascular disease and dementia. This review discusses some of the shortcomings and limitations of current noise regulations in the United States and Europe.
Collapse
Affiliation(s)
- Adam Sheppard
- Department of Communicative Disorders and Sciences and Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14221, USA;
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (M.R.); (A.G.)
| | - Antonio Gilardi
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (M.R.); (A.G.)
| | - Richard Salvi
- Department of Communicative Disorders and Sciences and Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14221, USA;
| |
Collapse
|
18
|
Enhancing the sensitivity of the envelope-following response for cochlear synaptopathy screening in humans: The role of stimulus envelope. Hear Res 2020; 400:108132. [PMID: 33333426 DOI: 10.1016/j.heares.2020.108132] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Auditory de-afferentation, a permanent reduction in the number of inner-hair-cells and auditory-nerve synapses due to cochlear damage or synaptopathy, can reliably be quantified using temporal bone histology and immunostaining. However, there is an urgent need for non-invasive markers of synaptopathy to study its perceptual consequences in live humans and to develop effective therapeutic interventions. While animal studies have identified candidate auditory-evoked-potential (AEP) markers for synaptopathy, their interpretation in humans has suffered from translational issues related to neural generator differences, unknown hearing-damage histopathologies or lack of measurement sensitivity. To render AEP-based markers of synaptopathy more sensitive and differential to the synaptopathy aspect of sensorineural hearing loss, we followed a combined computational and experimental approach. Starting from the known characteristics of auditory-nerve physiology, we optimized the stimulus envelope to stimulate the available auditory-nerve population optimally and synchronously to generate strong envelope-following-responses (EFRs). We further used model simulations to explore which stimuli evoked a response that was sensitive to synaptopathy, while being maximally insensitive to possible co-existing outer-hair-cell pathologies. We compared the model-predicted trends to AEPs recorded in younger and older listeners (N=44, 24f) who had normal or impaired audiograms with suspected age-related synaptopathy in the older cohort. We conclude that optimal stimulation paradigms for EFR-based quantification of synaptopathy should have sharply rising envelope shapes, a minimal plateau duration of 1.7-2.1 ms for a 120-Hz modulation rate, and inter-peak intervals which contain near-zero amplitudes. From our recordings, the optimal EFR-evoking stimulus had a rectangular envelope shape with a 25% duty cycle and a 95% modulation depth. Older listeners with normal or impaired audiometric thresholds showed significantly reduced EFRs, which were consistent with how (age-induced) synaptopathy affected these responses in the model.
Collapse
|
19
|
Noise Induced Hearing Loss and Tinnitus-New Research Developments and Remaining Gaps in Disease Assessment, Treatment, and Prevention. Brain Sci 2020; 10:brainsci10100732. [PMID: 33066210 PMCID: PMC7602100 DOI: 10.3390/brainsci10100732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/10/2023] Open
Abstract
Long-term noise exposure often results in noise induced hearing loss (NIHL). Tinnitus, the generation of phantom sounds, can also result from noise exposure, although understanding of its underlying mechanisms are limited. Recent studies, however, are shedding light on the neural processes involved in NIHL and tinnitus, leading to potential new and innovative treatments. This review focuses on the assessment of NIHL, available treatments, and development of new pharmacologic and non-pharmacologic treatments based on recent studies of central auditory plasticity and adaptive changes in hearing. We discuss the mechanisms and maladaptive plasticity of NIHL, neuronal aspects of tinnitus triggers, and mechanisms such as tinnitus-associated neural changes at the cochlear nucleus underlying the generation of tinnitus after noise-induced deafferentation. We include observations from recent studies, including our own studies on associated risks and emerging treatments for tinnitus. Increasing knowledge of neural plasticity and adaptive changes in the central auditory system suggest that NIHL is preventable and transient abnormalities may be reversable, although ongoing research in assessment and early detection of hearing difficulties is still urgently needed. Since no treatment can yet reverse noise-related damage completely, preventative strategies and increased awareness of hearing health are essential.
Collapse
|
20
|
Noise-Induced Hearing Loss and its Prevention: Current Issues in Mammalian Hearing. CURRENT OPINION IN PHYSIOLOGY 2020; 18:32-36. [PMID: 32984667 DOI: 10.1016/j.cophys.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noise-induced hearing loss (NIHL) has been well investigated across diverse mammalian species and the potential for prevention of NIHL is of broad interest. To most efficiently develop novel therapeutic interventions, a good understanding of the current state of knowledge regarding mechanisms of injury is essential. The overarching goals of this review are to 1) concisely summarize the current state of knowledge, and 2) provide opinions on the most significant future trends and developments.
Collapse
|
21
|
Evaluation of cochlear activity in normal-hearing musicians. Hear Res 2020; 395:108027. [PMID: 32659614 DOI: 10.1016/j.heares.2020.108027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The present study compared wave I amplitude of auditory brainstem responses (ABRs), a potential indicator of cochlear synaptopathy, among musicians and non-musicians with normal audiograms. DESIGN Noise exposure background (NEB) was evaluated using an online questionnaire. Two-channel ABRs were recorded from the left ear using click stimuli. One channel utilized an ipsilateral tiptrode, and another channel utilized an ipsilateral mastoid electrode. ABRs were collected at 90, 75, and 60 dBnHL. A mixed model was used to analyze the effect of group, electrodes, and stimulus levels on ABR wave I amplitude. STUDY SAMPLE 75 collegiate students with normal hearing participated in the study and were grouped into a non-music major group (n = 25), a brass major group (n = 25), and a voice major group (n = 25). RESULTS The NEB was negatively associated with the action potential (AP) and ABR wave I amplitude for click intensity levels at 75 dBnHL. The mean amplitude of the ABR wave I was not significantly different between the three groups. CONCLUSION The weak negative association of AP and ABR wave I amplitude with NEB cannot be solely attributed to evidence of cochlear synaptopathy in humans as the possibility of hair cell damage cannot be ruled out. Future research should investigate the effects of reduced cochlear output on the supra-threshold speech processing abilities of student musicians.
Collapse
|
22
|
Couth S, Prendergast G, Guest H, Munro KJ, Moore DR, Plack CJ, Ginsborg J, Dawes P. Investigating the effects of noise exposure on self-report, behavioral and electrophysiological indices of hearing damage in musicians with normal audiometric thresholds. Hear Res 2020; 395:108021. [PMID: 32631495 DOI: 10.1016/j.heares.2020.108021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 01/11/2023]
Abstract
Musicians are at risk of hearing loss due to prolonged noise exposure, but they may also be at risk of early sub-clinical hearing damage, such as cochlear synaptopathy. In the current study, we investigated the effects of noise exposure on electrophysiological, behavioral and self-report correlates of hearing damage in young adult (age range = 18-27 years) musicians and non-musicians with normal audiometric thresholds. Early-career musicians (n = 76) and non-musicians (n = 47) completed a test battery including the Noise Exposure Structured Interview, pure-tone audiometry (PTA; 0.25-8 kHz), extended high-frequency (EHF; 12 and 16 kHz) thresholds, otoacoustic emissions (OAEs), auditory brainstem responses (ABRs), speech perception in noise (SPiN), and self-reported tinnitus, hyperacusis and hearing in noise difficulties. Total lifetime noise exposure was similar between musicians and non-musicians, the majority of which could be accounted for by recreational activities. Musicians showed significantly greater ABR wave I/V ratios than non-musicians and were also more likely to report experience of - and/or more severe - tinnitus, hyperacusis and hearing in noise difficulties, irrespective of noise exposure. A secondary analysis revealed that individuals with the highest levels of noise exposure had reduced outer hair cell function compared to individuals with the lowest levels of noise exposure, as measured by OAEs. OAE level was also related to PTA and EHF thresholds. High levels of noise exposure were also associated with a significant increase in ABR wave V latency, but only for males, and a higher prevalence and severity of hyperacusis. These findings suggest that there may be sub-clinical effects of noise exposure on various hearing metrics even at a relatively young age, but do not support a link between lifetime noise exposure and proxy measures of cochlear synaptopathy such as ABR wave amplitudes and SPiN. Closely monitoring OAEs, PTA and EHF thresholds when conventional PTA is within the clinically 'normal' range could provide a useful early metric of noise-induced hearing damage. This may be particularly relevant to early-career musicians as they progress through a period of intensive musical training, and thus interventions to protect hearing longevity may be vital.
Collapse
Affiliation(s)
- Samuel Couth
- Manchester Centre for Audiology and Deafness, University of Manchester, UK.
| | | | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, UK
| | - David R Moore
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Communication Sciences Research Center, Cincinnati Children's Hospital Medical Centre, OH, USA
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Psychology, Lancaster University, UK
| | | | - Piers Dawes
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Linguistics, Macquarie University, Sydney, Australia
| |
Collapse
|
23
|
Füllgrabe C, Moody M, Moore BCJ. No evidence for a link between noise exposure and auditory temporal processing for young adults with normal audiograms. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:EL465. [PMID: 32611153 DOI: 10.1121/10.0001346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
The link between lifetime noise exposure and temporal processing abilities was investigated for 45 normal-hearing participants, recruited from a population of undergraduate students, aged 18 to 23 years. A self-report instrument was employed to assess the amount of neuropathic noise (here defined as sounds with levels exceeding approximately 80 dBA) each participant had been exposed to and sensitivity to temporal-fine-structure and temporal-envelope information was determined using frequency discrimination and envelope irregularity detection tasks, respectively. Despite sizable individual variability in all measures, correlations between noise exposure and the ability to process temporal cues were small and non-significant.
Collapse
Affiliation(s)
- Christian Füllgrabe
- School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough LE11 3TU, United Kingdom
| | - Matthew Moody
- School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough LE11 3TU, United Kingdom
| | - Brian C J Moore
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United , ,
| |
Collapse
|
24
|
Radziwon KE, Sheppard A, Salvi RJ. Psychophysical changes in temporal processing in chinchillas with noise-induced hearing loss: A literature review. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3733. [PMID: 31795701 DOI: 10.1121/1.5132292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
It is well-established that excessive noise exposure can systematically shift audiometric thresholds (i.e., noise-induced hearing loss, NIHL) making sounds at the lower end of the dynamic range difficult to detect. An often overlooked symptom of NIHL is the degraded ability to resolve temporal fluctuations in supra-threshold signals. Given that the temporal properties of speech are highly dynamic, it is not surprising that NIHL greatly reduces one's ability to clearly decipher spoken language. However, systematic characterization of noise-induced impairments on supra-threshold signals in humans is difficult given the variability in noise exposure among individuals. Fortunately, the chinchilla is audiometrically similar to humans, making it an ideal animal model to investigate noise-induced supra-threshold deficits. Through a series of studies using the chinchilla, the authors have elucidated several noise-induced deficits in temporal processing that occur at supra-threshold levels. These experiments highlight the importance of the chinchilla model in developing an understanding of noise-induced deficits in temporal processing.
Collapse
Affiliation(s)
- Kelly E Radziwon
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, 137 Cary Hall, Buffalo, New York 14214, USA
| | - Adam Sheppard
- Department of Communicative Disorders and Sciences, State University of New York at Buffalo, 137 Cary Hall, Buffalo, New York 14214, USA
| | - Richard J Salvi
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, 137 Cary Hall, Buffalo, New York 14214, USA
| |
Collapse
|
25
|
Trevino M, Lobarinas E, Maulden AC, Heinz MG. The chinchilla animal model for hearing science and noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3710. [PMID: 31795699 PMCID: PMC6881193 DOI: 10.1121/1.5132950] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 05/07/2023]
Abstract
The chinchilla animal model for noise-induced hearing loss has an extensive history spanning more than 50 years. Many behavioral, anatomical, and physiological characteristics of the chinchilla make it a valuable animal model for hearing science. These include similarities with human hearing frequency and intensity sensitivity, the ability to be trained behaviorally with acoustic stimuli relevant to human hearing, a docile nature that allows many physiological measures to be made in an awake state, physiological robustness that allows for data to be collected from all levels of the auditory system, and the ability to model various types of conductive and sensorineural hearing losses that mimic pathologies observed in humans. Given these attributes, chinchillas have been used repeatedly to study anatomical, physiological, and behavioral effects of continuous and impulse noise exposures that produce either temporary or permanent threshold shifts. Based on the mechanistic insights from noise-exposure studies, chinchillas have also been used in pre-clinical drug studies for the prevention and rescue of noise-induced hearing loss. This review paper highlights the role of the chinchilla model in hearing science, its important contributions, and its advantages and limitations.
Collapse
Affiliation(s)
- Monica Trevino
- School of Behavioral and Brain Sciences, Callier Center, The University of Texas at Dallas, 1966 Inwood Road, Dallas, Texas 75235, USA
| | - Edward Lobarinas
- School of Behavioral and Brain Sciences, Callier Center, The University of Texas at Dallas, 1966 Inwood Road, Dallas, Texas 75235, USA
| | - Amanda C Maulden
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| | - Michael G Heinz
- Weldon School of Biomedical Engineering, Purdue University, 715 Clinic Drive, West Lafayette, Indiana 47907, USA
| |
Collapse
|
26
|
Le Prell CG, Hammill TL, Murphy WJ. Noise-induced hearing loss and its prevention: Integration of data from animal models and human clinical trials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4051. [PMID: 31795668 PMCID: PMC7195863 DOI: 10.1121/1.5132951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/19/2019] [Indexed: 05/07/2023]
Abstract
Animal models have been used to gain insight into the risk of noise-induced hearing loss (NIHL) and its potential prevention using investigational new drug agents. A number of compounds have yielded benefit in pre-clinical (animal) models. However, the acute traumatic injury models commonly used in pre-clinical testing are fundamentally different from the chronic and repeated exposures experienced by many human populations. Diverse populations that are potentially at risk and could be considered for enrollment in clinical studies include service members, workers exposed to occupational noise, musicians and other performing artists, and children and young adults exposed to non-occupational (including recreational) noise. Both animal models and clinical populations were discussed in this special issue, followed by discussion of individual variation in vulnerability to NIHL. In this final contribution, study design considerations for NIHL otoprotection in pre-clinical and clinical testing are integrated and broadly discussed with evidence-based guidance offered where possible, drawing on the contributions to this special issue as well as other existing literature. The overarching goals of this final paper are to (1) review and summarize key information across contributions and (2) synthesize information to facilitate successful translation of otoprotective drugs from animal models into human application.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| | - William J Murphy
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinanati, Ohio 45226-1998, USA
| |
Collapse
|
27
|
Burton JA, Valero MD, Hackett TA, Ramachandran R. The use of nonhuman primates in studies of noise injury and treatment. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3770. [PMID: 31795680 PMCID: PMC6881191 DOI: 10.1121/1.5132709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 05/10/2023]
Abstract
Exposure to prolonged or high intensity noise increases the risk for permanent hearing impairment. Over several decades, researchers characterized the nature of harmful noise exposures and worked to establish guidelines for effective protection. Recent laboratory studies, primarily conducted in rodent models, indicate that the auditory system may be more vulnerable to noise-induced hearing loss (NIHL) than previously thought, driving renewed inquiries into the harmful effects of noise in humans. To bridge the translational gaps between rodents and humans, nonhuman primates (NHPs) may serve as key animal models. The phylogenetic proximity of NHPs to humans underlies tremendous similarity in many features of the auditory system (genomic, anatomical, physiological, behavioral), all of which are important considerations in the assessment and treatment of NIHL. This review summarizes the literature pertaining to NHPs as models of hearing and noise-induced hearing loss, discusses factors relevant to the translation of diagnostics and therapeutics from animals to humans, and concludes with some of the practical considerations involved in conducting NHP research.
Collapse
Affiliation(s)
- Jane A Burton
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Michelle D Valero
- Eaton Peabody Laboratories at Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Ramnarayan Ramachandran
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
28
|
Spankovich C, Le Prell CG. The role of diet in vulnerability to noise-induced cochlear injury and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4033. [PMID: 31795697 DOI: 10.1121/1.5132707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The influence of dietary nutrient intake on the onset and trajectory of hearing loss during aging and in mediating protection from challenges such as noise is an important relationship yet to be fully appreciated. Dietary intake provides essential nutrients that support basic cellular processes related to influencing cellular stress response, immune response, cardiometabolic status, neural status, and psychological well-being. Dietary quality has been shown to alter risk for essentially all chronic health conditions including hearing loss and tinnitus. Evidence of nutrients with antioxidant, anti-inflammatory, and anti-ischemic properties, and overall healthy diet quality as otoprotective strategies are slowly accumulating, but many questions remain unanswered. In this article, the authors will discuss (1) animal models in nutritional research, (2) evidence of dietary nutrient-based otoprotection, and (3) consideration of confounds and limitations to nutrient and dietary study in hearing sciences. Given that there are some 60 physiologically essential nutrients, unraveling the intricate biochemistry and multitude of interactions among nutrients may ultimately prove infeasible; however, the wealth of available data suggesting healthy nutrient intake to be associated with improved hearing outcomes suggests the development of evidence-based guidance regarding diets that support healthy hearing may not require precise understanding of all possible interactions among variables. Clinical trials evaluating otoprotective benefits of nutrients should account for dietary quality, noise exposure history, and exercise habits as potential covariates that may influence the efficacy and effectiveness of test agents; pharmacokinetic measures are also encouraged.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
29
|
Kamerer AM, Kopun JG, Fultz SE, Allen C, Neely ST, Rasetshwane DM. Examining physiological and perceptual consequences of noise exposure. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3947. [PMID: 31795718 PMCID: PMC6881192 DOI: 10.1121/1.5132291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 05/08/2023]
Abstract
The consequences of noise exposure on the auditory system are not entirely understood. In animals, noise exposure causes selective synaptopathy-an uncoupling of auditory nerve fibers from sensory cells-mostly in fibers that respond to high sound levels. Synaptopathy can be measured physiologically in animals, but a direct relationship between noise exposure and synaptopathy in humans has yet to be proven. Sources of variability, such as age, indirect measures of noise exposure, and comorbid auditory disorders, obfuscate attempts to find concrete relationships between noise exposure, synaptopathy, and perceptual consequences. This study adds to the ongoing effort by examining relationships between noise exposure, auditory brainstem response (ABR) amplitudes, and speech perception in adults of various ages and audiometric thresholds and a subset of younger adults with clinically normal hearing. Regression models including noise exposure, age, hearing thresholds, and sex as covariates were compared to find a best-fitting model of toneburst ABR wave I amplitude at two frequencies and word recognition performance in three listening conditions: background noise, time compression, and time compression with reverberation. The data suggest the possibility of detecting synaptopathy in younger adults using physiological measures, but that age and comorbid hearing disorders may hinder attempts to assess noise-induced synaptopathy.
Collapse
Affiliation(s)
- Aryn M Kamerer
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Judy G Kopun
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Sara E Fultz
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Carissa Allen
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | - Stephen T Neely
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | |
Collapse
|
30
|
Morgan D, Arteaga A, Bosworth N, Proctor G, Vetter D, Lobarinas E, Spankovich C. Repeated temporary threshold shift and changes in cochlear and neural function. Hear Res 2019; 381:107780. [DOI: 10.1016/j.heares.2019.107780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/28/2022]
|
31
|
The paradox of hearing at the lek: auditory sensitivity increases after breeding in female gray treefrogs (Hyla chrysoscelis). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:629-639. [DOI: 10.1007/s00359-019-01354-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022]
|
32
|
Bramhall N, Beach EF, Epp B, Le Prell CG, Lopez-Poveda EA, Plack CJ, Schaette R, Verhulst S, Canlon B. The search for noise-induced cochlear synaptopathy in humans: Mission impossible? Hear Res 2019; 377:88-103. [DOI: 10.1016/j.heares.2019.02.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
33
|
Guest H, Munro KJ, Plack CJ. Acoustic Middle-Ear-Muscle-Reflex Thresholds in Humans with Normal Audiograms: No Relations to Tinnitus, Speech Perception in Noise, or Noise Exposure. Neuroscience 2019; 407:75-82. [DOI: 10.1016/j.neuroscience.2018.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022]
|
34
|
Moore BCJ, Sęk AP, Füllgrabe C. Envelope regularity discrimination. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2861. [PMID: 31153343 DOI: 10.1121/1.5100620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
The ability to discriminate irregular from regular amplitude modulation was assessed using the "envelope regularity discrimination" test. The amount of irregularity was parametrically varied and quantified by an "irregularity index." Normative data were gathered for young subjects with normal audiometric thresholds. Parameters varied were the carrier and modulation frequencies, fc and fm, and the baseline modulation index, m. All tests were performed using a background threshold-equalizing noise. The main findings were (1) using fc = 4000 Hz, fm = 8 Hz, and m = 0.3, performance improved over the first two threshold runs and then remained roughly stable, and there was a high correlation between thresholds obtained at 80 dB sound pressure level (SPL) and at 20 dB sensation level; (2) using fm = 8 Hz and m = 0.3 with a level of 80 dB SPL, thresholds did not vary significantly across fc = 1000, 2000, and 4000 Hz; (3) using fm = 8 Hz and fc = 4000 Hz with a level of 80 dB SPL, thresholds did not vary significantly for m from 0.2 to 0.5; and (4) using m = 0.3 and fc = 4000 Hz with a level of 80 dB SPL, thresholds improved with increasing fm from 2 to 16 Hz. For all conditions, there was substantial individual variability, probably resulting from differences in "processing efficiency."
Collapse
Affiliation(s)
- Brian C J Moore
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Aleksander P Sęk
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Christian Füllgrabe
- School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
35
|
No Reliable Association Between Recreational Noise Exposure and Threshold Sensitivity, Distortion Product Otoacoustic Emission Amplitude, or Word-in-Noise Performance in a College Student Population. Ear Hear 2019. [PMID: 29543608 DOI: 10.1097/aud.0000000000000575] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the relationship between recreational sound exposure and potentially undiagnosed or subclinical hearing loss by assessing sound exposure history, threshold sensitivity, distortion product otoacoustic emission (DPOAE) amplitudes, and performance on the words-in-noise (WIN) test. DESIGN Survey data were collected from 74 adult participants (14 male and 60 female), 18 to 27 years of age, recruited via advertisements posted throughout the University of Florida campus. Of these participants, 70 completed both the survey and the additional functional test battery, and their preferred listening level was measured in a laboratory setting. RESULTS There were statistically significant relationships between hearing thresholds and DPOAE amplitude. In contrast, performance on the WIN was not reliably related to threshold sensitivity within this cohort with largely normal hearing. The two most common exposures included bars or dance clubs, followed by music player use. There were no statistically significant relationships between individual or composite measures of recreational sound exposure, including preferred listening level, years of music player use, number of reported sound exposures, previous impulse noise exposure, or previous noise-induced change in hearing, and functional measures including threshold, DPOAE amplitude, and WIN measures. Some subjects were highly consistent in listening level preferences, while others were more variable from song to song. CONCLUSIONS No reliable relationships between common recreational sound exposure or previous noise-induced changes in hearing were found during analysis of threshold sensitivity, DPOAE amplitude, or WIN performance in this cohort. However, the study sample was predominantly female and Caucasian, which limits generalizability of the results.
Collapse
|
36
|
Ridley CL, Kopun JG, Neely ST, Gorga MP, Rasetshwane DM. Using Thresholds in Noise to Identify Hidden Hearing Loss in Humans. Ear Hear 2019; 39:829-844. [PMID: 29337760 PMCID: PMC6046280 DOI: 10.1097/aud.0000000000000543] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Recent animal studies suggest that noise-induced synaptopathy may underlie a phenomenon that has been labeled hidden hearing loss (HHL). Noise exposure preferentially damages low spontaneous-rate auditory nerve fibers, which are involved in the processing of moderate- to high-level sounds and are more resistant to masking by background noise. Therefore, the effect of synaptopathy may be more evident in suprathreshold measures of auditory function, especially in the presence of background noise. The purpose of this study was to develop a statistical model for estimating HHL in humans using thresholds in noise as the outcome variable and measures that reflect the integrity of sites along the auditory pathway as explanatory variables. Our working hypothesis is that HHL is evident in the portion of the variance observed in thresholds in noise that is not dependent on thresholds in quiet, because this residual variance retains statistical dependence on other measures of suprathreshold function. DESIGN Study participants included 13 adults with normal hearing (≤15 dB HL) and 20 adults with normal hearing at 1 kHz and sensorineural hearing loss at 4 kHz (>15 dB HL). Thresholds in noise were measured, and the residual of the correlation between thresholds in noise and thresholds in quiet, which we refer to as thresholds-in-noise residual, was used as the outcome measure for the model. Explanatory measures were as follows: (1) auditory brainstem response (ABR) waves I and V amplitudes; (2) electrocochleographic action potential and summating potential amplitudes; (3) distortion product otoacoustic emissions level; and (4) categorical loudness scaling. All measurements were made at two frequencies (1 and 4 kHz). ABR and electrocochleographic measurements were made at 80 and 100 dB peak equivalent sound pressure level, while wider ranges of levels were tested during distortion product otoacoustic emission and categorical loudness scaling measurements. A model relating the thresholds-in-noise residual and the explanatory measures was created using multiple linear regression analysis. RESULTS Predictions of thresholds-in-noise residual using the model accounted for 61% (p < 0.01) and 48% (p < 0.01) of the variance in the measured thresholds-in-noise residual at 1 and 4 kHz, respectively. CONCLUSIONS Measures of thresholds in noise, the summating potential to action potential ratio, and ABR waves I and V amplitudes may be useful for the prediction of HHL in humans. With further development, our approach of quantifying HHL by the variance that remains in suprathreshold measures of auditory function after removing the variance due to thresholds in quiet, together with our statistical modeling, may provide a quantifiable and verifiable estimate of HHL in humans with normal hearing and with hearing loss. The current results are consistent with the view that inner hair cell and auditory nerve pathology may underlie suprathreshold auditory performance.
Collapse
Affiliation(s)
- Courtney L. Ridley
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30 St, Omaha, Nebraska 68131, USA
- Department of Speech, Language, and Hearing Sciences, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA
| | - Judy G. Kopun
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30 St, Omaha, Nebraska 68131, USA
| | - Stephen T. Neely
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30 St, Omaha, Nebraska 68131, USA
| | - Michael P. Gorga
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30 St, Omaha, Nebraska 68131, USA
| | - Daniel M. Rasetshwane
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30 St, Omaha, Nebraska 68131, USA
| |
Collapse
|
37
|
Translating animal models to human therapeutics in noise-induced and age-related hearing loss. Hear Res 2019; 377:44-52. [PMID: 30903954 DOI: 10.1016/j.heares.2019.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
Acquired sensorineural hearing loss is one of the most prevalent chronic diseases, and aging and acoustic overexposure are common contributors. Decades of study in animals and humans have clarified the cellular targets and perceptual consequences of these forms of hearing loss, and preclinical studies have led to the development of therapeutics designed to slow, prevent or reverse them. Here, we review the histopathological changes underlying age-related and noise-induced hearing loss and the functional consequences of these pathologies. Based on these relations, we consider the ambiguities that arise in diagnosing underlying pathology from minimally invasive tests of auditory function, and how those ambiguities present challenges in the design and interpretation of clinical trials.
Collapse
|
38
|
Bharadwaj HM, Mai AR, Simpson JM, Choi I, Heinz MG, Shinn-Cunningham BG. Non-Invasive Assays of Cochlear Synaptopathy - Candidates and Considerations. Neuroscience 2019; 407:53-66. [PMID: 30853540 DOI: 10.1016/j.neuroscience.2019.02.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
Studies in multiple species, including in post-mortem human tissue, have shown that normal aging and/or acoustic overexposure can lead to a significant loss of afferent synapses innervating the cochlea. Hypothetically, this cochlear synaptopathy can lead to perceptual deficits in challenging environments and can contribute to central neural effects such as tinnitus. However, because cochlear synaptopathy can occur without any measurable changes in audiometric thresholds, synaptopathy can remain hidden from standard clinical diagnostics. To understand the perceptual sequelae of synaptopathy and to evaluate the efficacy of emerging therapies, sensitive and specific non-invasive measures at the individual patient level need to be established. Pioneering experiments in specific mice strains have helped identify many candidate assays. These include auditory brainstem responses, the middle-ear muscle reflex, envelope-following responses, and extended high-frequency audiograms. Unfortunately, because these non-invasive measures can be also affected by extraneous factors other than synaptopathy, their application and interpretation in humans is not straightforward. Here, we systematically examine six extraneous factors through a series of interrelated human experiments aimed at understanding their effects. Using strategies that may help mitigate the effects of such extraneous factors, we then show that these suprathreshold physiological assays exhibit across-individual correlations with each other indicative of contributions from a common physiological source consistent with cochlear synaptopathy. Finally, we discuss the application of these assays to two key outstanding questions, and discuss some barriers that still remain. This article is part of a Special Issue entitled: Hearing Loss, Tinnitus, Hyperacusis, Central Gain.
Collapse
Affiliation(s)
- Hari M Bharadwaj
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN.
| | - Alexandra R Mai
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN
| | - Jennifer M Simpson
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN
| | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA
| | - Michael G Heinz
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | | |
Collapse
|
39
|
Pienkowski M. Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex. Trends Hear 2019. [PMID: 29532738 PMCID: PMC5858683 DOI: 10.1177/2331216518758109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hearing loss changes the auditory brain, sometimes maladaptively. When deprived of cochlear input, central auditory neurons become more active spontaneously and begin to respond more strongly and synchronously to better preserved sound frequencies. This spontaneous and sound-evoked central hyperactivity has been postulated to trigger tinnitus and hyperacusis, respectively. Localized hyperactivity has also been observed after long-term exposure to noise levels that do not damage the cochlea. Adult animals exposed to bands of nondamaging noise exhibited suppressed spontaneous and sound-evoked activity in the area of primary auditory cortex (A1) stimulated by the exposure band but had increased spontaneous and evoked activity in neighboring A1 areas. We hypothesized that the cortically suppressed frequencies should for some time after exposure be perceived as less loud than before (hypoacusis), whereas the hyperactivity outside of the exposure band might lead to frequency-specific hyperacusis or tinnitus. To investigate this, adult CBA/Ca mice were exposed for >2 months to 8 to 16 kHz noise at 70 or 75 dB sound pressure level and tested for hypo-/hyperacusis and tinnitus using tone and gap prepulse inhibition of the acoustic startle reflex. Auditory brainstem responses and distortion product otoacoustic emissions showed evidence of cochlear synaptopathy after exposure at 75 but not 70 dB, putting a lower bound on damaging noise levels for CBA/Ca mice. Contrary to hypothesis, neither exposure significantly shifted startle results from baseline. These negative findings nevertheless have implications for startle test methodology and for the putative role of central hyperactivity in hyperacusis and tinnitus.
Collapse
Affiliation(s)
- Martin Pienkowski
- 1 Osborne College of Audiology, Salus University, Elkins Park, PA, USA
| |
Collapse
|
40
|
Guest H, Munro KJ, Prendergast G, Plack CJ. Reliability and interrelations of seven proxy measures of cochlear synaptopathy. Hear Res 2019; 375:34-43. [PMID: 30765219 PMCID: PMC6423440 DOI: 10.1016/j.heares.2019.01.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
Investigations of cochlear synaptopathy in living humans rely on proxy measures of auditory nerve function. Numerous procedures have been developed, typically based on the auditory brainstem response (ABR), envelope-following response (EFR), or middle-ear-muscle reflex (MEMR). Validation is challenging, due to the absence of a gold-standard measure in humans. Some metrics correlate with synaptic survival in animal models, but translation between species is not straightforward; measurements in humans are likely to reflect greater error and greater variability from non-synaptopathic sources. The present study assessed the reliability of seven measures, as well as testing for correlations between them. Thirty-one young women with normal audiograms underwent repeated measurements of ABR wave I amplitude, ABR wave I growth, ABR wave V latency shift in noise, EFR amplitude, EFR growth with stimulus modulation depth, MEMR threshold, and an MEMR across-frequency difference measure. Intraclass correlation coefficients for ABR wave I amplitude, EFR amplitude, and MEMR threshold ranged from 0.85 to 0.93, suggesting that such tests can yield highly reliable results, given careful measurement techniques. The ABR and EFR difference measures exhibited only poor-to-moderate reliability. No significant correlations, nor any consistent trends, were observed between the various measures, providing no indication that these metrics reflect the same underlying physiological processes. Findings suggest that many proxy measures of cochlear synaptopathy should be regarded with caution, at least when employed in young adults with normal audiograms. Given careful measurement techniques, ABR and EFR amplitudes can be highly reliable. The same is true of MEMR thresholds and MEMR across-frequency threshold difference. Differential ABR and EFR measures exhibit only poor-to-moderate reliability. Correlations between measures are not evident in young people with normal audiograms. Proxy measures of synaptopathy in this population should be regarded with caution.
Collapse
Affiliation(s)
- Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK.
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; Manchester University NHS Foundation Trust, UK
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; Department of Psychology, Lancaster University, UK
| |
Collapse
|
41
|
Prendergast G, Couth S, Millman RE, Guest H, Kluk K, Munro KJ, Plack CJ. Effects of Age and Noise Exposure on Proxy Measures of Cochlear Synaptopathy. Trends Hear 2019; 23:2331216519877301. [PMID: 31558119 PMCID: PMC6767746 DOI: 10.1177/2331216519877301] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Although there is strong histological evidence for age-related synaptopathy in humans, evidence for the existence of noise-induced cochlear synaptopathy in humans is inconclusive. Here, we sought to evaluate the relative contributions of age and noise exposure to cochlear synaptopathy using a series of electrophysiological and behavioral measures. We extended an existing cohort by including 33 adults in the age range 37 to 60, resulting in a total of 156 participants, with the additional older participants resulting in a weakening of the correlation between lifetime noise exposure and age. We used six independent regression models (corrected for multiple comparisons), in which age, lifetime noise exposure, and high-frequency audiometric thresholds were used to predict measures of synaptopathy, with a focus on differential measures. The models for auditory brainstem responses, envelope-following responses, interaural phase discrimination, and the co-ordinate response measure of speech perception were not statistically significant. However, both age and noise exposure were significant predictors of performance on the digit triplet test of speech perception in noise, with greater noise exposure (unexpectedly) predicting better performance in the 80 dB sound pressure level (SPL) condition and greater age predicting better performance in the 40 dB SPL condition. Amplitude modulation detection thresholds were also significantly predicted by age, with older listeners performing better than younger listeners at 80 dB SPL. Overall, the results are inconsistent with the predicted effects of synaptopathy.
Collapse
Affiliation(s)
- Garreth Prendergast
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
| | - Samuel Couth
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
| | - Rebecca E. Millman
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
| | - Hannah Guest
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
| | - Karolina Kluk
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
| | - Kevin J. Munro
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
| | - Christopher J. Plack
- Manchester Centre for Audiology and
Deafness, The University of Manchester, Manchester Academic Health Science Centre,
UK
- NIHR Manchester Biomedical Research
Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester
Academic Health Science Centre, Manchester, UK
- Department of Psychology, Lancaster
University, UK
| |
Collapse
|
42
|
Le Prell CG. Effects of noise exposure on auditory brainstem response and speech-in-noise tasks: a review of the literature. Int J Audiol 2018; 58:S3-S32. [DOI: 10.1080/14992027.2018.1534010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Colleen G. Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
43
|
Investigating peripheral sources of speech-in-noise variability in listeners with normal audiograms. Hear Res 2018; 371:66-74. [PMID: 30504092 DOI: 10.1016/j.heares.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
A current initiative in auditory neuroscience research is to better understand why some listeners struggle to perceive speech-in-noise (SIN) despite having normal hearing sensitivity. Various hypotheses regarding the physiologic bases of this disorder have been proposed. Notably, recent work has suggested that the site of lesion underlying SIN deficits in normal hearing listeners may be either in "sub-clinical" outer hair cell damage or synaptopathic degeneration at the inner hair cell-auditory nerve fiber synapse. In this study, we present a retrospective investigation of these peripheral sources and their relationship with SIN performance variability in one of the largest datasets of young normal-hearing listeners presented to date. 194 participants completed detailed case history questionnaires assessing noise exposure, SIN complaints, tinnitus, and hyperacusis. Standard and extended high frequency audiograms, distortion product otoacoustic emissions, click-evoked auditory brainstem responses, and SIN performance measures were also collected. We found that: 1) the prevalence of SIN deficits in normal hearing listeners was 42% when based on subjective report and 8% when based on SIN performance, 2) hearing complaints and hyperacusis were more common in listeners with self-reported noise exposure histories than controls, 3) neither extended high frequency thresholds nor compound action potential amplitudes differed between noise-exposed and control groups, 4) extended high frequency hearing thresholds and compound action potential amplitudes were not predictive of SIN performance. These results suggest an association between noise exposure and hearing complaints in young, normal hearing listeners; however, SIN performance variability is not explained by peripheral auditory function to the extent that these measures capture subtle physiologic differences between participants.
Collapse
|
44
|
Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Hear Res 2018; 365:36-48. [DOI: 10.1016/j.heares.2018.06.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/25/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
|
45
|
Enhancement of the Medial Olivocochlear System Prevents Hidden Hearing Loss. J Neurosci 2018; 38:7440-7451. [PMID: 30030403 DOI: 10.1523/jneurosci.0363-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/15/2023] Open
Abstract
Cochlear synaptopathy produced by exposure to noise levels that cause only transient auditory threshold elevations is a condition that affects many people and is believed to contribute to poor speech discrimination in noisy environments. These functional deficits in hearing, without changes in sensitivity, have been called hidden hearing loss (HHL). It has been proposed that activity of the medial olivocochlear (MOC) system can ameliorate acoustic trauma effects. Here we explore the role of the MOC system in HHL by comparing the performance of two different mouse models: an α9 nicotinic receptor subunit knock-out (KO; Chrna9 KO), which lacks cholinergic transmission between efferent neurons and hair cells; and a gain-of-function knock-in (KI; Chrna9L9'T KI) carrying an α9 point mutation that leads to enhanced cholinergic activity. Animals of either sex were exposed to sound pressure levels that in wild-type produced transient cochlear threshold shifts and a decrease in neural response amplitudes, together with the loss of ribbon synapses, which is indicative of cochlear synaptopathy. Moreover, a reduction in the number of efferent contacts to outer hair cells was observed. In Chrna9 KO ears, noise exposure produced permanent auditory threshold elevations together with cochlear synaptopathy. In contrast, the Chrna9L9'T KI was completely resistant to the same acoustic exposure protocol. These results show a positive correlation between the degree of HHL prevention and the level of cholinergic activity. Notably, enhancement of the MOC feedback promoted new afferent synapse formation, suggesting that it can trigger cellular and molecular mechanisms to protect and/or repair the inner ear sensory epithelium.SIGNIFICANCE STATEMENT Noise overexposure is a major cause of a variety of perceptual disabilities, including speech-in-noise difficulties, tinnitus, and hyperacusis. Here we show that exposure to noise levels that do not cause permanent threshold elevations or hair cell death can produce a loss of cochlear nerve synapses to inner hair cells as well as degeneration of medial olivocochlear (MOC) terminals contacting the outer hair cells. Enhancement of the MOC reflex can prevent both types of neuropathy, highlighting the potential use of drugs that increase α9α10 nicotinic cholinergic receptor activity as a pharmacotherapeutic strategy to avoid hidden hearing loss.
Collapse
|
46
|
Hickman TT, Smalt C, Bobrow J, Quatieri T, Liberman MC. Blast-induced cochlear synaptopathy in chinchillas. Sci Rep 2018; 8:10740. [PMID: 30013117 PMCID: PMC6048130 DOI: 10.1038/s41598-018-28924-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022] Open
Abstract
When exposed to continuous high-level noise, cochlear neurons are more susceptible to damage than hair cells (HCs): exposures causing temporary threshold shifts (TTS) without permanent HC damage can destroy ribbon synapses, permanently silencing the cochlear neurons they formerly activated. While this "hidden hearing loss" has little effect on thresholds in quiet, the neural degeneration degrades hearing in noise and may be an important elicitor of tinnitus. Similar sensory pathologies are seen after blast injury, even if permanent threshold shift (PTS) is minimal. We hypothesized that, as for continuous-noise, blasts causing only TTS can also produce cochlear synaptopathy with minimal HC loss. To test this, we customized a shock tube design to generate explosive-like impulses, exposed anesthetized chinchillas to blasts with peak pressures from 160-175 dB SPL, and examined the resultant cochlear dysfunction and histopathology. We found exposures that cause large >40 dB TTS with minimal PTS or HC loss often cause synapse loss of 20-45%. While synaptopathic continuous-noise exposures can affect large areas of the cochlea, blast-induced synaptopathy was more focal, with localized damage foci in midcochlear and basal regions. These results clarify the pathology underlying blast-induced sensory dysfunction, and suggest possible links between blast injury, hidden hearing loss, and tinnitus.
Collapse
Affiliation(s)
- T T Hickman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA.
| | - C Smalt
- Bioengineering Systems and Technologies, MIT Lincoln Laboratory, Lexington, MA, 02421, USA
| | - J Bobrow
- Bioengineering Systems and Technologies, MIT Lincoln Laboratory, Lexington, MA, 02421, USA
| | - T Quatieri
- Bioengineering Systems and Technologies, MIT Lincoln Laboratory, Lexington, MA, 02421, USA
| | - M C Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
47
|
Guest H, Munro KJ, Prendergast G, Millman RE, Plack CJ. Impaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure. Hear Res 2018; 364:142-151. [PMID: 29680183 PMCID: PMC5993872 DOI: 10.1016/j.heares.2018.03.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 02/01/2023]
Abstract
In rodents, noise exposure can destroy synapses between inner hair cells and auditory nerve fibers (“cochlear synaptopathy”) without causing hair cell loss. Noise-induced cochlear synaptopathy usually leaves cochlear thresholds unaltered, but is associated with long-term reductions in auditory brainstem response (ABR) amplitudes at medium-to-high sound levels. This pathophysiology has been suggested to degrade speech perception in noise (SPiN), perhaps explaining why SPiN ability varies so widely among audiometrically normal humans. The present study is the first to test for evidence of cochlear synaptopathy in humans with significant SPiN impairment. Individuals were recruited on the basis of self-reported SPiN difficulties and normal pure tone audiometric thresholds. Performance on a listening task identified a subset with “verified” SPiN impairment. This group was matched with controls on the basis of age, sex, and audiometric thresholds up to 14 kHz. ABRs and envelope-following responses (EFRs) were recorded at high stimulus levels, yielding both raw amplitude measures and within-subject difference measures. Past exposure to high sound levels was assessed by detailed structured interview. Impaired SPiN was not associated with greater lifetime noise exposure, nor with any electrophysiological measure. It is conceivable that retrospective self-report cannot reliably capture noise exposure, and that ABRs and EFRs offer limited sensitivity to synaptopathy in humans. Nevertheless, the results do not support the notion that noise-induced synaptopathy is a significant etiology of SPiN impairment with normal audiometric thresholds. It may be that synaptopathy alone does not have significant perceptual consequences, or is not widespread in humans with normal audiograms. Study of adults with impaired speech perception in noise (SPiN) and normal audiograms. A subset of those with reported SPiN impairment exhibited measurable SPiN deficits. SPiN-impaired participants were matched with controls for age, sex, and audiogram. Impaired SPiN was not associated with ABR or EFR measures of cochlear synaptopathy. Impaired SPiN was not associated with a detailed measure of lifetime noise exposure.
Collapse
Affiliation(s)
- Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK.
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Rebecca E Millman
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK; Department of Psychology, Lancaster University, UK
| |
Collapse
|
48
|
Hauser SN, Burton JA, Mercer ET, Ramachandran R. Effects of noise overexposure on tone detection in noise in nonhuman primates. Hear Res 2018; 357:33-45. [PMID: 29175767 PMCID: PMC5743633 DOI: 10.1016/j.heares.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
This report explores the consequences of acoustic overexposures on hearing in noisy environments for two macaque monkeys trained to perform a reaction time detection task using a Go/No-Go lever release paradigm. Behavioral and non-invasive physiological assessments were obtained before and after narrowband noise exposure. Physiological measurements showed elevated auditory brainstem response (ABR) thresholds and absent distortion product otoacoustic emissions (DPOAEs) post-exposure relative to pre-exposure. Audiograms revealed frequency specific increases in tone detection thresholds, with the greatest increases at the exposure band frequency and higher. Masked detection was affected in a similar frequency specific manner: threshold shift rates (change of masked threshold per dB increase in noise level) were lower than pre-exposure values at frequencies higher than the exposure band. Detection thresholds in sinusoidally amplitude modulated (SAM) noise post-exposure showed no difference from those in unmodulated noise, whereas pre-exposure masked detection thresholds were lower in the presence of SAM noise compared to unmodulated noise. These frequency-dependent results were correlated with cochlear histopathological changes in monkeys that underwent similar noise exposure. These results reveal that behavioral and physiological effects of noise exposure in macaques are similar to those seen in humans and provide preliminary information on the relationship between noise exposure, cochlear pathology and perceptual changes in hearing within individual subjects.
Collapse
Affiliation(s)
- Samantha N Hauser
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jane A Burton
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Evan T Mercer
- Vanderbilt University Interdisciplinary Program in Neuroscience for Undergraduates, Vanderbilt University, Nashville, TN 37212, USA.
| | - Ramnarayan Ramachandran
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
49
|
Prendergast G, Millman RE, Guest H, Munro KJ, Kluk K, Dewey RS, Hall DA, Heinz MG, Plack CJ. Effects of noise exposure on young adults with normal audiograms II: Behavioral measures. Hear Res 2017; 356:74-86. [PMID: 29126651 PMCID: PMC5714059 DOI: 10.1016/j.heares.2017.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022]
Abstract
An estimate of lifetime noise exposure was used as the primary predictor of performance on a range of behavioral tasks: frequency and intensity difference limens, amplitude modulation detection, interaural phase discrimination, the digit triplet speech test, the co-ordinate response speech measure, an auditory localization task, a musical consonance task and a subjective report of hearing ability. One hundred and thirty-eight participants (81 females) aged 18-36 years were tested, with a wide range of self-reported noise exposure. All had normal pure-tone audiograms up to 8 kHz. It was predicted that increased lifetime noise exposure, which we assume to be concordant with noise-induced cochlear synaptopathy, would elevate behavioral thresholds, in particular for stimuli with high levels in a high spectral region. However, the results showed little effect of noise exposure on performance. There were a number of weak relations with noise exposure across the test battery, although many of these were in the opposite direction to the predictions, and none were statistically significant after correction for multiple comparisons. There were also no strong correlations between electrophysiological measures of synaptopathy published previously and the behavioral measures reported here. Consistent with our previous electrophysiological results, the present results provide no evidence that noise exposure is related to significant perceptual deficits in young listeners with normal audiometric hearing. It is possible that the effects of noise-induced cochlear synaptopathy are only measurable in humans with extreme noise exposures, and that these effects always co-occur with a loss of audiometric sensitivity.
Collapse
Affiliation(s)
- Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK.
| | - Rebecca E Millman
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Karolina Kluk
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Rebecca S Dewey
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham Nottingham, NG7 2RD, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, NG1 5DU, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Deborah A Hall
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, NG1 5DU, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Michael G Heinz
- Department of Speech, Language, & Hearing Sciences and Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK; Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| |
Collapse
|
50
|
Noise History and Auditory Function in Young Adults With and Without Type 1 Diabetes Mellitus. Ear Hear 2017; 38:724-735. [DOI: 10.1097/aud.0000000000000457] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|