1
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
2
|
Liu ZH, Ai S, Xia Y, Wang HL. Intestinal toxicity of Pb: Structural and functional damages, effects on distal organs and preventive strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172781. [PMID: 38685433 DOI: 10.1016/j.scitotenv.2024.172781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Lead (Pb) is one of the most common heavy metal pollutants that possesses multi-organ toxicity. For decades, great efforts have been devoted to investigate the damage of Pb to kidney, liver, bone, blood cells and the central nervous system (CNS). For the common, dietary exposure is the main avenue of Pb, but our knowledge of Pb toxicity in gastrointestinal tract (GIT) remains quite insufficient. Importantly, emerging evidence has documented that gastrointestinal disorders affect other distal organs like brain and liver though gut-brain axis or gut-liver axis, respectively. This review focuses on the recent understanding of intestinal toxicity of Pb exposure, including structural and functional damages. We also review the influence and mechanism of intestinal toxicity on other distal organs, mainly concentrated on brain and liver. At last, we summarize the bioactive substances that reported to alleviate Pb toxicity, providing potential dietary intervention strategies to prevent or attenuate Pb toxicity.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| |
Collapse
|
3
|
Huang J, Dai X, Chen X, Ali I, Chen H, Gou J, Zhuo C, Huang M, Zhu B, Tang Y, Liu J, Xu Y, Tang F, Xue J. Combined forage grass-microbial for remediation of strontium-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131013. [PMID: 36863103 DOI: 10.1016/j.jhazmat.2023.131013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Enrichment plants were screened from six forage grasses in this study to establish a complete combined forage grass-microbial remediation system of strontium-contaminated soil, and microbial groups were added to the screened dominant forage grasses. The occurrence states of strontium in forage grasses were explored by the BCR sequential extraction method. The results showed that the annual removal rate of Sudan grass (Sorghum sudanense (Piper) Stapf.) reached 23.05% in soil with a strontium concentration of 500 mg·kg-1. Three dominant microbial groups: E, G and H, have shown good facilitation effects in co-remediation with Sudan grass and Gaodan grass (Sorghum bicolor × sudanense), respectively. When compared to the control, the strontium accumulation of forage grasses in kg of soil with microbial groups was increased by 0.5-4 fold. The optimal forage grass-microbial combination can theoretically repair contaminated soil in three years. The microbial group E was found to promote the transfer of the exchangeable state and the reducible state of strontium to the overground part of the forage grass. Metagenomic sequencing results showed that the addition of microbial groups increased Bacillus spp. in rhizosphere soil, enhanced the disease resistance and tolerance of forage grasses, and improved the remediation ability of forage grass-microbial combinations.
Collapse
Affiliation(s)
- Jiali Huang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
| | - Xueqi Dai
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
| | - Xiaoming Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China.
| | - Imran Ali
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China; Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Hao Chen
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, P.R. China
| | - Jialei Gou
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
| | - Chifu Zhuo
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
| | - Min Huang
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, P.R. China
| | - Bo Zhu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
| | - Yunlai Tang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
| | - Jikai Liu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
| | - Yuxuan Xu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
| | - Fanzhou Tang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
| | - Jiahao Xue
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P.R. China
| |
Collapse
|
4
|
Cay S. Assessment of tea saponin and citric acid-assisted phytoextraction of Pb-contaminated soil by Salvia virgata Jacq. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49771-49778. [PMID: 36787065 DOI: 10.1007/s11356-023-25809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
The present study, investigated the influence of the natural tea saponin (TS) obtained by microwave-assisted extraction and citric acid (CA) by commercially enhancing lead ion (Pb(II)) uptake by Salvia virgata Jacq. The Pb(II) tolerance was compared, and the growth of plants and Pb(II) accumulation characteristics of S. virgata with chemical agents TS and CA were studied for their phytoextraction potential of Pb(II) from artificially contaminated soil of 0-100 mg kg-1 different concentrations under pot conditions. The different morphophysiological parameters of S. virgata such as growth, biomass, chlorophylls, and carotenoids were significantly changed under different Pb(II) stress and TS and CA concentrations. To evaluate the removal efficiency of the studied plant, the bioconcentration factor (BCF) or enrichment coefficient (EC), translocation factor (TF), and tolerance index (TI) values were also calculated and compared with the control. Phytotoxic effects were observed at 100 mg kg-1; added Pb(II) treatments caused significant decreases of 33.05% in the biomass of S. virgata compared to the control. All the obtained results showed that the concentrations of Pb(II) being compared revealed a highest uptake (286 ± 5.2 mg kg-1) of 100 mg kg-1. The concentration of available Pb(II)-assisted TS and CA increased by 9.1-28.4% compared to the control. Based on these findings, S. virgata might be cultivated and used as a hyperaccumulator in the removal of Pb(II) from the contaminated soils, and appropriate application of TS and CA can enhance phytoremediation of Pb(II)-contaminated soil by other hyperaccumulator plants.
Collapse
Affiliation(s)
- Seydahmet Cay
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, 28200, Gure, Giresun, Turkey.
| |
Collapse
|
5
|
Lang T, Tam NFY, Hussain M, Ke X, Wei J, Fu Y, Li M, Huang X, Huang S, Xiong Z, Wu K, Li F, Chen Z, Hu Z, Gao C, Yang Q, Zhou H. Dynamics of heavy metals during the development and decomposition of leaves of Avicennia marina and Kandelia obovata in a subtropical mangrove swamp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158700. [PMID: 36113807 DOI: 10.1016/j.scitotenv.2022.158700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
In mangrove wetlands, leaves make up a high proportion of the plant biomass and can accumulate heavy metals from contaminated sediment. Despite this, it is still unclear how heavy metal concentrations in leaves change as they develop and how metals in senescence leaves are recycled back into the mangrove ecosystems during decomposition. The present study aims to investigate the dynamics of six heavy metals (Cu, Zn, Cr, Ni, Cd, and Pb) in leaves of two common mangrove plants, Avicennia marina and Kandelia obovata, at different stages of development (young, mature, and senescent) and leaf litter decomposition (from 0 to 20 weeks). Based on litterbag experiments in a subtropical mangrove swamp, both plant species showed similar trends in alternations of the six heavy metals during leaf development, that was, decreased in Cu and Zn but increased in Pb, while Cr, Ni, and Cd remained steady. All heavy metals in litter gradually increased in concentration during decomposition. By the end of the 20-weeks decomposition, the concentrations of Cu, Zn, and Cd in decayed leaves were comparable to those in sediment, with Cu, Zn, and Cd at approximately 18, 75, and 0.2 mg·kg-1, respectively, while Cr (66 mg·kg-1), Ni (65 mg·kg-1), and Pb (55 mg·kg-1) were lower than those in sediment, indicating that metals were not retained in litter but recycled back to the sediment. Tannins in mangrove leaf litter might chelate heavy metals, affecting their migration and transformation of heavy metals in estuarine mangrove wetlands. The findings of our study provide insight into the interactions between toxic heavy metals and mangrove plant species during leaf development, representing the first example of how most metals would be retained in leaf litter during decomposition, thereby reducing their release to estuarine and marine ecosystems.
Collapse
Affiliation(s)
- Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; College of Physics and Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China
| | - Nora Fung-Yee Tam
- Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China; School of Science and Technology, The Hong Kong Metropolitan University, Ho Man Tin, Kowloon 999077, Hong Kong, China
| | - Muzammil Hussain
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; College of Physics and Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China
| | - Xinran Ke
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, 100091 Beijing, China
| | - Jian Wei
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, 100091 Beijing, China
| | - Yijian Fu
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China
| | - Mingdang Li
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China
| | - Xiazi Huang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Shuyan Huang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China
| | - Zhangjing Xiong
- Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China
| | - Kunhua Wu
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China
| | - Fenglan Li
- Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China; School of Science and Technology, The Hong Kong Metropolitan University, Ho Man Tin, Kowloon 999077, Hong Kong, China
| | - Zhiteng Chen
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China
| | - Zhangli Hu
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Changjun Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Qiong Yang
- Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China
| | - Haichao Zhou
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-Resource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China; Greater Bay Area Coastal Mangrove Wetland Research & Development Centre, Guangdong Neilingding Futian National Nature Reserve, 518040 Shenzhen, China.
| |
Collapse
|
6
|
Kenny CR, Ring G, Sheehan A, Mc Auliffe MAP, Lucey B, Furey A. Novel metallomic profiling and non-carcinogenic risk assessment of botanical ingredients for use in herbal, phytopharmaceutical and dietary products using HR-ICP-SFMS. Sci Rep 2022; 12:17582. [PMID: 36266322 PMCID: PMC9584900 DOI: 10.1038/s41598-022-16873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2022] [Indexed: 01/13/2023] Open
Abstract
Knowledge of element concentrations in botanical extracts is relevant to assure consumer protection given the increased interest in plant-based ingredients. This study demonstrates successful multi-element investigations in order to address the lack of comprehensive profiling data for botanical extracts, while reporting for the first time the metallomic profile(s) of arnica, bush vetch, sweet cicely, yellow rattle, bogbean, rock-tea and tufted catchfly. Key element compositions were quantified using a validated HR-ICP-SFMS method (µg kg-1) and were found highly variable between the different plants: Lithium (18-3964); Beryllium (3-121); Molybdenum (75-4505); Cadmium (5-325); Tin (6-165); Barium (747-4646); Platinum (2-33); Mercury (5-30); Thallium (3-91); Lead (12-4248); Bismuth (2-30); Titanium (131-5827); Vanadium (15-1758); Chromium (100-4534); Cobalt (21-652); Nickel (230-6060) and Copper (1910-6340). Compendial permissible limits were not exceeded. Overall, no evidence of a health risk to consumers could be determined from consumption of the investigated plants at reasonable intake rates. Mathematical risk modelling (EDI, CDI, HQ, HI) estimated levels above safe oral thresholds only for Cd (16%) and Pb (8%) from higher intakes of the respective plant-derived material. Following high consumption of certain plants, 42% of the samples were categorised as potentially unsafe due to cumulative exposure to Cu, Cd, Hg and Pb. PCA suggested a potential influence of post-harvest processing on Cr, Ti and V levels in commercially-acquired plant material compared to wild-collected and farm-grown plants. Moreover, a strong correlation was observed between Pb-Bi, Be-V, Bi-Sn, and Tl-Mo occurrence. This study may support future research by providing both robust methodology and accompanying reference profile(s) suitable for the quality evaluation of essential elements and/or metal contaminants in botanical ingredients.
Collapse
Affiliation(s)
- Ciara-Ruth Kenny
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Gavin Ring
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Aisling Sheehan
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Michael A P Mc Auliffe
- Centre for Advanced Photonics and Process Analysis (CAPPA), Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Brigid Lucey
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Ambrose Furey
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland.
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland.
| |
Collapse
|
7
|
Jiao A, Gao B, Gao M, Liu X, Zhang X, Wang C, Fan D, Han Z, Hu Z. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass (Sorghum sudanense (Piper) Stapf.) in Ni-pyrene contaminated soil. CHEMOSPHERE 2022; 294:133654. [PMID: 35066084 DOI: 10.1016/j.chemosphere.2022.133654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Phytoremediation is commonly used in the remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) because of its economy and effectiveness. Sudan grass (Sorghum sudanense (Piper) Stapf.) has well-developed roots and strong tolerance to heavy metals, so it has been widely concerned. In this study, nitrilotriacetic acid (NTA) and tea saponin (TS) were used as enhancers and combined with Sudan grass for improving the remediation efficiency of Ni-pyrene co-contaminated soil. The results of the pot experiment in soils showed that enhancers promoted the enrichment of Ni in plants. With the function of enhancers, more inorganic and water-soluble Ni were converted into low-toxic phosphate-bonded and residual Ni, so as to reinforce the tolerance of Sudan grass to Ni. In the pot experiment based on vermiculite, it was found that enhancers increased the accumulation of Ni in cell wall by 49.71-102.73%. Enhancers also had the positive effect on the relative abundance of Proteobacteria, Patescibacteria and Bacteroidetes that could tolerate heavy metals at phylum level. Simultaneously, the study found that pyrene reduced the exchangeable Ni in soils. More Ni entered the organelles and transfer to more high-toxic forms in Sudan grass when pynere coexisted. The study manifested that enhancers improved the phytoremediation effect of Ni significantly, yet the co-existence of pyrene weakened the process. Our results provided meaningful references for remediating actual co-contaminated soil of heavy metals and PAHs.
Collapse
Affiliation(s)
- Anxing Jiao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Bingjie Gao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Mingjing Gao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Chuanhua Wang
- College of Life and Environment Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Delong Fan
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zongrui Han
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Ziqiao Hu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
8
|
Guan H, Dong L, Zhang Y, Bai S, Yan L. GLDA and EDTA assisted phytoremediation potential of Sedum hybridum 'Immergrunchen' for Cd and Pb contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1395-1404. [PMID: 35166632 DOI: 10.1080/15226514.2022.2031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exogenous application of chelants is a common way to enhance the phytoextraction of heavy metals. A pot experiment was conducted to investigate the influences of cadmium (Cd), lead (Pb), Cd and Pb, L-glutamic acid N, N-diacetic acid (GLDA) and ethylene diamine tetraacetate (EDTA) on the growth, Cd and Pb accumulation of Sedum hybridum 'Immergrunchen'. The results showed that Sedum hybridum 'Immergrunchen' had a high tolerance to Pb treatment, followed by Cd-Pb treatment. The plant was sensitive to Cd stress. EDTA treatment was more harmful to plant growth than that of GLDA treatment. The optimal Cd concentration of shoot and root reached 27.6 mg·kg-1 and 32.6 mg·kg-1, 757 mg·kg-1 and 1,025 mg·kg-1for Pb accumulation at 100-1,500 mg·kg-1. The maximum Cd and Pb phytoextraction from 3 mmol·kg-1 GLDA treatment were 1.40 and 1.73 times as much as that of the control, 1.21 and 1.02 times under 6 mmol·kg-1 EDTA treatment. Therefore, the enhanced phytoremediation of GLDA to Cd and Pb co-contaminated soil was better than that of EDTA. GLDA-assisted phytoextraction of Cd and Pb by Sedum hybridum 'Immergrunchen' can be considered as a promising way to phytoremediate Cd and Pb co-contaminated soil.
Collapse
Affiliation(s)
- Haiyan Guan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Li Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Yan Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Shubing Bai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Li Yan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
9
|
Remediation of Smelter Contaminated Soil by Sequential Washing Using Biosurfactants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412875. [PMID: 34948484 PMCID: PMC8701185 DOI: 10.3390/ijerph182412875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022]
Abstract
This paper presents experimental results from the use of biosurfactants in the remediation of a soil from a smelter in Poland. In the soil, concentrations of Cu (1659.1 mg/kg) and Pb (290.8 mg/kg) exceeded the limit values. Triple batch washing was tested as a soil treatment. Three main variants were used, each starting with a different plant-derived (saponin, S; tannic acid, T) or microbial (rhamnolipids, R) biosurfactant solution in the first washing, followed by 9 different sequences using combinations of the tested biosurfactants (27 in total). The efficiency of the washing was determined based on the concentration of metal removed after each washing (CR), the cumulative removal efficiency (Ecumulative) and metal stability (calculated as the reduced partition index, Ir, based on the metal fractions from BCR sequential extraction). The type of biosurfactant sequence influenced the CR values. The variants that began with S and R had the highest average Ecumulative for Cu and Pb, respectively. The Ecumulative value correlated very strongly (r > 0.8) with the stability of the residual metals in the soil. The average Ecumulative and stability of Cu were the highest, 87.4% and 0.40, respectively, with the S-S-S, S-S-T, S-S-R and S-R-T sequences. Lead removal and stability were the highest, 64-73% and 0.36-0.41, respectively, with the R-R-R, R-R-S, R-S-R and R-S-S sequences. Although the loss of biosurfactants was below 10% after each washing, sequential washing with biosurfactants enriched the soil with external organic carbon by an average of 27-fold (S-first variant), 24-fold (R first) or 19-fold (T first). With regard to environmental limit values, metal stability and organic carbon resources, sequential washing with different biosurfactants is a beneficial strategy for the remediation of smelter-contaminated soil with given properties.
Collapse
|
10
|
Ornamental Plant Efficiency for Heavy Metals Phytoextraction from Contaminated Soils Amended with Organic Materials. Molecules 2021; 26:molecules26113360. [PMID: 34199536 PMCID: PMC8199650 DOI: 10.3390/molecules26113360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.
Collapse
|
11
|
Aghelan N, Sobhanardakani S, Cheraghi M, Lorestani B, Merrikhpour H. Evaluation of some chelating agents on phytoremediation efficiency of Amaranthus caudatus L. and Tagetes patula L. in soils contaminated with lead. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:503-514. [PMID: 34150254 PMCID: PMC8172735 DOI: 10.1007/s40201-021-00623-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/26/2021] [Indexed: 05/26/2023]
Abstract
PURPOSE This study was designed to evaluate the possible effects of some chelating agents on phytoremediation efficiency and plant growth parameters of Amaranthus caudatus L. and Tagetes patula L. in soils contaminated with lead. METHOD The plant species were grown in pots and treated with lead nitrate and in combination with 2.5, 2.0 and 2.5 mmol/kg of EDTA, SA and CA, respectively. RESULTS The results showed that the highest accumulations of Pb (mg/kg) with 0.74 and 0.13 were found in the roots and stems of A. caudatus exposed to 400 mg/kg Pb containing EDTA and SA, respectively. Moreover, the highest accumulation of Pb in the roots and stems of T. patula with 0.87 and 1.5 mg/kg were observed in 400 mg/kg Pb- contaminated soil containing SA. CONCLUSIONS Although the results obtained showed that T. patula would have a better phytoextraction potential than A. caudatus, it should be noted that due to the Pb behavior in the soil and/or leaching of Pb from the soil columns during the irrigation period the low amounts of Pb absorption by the root and aerial parts of the plants compared to the added doses of Pb(NO3)2 solution to the soil samples, imply the studied plants haven't the adequate potential for phytoextraction of Pb from contaminated soils.
Collapse
Affiliation(s)
- Nastaran Aghelan
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Hajar Merrikhpour
- Department of Agriculture, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| |
Collapse
|
12
|
Gusiatin ZM, Kaal J, Wasilewska A, Kumpiene J, Radziemska M. Short-Term Soil Flushing with Tannic Acid and Its Effect on Metal Mobilization and Selected Properties of Calcareous Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115698. [PMID: 34073355 PMCID: PMC8197821 DOI: 10.3390/ijerph18115698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022]
Abstract
Cadmium, Cu, Ni, Pb, and Zn removal via soil flushing with tannic acid (TA) as a plant biosurfactant was studied. The soil was treated for 30 h in a column reactor at a constant TA concentration and pH (3%, pH 4) and at variable TA flow rates (0.5 mL/min or 1 mL/min). In the soil leachates, pH, electrical conductivity (EC), total dissolved organic carbon, and metal concentrations were monitored. Before and after flushing, soil pH, EC, organic matter content, and cation exchange capacity (CEC) were determined. To analyze the organic matter composition, pyrolysis as well as thermally assisted hydrolysis and methylation coupled with gas chromatography-mass spectrometry were used. Metal fractionation in unflushed and flushed soil was analyzed using a modified sequential extraction method. The data on cumulative metal removal were analyzed using OriginPro 8.0 software (OriginLab Corporation, Northampton, MA, USA) and were fitted to 4-parameter logistic sigmoidal model. It was found that flushing time had a stronger influence on metal removal than flow rate. The overall efficiency of metal removal (expressed as the ratio between flushed metal concentration and total metal concentration in soil) at the higher flow rate decreased in this order: Cd (86%) > Ni (44%) > Cu (29%) ≈ Zn (26%) > Pb (15%). Metals were removed from the exchangeable fraction and redistributed into the reducible fraction. After flushing, the soil had a lower pH, EC, and CEC; a higher organic matter content; the composition of the organic matter had changed (incorporation of TA structures). Our results prove that soil flushing with TA is a promising approach to decrease metal concentration in soil and to facilitate carbon sequestration in soil.
Collapse
Affiliation(s)
- Zygmunt Mariusz Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10719 Olsztyn, Poland;
- Correspondence: ; Tel.: +48-89523-41-86
| | | | - Agnieszka Wasilewska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10719 Olsztyn, Poland;
| | - Jurate Kumpiene
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Lulea, Sweden;
| | - Maja Radziemska
- Faculty of Civil and Environmental Engineering, Institute of Environmental Engineering, Warsaw University of Life Sciences, 02776 Warsaw, Poland;
| |
Collapse
|
13
|
Khan AHA, Kiyani A, Mirza CR, Butt TA, Barros R, Ali B, Iqbal M, Yousaf S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. ENVIRONMENTAL RESEARCH 2021; 195:110780. [PMID: 33539835 DOI: 10.1016/j.envres.2021.110780] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 05/22/2023]
Abstract
Environmental matrices are polluted with the plethora of contaminants, and among these, the concerns related to heavy metals (HMs) are also included. Due to the low cost in a long-term application and environmental friendliness, the use of biological remediation has gained significant attention in recent decades. The use of ornamental plants (OPs) in the field of phytoremediation is scarcely reported, and the impacts of HMs on OPs have also not been investigated in great depth. The OPs mediated HMs remediation can simultaneously remove contaminants and bring improvement in aesthetics of the site. The biomass of OPs produced after such activities can be used and sold as pot plants, cut flowers, essential oils, perfumes, air fresheners production, metal phytomining, and feedstock in silk production. The OPs also present a lower risk of HMs bioaccumulation compared to crop plants. This review focuses on the current knowledge of HMs toxicity to OPs, their applicability advantages, methods to improve the tolerance of OPs with incremented HMs uptake, challenges in the field, and future application perspectives. The case studies realted to practical application of OPs, from China, Iran, India, Oman, Pakistan, and Turkey, were also discussed. This work fetches the inter-disciplinary features and understanding for the sustainable treatment of HMs in a new novel way, to which no previous review has focused.
Collapse
Affiliation(s)
- Aqib Hassan Ali Khan
- Department of Earth & Environmental Sciences, Bahria University (Karachi Campus), Karachi, 75260, Pakistan; Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Amna Kiyani
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan; Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Cyrus Raza Mirza
- Department of Civil Engineering, College of Engineering, University of Hail, Hail, Saudi Arabia
| | - Tayyab Ashfaq Butt
- Department of Civil Engineering, College of Engineering, University of Hail, Hail, Saudi Arabia
| | - Rocío Barros
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, Burgos, 09001, Spain
| | - Basit Ali
- Department of Economics, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
14
|
Dalby FR, Svane S, Sigurdarson JJ, Sørensen MK, Hansen MJ, Karring H, Feilberg A. Synergistic Tannic Acid-Fluoride Inhibition of Ammonia Emissions and Simultaneous Reduction of Methane and Odor Emissions from Livestock Waste. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7639-7650. [PMID: 32407626 DOI: 10.1021/acs.est.0c01231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gaseous emissions from livestock production are complex mixtures including ammonia, methane, volatile organic compounds (VOC), and H2S. These contribute to eutrophication, reduced air quality, global warming, and odor nuisance. It is imperative that these gases are mitigated in an environmentally sustainable manner. We present the discovery of a microbial inhibitor combo consisting of tannic acid and sodium fluoride (TA-NaF), which exhibits clear synergistic inhibition of ammonia production in pure bacteria culture and in pig manure while simultaneously inhibiting methane and odorant (H2S and VOC) emissions. In laboratory headspace experiments on pig manure, we used proton-transfer-reaction mass spectrometry and cavity ring-down spectroscopy to measure the effect of TA-NaF on gaseous emissions. Ammonia emission was reduced by more than 95%, methane by up to ∼99%, and odor activity value by more than 50%. Microbial community analysis and gas emission data suggest that TA-NaF acts as an efficient generic microbial inhibitor, and we hypothesize that the synergistic inhibitory effect on ammonia production is related to tannic acid causing cell membrane leakage allowing fluoride ions easy access to urease.
Collapse
Affiliation(s)
- Frederik R Dalby
- Department of Engineering, Air Quality Engineering, Aarhus University, Finlandsgade 10, 8200 Aarhus N, Denmark
| | - Simon Svane
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jens Jakob Sigurdarson
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Morten K Sørensen
- Department of Engineering, Air Quality Engineering, Aarhus University, Finlandsgade 10, 8200 Aarhus N, Denmark
| | - Michael J Hansen
- Department of Engineering, Air Quality Engineering, Aarhus University, Finlandsgade 10, 8200 Aarhus N, Denmark
| | - Henrik Karring
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Anders Feilberg
- Department of Engineering, Air Quality Engineering, Aarhus University, Finlandsgade 10, 8200 Aarhus N, Denmark
| |
Collapse
|
15
|
Liu N, Dai J, Tian H, He H, Zhu Y. Effect of ethylenediaminetetraacetic acid and biochar on Cu accumulation and subcellular partitioning in Amaranthus retroflexus L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10343-10353. [PMID: 30761486 DOI: 10.1007/s11356-019-04448-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Phytoremediation combined with amendments and stabilization technologies are two crucial methods to deal with soil contaminated with heavy metals. Copper (Cu) contamination in soil near Cu mines poses a serious threat to ecosystems and human health. This study investigated the effect of ethylenediaminetetraacetic acid (EDTA) and biochar (BC) on the accumulation and subcellular distribution of Cu in Amaranthus retroflexus L. to demonstrate the remediation mechanism of EDTA and BC at the cellular level. The role of calcium (Ca) in response to Cu stress in A. retroflexus was also elucidated. We designed a pot experiment with a randomized block of four Cu levels (0, 100, 200, 400 mg kg-1) and three treatments (control, amendment with EDTA, and amendment with BC). The subcellular components were divided into three parts (cell walls, organelles, and soluble fraction) by differential centrifugation. The results showed that EDTA amendment significantly increased (p < 0.05) the concentrations of Cu in root cell walls and all subcellular components of stems and leaves (cell walls, organelles, and the soluble fraction). EDTA amendment significantly increased (p < 0.05) the proportion of exchangeable fraction and carbonate fraction in the soil. While BC amendment significantly decreased (p < 0.05) the concentrations of Cu in root cell walls and the root soluble fraction, it had no significant effects on Cu concentrations in the subcellular components of stems and leaves. The results revealed that EDTA mainly promoted the transfer of Cu to aboveground parts and accumulation in subcellular components of stems and leaves, while BC mainly limited Cu accumulation in root cell walls and the root soluble fraction. Ca concentrations in cell walls of roots, stems, and leaves increased as the Cu stress increased in all treatment groups, indicating that Ca plays an important role in relieving Cu toxicity in Amaranthus retroflexus L.
Collapse
Affiliation(s)
- Na Liu
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030000, China
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Haoqi Tian
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030000, China
| | - Huan He
- Department of Biology, Terrestrial Ecology Section, Copenhagen University, Universitsparken 15, 2100, Copenhagen, Denmark
| | - Yuen Zhu
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030000, China.
| |
Collapse
|
16
|
Gusiatin ZM, Klik B, Kulikowska D. Tannic acid for remediation of historically arsenic-contaminated soils. ENVIRONMENTAL TECHNOLOGY 2019; 40:1050-1061. [PMID: 29235921 DOI: 10.1080/09593330.2017.1417490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Soil washing effectively and permanently decreases soil pollution. Thus, it can be considered for the removal of the most toxic elements, for example arsenic (As). In this study, historically As-contaminated soils (2041-4294 mg/kg) were remediated with tannic acid (TA) as the washing agent. The scope of this study included optimization of the operational conditions of As removal, determination of As distribution in soil before and after double soil washing, and measurement of TA loss during washing. The optimum conditions for As removal were 4% TA, pH 4 and 24 h washing time. The average As removal after single and double washings was 38% and 63%, respectively. TA decreased As content in amorphous and poorly crystalline oxides by >90%. Although TA increased the amount of As in the easily mobilizable As fraction, the stability of As in washed soils increased, with reduced partition indexes of 0.52-0.66 after washing. The maximum capacity of the soils to adsorb TA (qmax) was 50.2-70.4 g C/kg. TA sorption was higher at alkaline than at acidic conditions. Only TA removes As from soils effectively if the proportion of As in amorphous and poorly crystalline oxides is high. Thus, it can be considered for remediation of historically contaminated soils.
Collapse
Affiliation(s)
- Zygmunt Mariusz Gusiatin
- a Department of Environmental Biotechnology , University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| | - Barbara Klik
- a Department of Environmental Biotechnology , University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| | - Dorota Kulikowska
- a Department of Environmental Biotechnology , University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| |
Collapse
|
17
|
Accumulation and tolerance characteristics of lead in Althaea rosea Cav. and Malva crispa L. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmed S, Ahmad A. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:470-477. [PMID: 27739873 DOI: 10.1080/15226514.2016.1244167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In our current study, four nickel-tolerant (Ni-tolerant) bacterial species viz, Bacillus thuringiensis 002, Bacillus fortis 162, Bacillus subtilis 174, and Bacillus farraginis 354, were screened using Ni-contaminated media. The screened microbes exhibited positive results for synthesis of indole acetic acid (IAA), siderophore production, and phosphate solubilization. The effects of these screened microbes on Ni mobility in the soil, root elongation, plant biomass, and Ni uptake in Althea rosea plants grown in Ni-contaminated soil (200 mg Ni kg-1) were evaluated. Significantly higher value for water-extractable Ni (38 mg kg-1) was observed in case of Ni-amended soils inoculated with B. subtilis 174. Similarly, B. thuringiensis 002, B. fortis 162, and B. subtilis 174 significantly enhanced growth and Ni uptake in A. rosea. The Ni uptake in the shoots and roots of B. subtilis 174-inoculated plants enhanced up to 1.7 and 1.6-fold, respectively, as compared to that in the un-inoculated control. Bacterial inoculation also significantly improved the root and shoot biomass of treated plants. The current study presents a novel approach for bacteria-assisted phytoremediation of Ni-contaminated areas.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- a College of Earth and Environmental Sciences, University of the Punjab , Lahore , Pakistan
| | | | - Sajid Rashid Ahmad
- a College of Earth and Environmental Sciences, University of the Punjab , Lahore , Pakistan
| | - Aamir Ali
- c Department of Botany , University of Sargodha , Sargodha , Pakistan
| | - Shakil Ahmed
- d Department of Botany , University of the Punjab , Lahore , Pakistan
| | - Aqeel Ahmad
- e Institute of Agricultural Sciences, University of the Punjab , Lahore , Pakistan
| |
Collapse
|
19
|
Cay S. Enhancement of cadmium uptake by Amaranthus caudatus, an ornamental plant, using tea saponin. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:320. [PMID: 27142816 DOI: 10.1007/s10661-016-5334-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
In this study, tea saponin (TS) was extracted from tea camellia seed by microwave-assisted extraction. The potential of TS was compared with ethylenediaminetetracetic acid (EDTA), which is used as a common chemical agent to enhance uptake of cadmium (Cd) by Amaranthus caudatus, an ornamental plant in the natural vegetation of Turkey under pot conditions. The enrichment coefficient (EC) and translocation factor (TF) values were calculated to evaluate the removal efficiency of the TS and EDTA. The results showed that an increase in both TS and EDTA concentration significantly increased Cd uptake by A. caudatus, accumulating Cd in different parts of the plant. Higher EC and TF values obtained from stems, leaves, and inflorescences of A. caudatus showed that this plant might be cultivated and used as a hyperaccumulator in the uptake of Cd from the Cd contaminated soils. Thus, the present technique can efficiently reduce the metal load in the food chain; hence, it could be applied in catchment areas of urban cities where Cd contamination has become an unavoidable factor.
Collapse
Affiliation(s)
- Seydahmet Cay
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, 28200, Güre, Giresun, Turkey.
| |
Collapse
|