1
|
Abdel Hamid OI, Attia ME, Hirshon JM, El-Shinawi M, El-Hussaini M, El-Setouhy M. Psychiatric Disorders and Genotoxicity Following Primary Metal on Polyethylene Total Hip Arthroplasty and Their Correlation to Cobalt/Chromium Levels. Drug Healthc Patient Saf 2022; 14:97-111. [PMID: 35880007 PMCID: PMC9308046 DOI: 10.2147/dhps.s360643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Hip arthroplasty (HA) using implantable metal components is among the commonest orthopedic interventions. However, it can be followed by several complications following corrosion and the release of metal ions. Several studies proved that damaged genomic DNA may contribute to the pathophysiology of mental disorders. Aim The current work aims to evaluate the psychiatric disorders in metal on polyethylene hip arthroplasty (MOP-HA) patients and its correlation to cobalt/chromium (Co/Cr) levels and genotoxicity. Methods The work was a longitudinal follow-up study including 34 adults with unilateral primary MOP-HA meeting the inclusion and exclusion criteria. Preoperatively, 6, 12-months-postoperatively, patients were examined for cognitive impairment using mini-mental-state-examination (MMSE), depression using major-depressive-inventory (MDI), and blood samples were collected for estimation of Co/Cr, detection of genotoxicity by single-cell-gel-electrophoresis (comet assay) and serum 8-hydroxy-2'-deoxyguanosine (8-OHdG). Results Cognitive impairment was reported in 18.5% and 14.8% at 6-months, and 12-months postoperative, respectively. Depressive disorder was recorded in 22.2% at 6-months and 14.8% at 12-months postoperative. The marginal homogeneity tests proved a non-significant difference. There was a non-significant difference in preoperative, 6-months, 12-months postoperative MMSE, and MDI scores. There were significantly increased Co/Cr levels at 6-months postoperative. The levels decreased at 12-months postoperative, however, still significantly higher than preoperative values. There was a significant increase in serum 8-OHdG and the levels were positively correlated to cobalt levels at both 6 and 12-months-postoperative. There was a non-significant difference among preoperative, 6-months, and 12-months postoperative comet assay measurements. Conclusion From previous findings, we can conclude that will-functioning MOP hip arthroplasty can induce increased ion levels and positively correlated increase in biochemical markers of genotoxicity (8-OHdG).
Collapse
Affiliation(s)
- Omaima I Abdel Hamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed E Attia
- Orthopedics Departments, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Jon M Hirshon
- Department of Emergency Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Galala University, Galala City, Suez, Egypt
| | - Moustafa El-Hussaini
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maged El-Setouhy
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Family and Community Medicine, Faculty of Medince, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Chiorcea-Paquim AM. 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC-ECD Determination. Molecules 2022; 27:1620. [PMID: 35268721 PMCID: PMC8911600 DOI: 10.3390/molecules27051620] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Reactive oxygen species (ROS) are continuously produced in living cells due to metabolic and biochemical reactions and due to exposure to physical, chemical and biological agents. Excessive ROS cause oxidative stress and lead to oxidative DNA damage. Within ROS-mediated DNA lesions, 8-oxoguanine (8-oxoG) and its nucleotide 8-oxo-2'-deoxyguanosine (8-oxodG)-the guanine and deoxyguanosine oxidation products, respectively, are regarded as the most significant biomarkers for oxidative DNA damage. The quantification of 8-oxoG and 8-oxodG in urine, blood, tissue and saliva is essential, being employed to determine the overall effects of oxidative stress and to assess the risk, diagnose, and evaluate the treatment of autoimmune, inflammatory, neurodegenerative and cardiovascular diseases, diabetes, cancer and other age-related diseases. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) is largely employed for 8-oxoG and 8-oxodG determination in biological samples due to its high selectivity and sensitivity, down to the femtomolar range. This review seeks to provide an exhaustive analysis of the most recent reports on the HPLC-ECD determination of 8-oxoG and 8-oxodG in cellular DNA and body fluids, which is relevant for health research.
Collapse
Affiliation(s)
- Ana-Maria Chiorcea-Paquim
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemistry, 3004-535 Coimbra, Portugal;
- Instituto Pedro Nunes (IPN), 3030-199 Coimbra, Portugal
| |
Collapse
|
3
|
Qin HM, Herrera D, Liu DF, Chen CQ, Nersesyan A, Mišík M, Knasmueller S. Genotoxic properties of materials used for endoprostheses: Experimental and human data. Food Chem Toxicol 2020; 145:111707. [PMID: 32889016 DOI: 10.1016/j.fct.2020.111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 12/28/2022]
Abstract
Approximately 2 million endoprostheses are implanted annually and metal ions as well as particles are released into the body from the materials which are used. This review describes the results of studies concerning genotoxic damage caused by artificial joints. DNA damage leads to various adverse long-term health effects in humans including cancer. Experiments with mammalian cells showed that metal ions and particles from orthopedic materials cause DNA damage. Induction of chromosomal aberrations (CA) was found in several in vitro experiments and in studies with rodents with metals from orthopedic materials. Human studies focused mainly on induction of CA (7 studies). Only few investigations (4) concerned sister chromatid exchanges, oxidative DNA damage (2) and micronucleus formation (1). CA are a reliable biomarker for increased cancer risks in humans) and were increased in all studies in patients with artificial joints. No firm conclusion can be drawn at present if the effects in humans are due to oxidative stress and if dissolved metal ions or release particles play a role. Our findings indicate that patients with artificial joints may have increased cancer risks due to damage of the genetic material. Future studies should be performed to identify safe materials and to study the molecular mechanisms in detail.
Collapse
Affiliation(s)
- Hong-Min Qin
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Denise Herrera
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Dian-Feng Liu
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Chao-Qian Chen
- Hip Surgery of Orthopedic Hospital, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, Sichuan Province, China
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, 1090, Borschkegasse 8A, Vienna, Austria.
| |
Collapse
|
4
|
Hameister R, Kaur C, Dheen ST, Lohmann CH, Singh G. Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty. J Biomed Mater Res B Appl Biomater 2020; 108:2073-2087. [PMID: 31898397 DOI: 10.1002/jbm.b.34546] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 12/08/2019] [Indexed: 12/16/2022]
Abstract
The interplay between implant design, biomaterial characteristics, and the local microenvironment adjacent to the implant is of utmost importance for implant performance and success of the joint replacement surgery. Reactive oxygen and nitrogen species (ROS/RNS) are among the various factors affecting the host as well as the implant components. Excessive formation of ROS and RNS can lead to oxidative stress, a condition that is known to damage cells and tissues and also to affect signaling pathways. It may further compromise implant longevity by accelerating implant degradation, primarily through activation of inflammatory cells. In addition, wear products of metallic, ceramic, polyethylene, or bone cement origin may also generate oxidative stress themselves. This review outlines the generation of free radicals and oxidative stress in arthroplasty and provides a conceptual framework on its implications for soft tissue remodeling and bone resorption (osteolysis) as well as implant longevity. Key findings derived from cell culture studies, animal models, and patients' samples are presented. Strategies to control oxidative stress by implant design and antioxidants are explored and areas of controversy and challenges are highlighted. Finally, directions for future research are identified. A better understanding of the host-implant interplay and the role of free radicals and oxidative stress will help to evaluate therapeutic approaches and will ultimately improve implant performance in arthroplasty.
Collapse
Affiliation(s)
- Rita Hameister
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shaikali Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Gurpal Singh
- Centre for Orthopaedics Pte Ltd, Singapore, Singapore
| |
Collapse
|
5
|
Lison D, van den Brule S, Van Maele-Fabry G. Cobalt and its compounds: update on genotoxic and carcinogenic activities. Crit Rev Toxicol 2018; 48:522-539. [PMID: 30203727 DOI: 10.1080/10408444.2018.1491023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article summarizes recent experimental and epidemiological data on the genotoxic and carcinogenic activities of cobalt compounds. Emphasis is on the respiratory system, but endogenous exposure from Co-containing alloys used in endoprostheses, and limited data on nanomaterials and oral exposures are also considered. Two groups of cobalt compounds are differentiated on the basis of their mechanisms of toxicity: (1) those essentially involving the solubilization of Co(II) ions, and (2) metallic materials for which both surface corrosion and release of Co(II) ions act in concert. For both groups, identified genotoxic and carcinogenic mechanisms are non-stochastic and thus expected to exhibit a threshold. Cobalt compounds should, therefore, be considered as genotoxic carcinogens with a practical threshold. Accumulating evidence indicates that chronic inhalation of cobalt compounds can induce respiratory tumors locally. No evidence of systemic carcinogenicity upon inhalation, oral or endogenous exposure is available. The scarce data available for Co-based nanosized materials does not allow deriving a specific mode of action or assessment for these species.
Collapse
Affiliation(s)
- D Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| | - S van den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| | - G Van Maele-Fabry
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Wise SS, Holmes AL, Liou L, Adam RM, Wise JP. Hexavalent chromium induces chromosome instability in human urothelial cells. Toxicol Appl Pharmacol 2016; 296:54-60. [PMID: 26908176 PMCID: PMC4886549 DOI: 10.1016/j.taap.2016.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 11/22/2022]
Abstract
Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general.
Collapse
Affiliation(s)
- Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103, USA
| | - Amie L Holmes
- Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103, USA; Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215, USA
| | - Louis Liou
- Department of Pathology, Boston University School of Medicine, 670 Albany St., Boston, MA 02118, USA
| | - Rosalyn M Adam
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103, USA.
| |
Collapse
|
7
|
Savarino L, Fotia C, Roncuzzi L, Greco M, Cadossi M, Baldini N, Giannini S. Does chronic raise of metal ion levels induce oxidative DNA damage and hypoxia-like response in patients with metal-on-metal hip resurfacing? J Biomed Mater Res B Appl Biomater 2015; 105:460-466. [PMID: 26477446 DOI: 10.1002/jbm.b.33555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/24/2015] [Accepted: 10/03/2015] [Indexed: 02/06/2023]
Abstract
Metal-on-metal hip resurfacing (MOM-HR) represents a viable alternative to traditional arthroplasty. Nevertheless, in MOM coupling both metal nanoparticles and ions are released, whose toxicity remains a matter of concern. We investigated whether 'endogenous' chronic exposure to cobalt and chromium induced a state of oxidative stress, DNA damage and a hypoxia-like response in patients with well-functioning MOM-HR. Twenty-two patients with unilateral MOM-HR were recruited at long-term. Twenty-one osteoarthritic subjects were enrolled for comparison. Serum ion levels were measured and correlated with 8-hydroxydeoxyguanosine and circulating-free-DNA, as markers of oxidative DNA damage. Moreover, the hypoxia-inducible factor-1α, marker of hypoxic state, was evaluated. Ion concentrations were found to be 5-to-15 times higher in MOM-HR patients than in presurgery subjects (p < 0.001); circulating-free-DNA, 8-hydroxydeoxyguanosine, and hypoxia-inducible factor-1α levels were not significantly different between groups and did not correlate with ion levels. Analyzing the results according to gender, MOM-HR males had higher 8-hydroxydeoxyguanosine levels (p = 0.01) compared with MOM-HR females. Similarly, circulating-free-DNA values were higher in males than females, even if this difference did not reach statistical significance. This research is the first that attempted to investigate the long-term effects of ion dissemination in subjects with well-fixed MOM implants. A significant correlation between biomarkers increase and ion levels was not demonstrated. Nevertheless, both circulating-free-DNA and 8-hydroxydeoxyguanosine showed a tendency to increase in MOM-HR males. Further studies with a larger sample size should be performed to detect the clinical relevance of biomarkers increase especially in younger subjects, where a chronic moderately elevated exposure has to be faced. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 460-466, 2017.
Collapse
Affiliation(s)
- Lucia Savarino
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Caterina Fotia
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Laura Roncuzzi
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Michelina Greco
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Matteo Cadossi
- Department I of Orthopaedics and Traumatology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Nicola Baldini
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, Bologna University, Bologna, Italy
| | - Sandro Giannini
- Department I of Orthopaedics and Traumatology, Rizzoli Orthopedic Institute, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, Bologna University, Bologna, Italy
| |
Collapse
|
8
|
Christian WV, Oliver LD, Paustenbach DJ, Kreider ML, Finley BL. Toxicology-based cancer causation analysis of CoCr-containing hip implants: a quantitative assessment of genotoxicity and tumorigenicity studies. J Appl Toxicol 2014; 34:939-67. [DOI: 10.1002/jat.3039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 12/12/2022]
Affiliation(s)
| | - Lindsay D. Oliver
- Cardno ChemRisk; LLC, 4840 Pearl East Circle, Suite 300 West Boulder CO 80301 USA
| | | | - Marisa L. Kreider
- Cardno ChemRisk, LLC; 20 Stanwix St., Suite 505 Pittsburgh PA 15222 USA
| | - Brent L. Finley
- Cardno ChemRisk; LLC, 231 Front St., Suite 201 Brooklyn NY 11201 USA
| |
Collapse
|
9
|
Hayes JS, Richards RG. The use of titanium and stainless steel in fracture fixation. Expert Rev Med Devices 2014; 7:843-53. [DOI: 10.1586/erd.10.53] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Chang H, Tomoda S, Silwood CJ, Lynch E, Grootveld M. 1H NMR investigations of the molecular nature of cobalt(II) ions in human saliva. Arch Biochem Biophys 2012; 520:51-65. [DOI: 10.1016/j.abb.2012.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 10/14/2022]
|
11
|
Silwood CJL, Chikanza IC, Tanner KE, Shelton JC, Bowsher JG, Grootveld M. Investigation of the Molecular Nature of Low-molecular-mass Cobalt(II) Ions in Isolated Osteoarthritic Knee-joint Synovial Fluid. Free Radic Res 2009; 38:561-71. [PMID: 15346647 DOI: 10.1080/10715760410001684630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
High field 1H NMR spectroscopy demonstrated that addition of Co(II) ions to osteoarthritic knee-joint synovial fluid (SF) resulted in its complexation by a range of biomolecules, the relative efficacies of these complexants/chelators being citrate >> histidine - threonine >> glycine - glutamate - glutamine - phenylalanine tyrosine > formate > lactate >> alanine > valine > acetate > pyruvate > creatinine, this order reflecting the ability of these ligands to compete for the available Co(II) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations. Since many of these SF Co(II) complexants (e.g. histidinate) serve as powerful *OH scavengers, the results acquired indicate that any of this radical generated from the Co(II) source in such complexes via Fenton or pseudo-Fenton reaction systems will be "site-specifically" scavenged. The significance of these observations with regard to cobalt toxicity and the in vivo corrosion of cobalt-containing metal alloy joint prostheses (e.g. CoCr alloys) is discussed.
Collapse
Affiliation(s)
- Christopher J L Silwood
- Department of Applied Science, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| | | | | | | | | | | |
Collapse
|
12
|
Savarino L, Padovani G, Ferretti M, Greco M, Cenni E, Perrone G, Greco F, Baldini N, Giunti A. Serum ion levels after ceramic-on-ceramic and metal-on-metal total hip arthroplasty: 8-year minimum follow-up. J Orthop Res 2008; 26:1569-76. [PMID: 18634038 DOI: 10.1002/jor.20701] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alternative bearing surfaces for total hip arthroplasty, such as metal-on-metal and ceramic-on-ceramic, offer the potential to reduce mechanical wear and osteolysis. In the short and medium term, the second generation of metal-on-metal bearings demonstrated high systemic metal ion levels, whereas ceramic-on-ceramic bearings showed the lowest ones. We aimed to verify whether the long-term ion release in metal-on-metal subjects was still relevant at a median 10-year follow-up, and whether a fretting process at the modular junctions occurred in ceramic-on-ceramic patients and induced an ion dissemination. Serum levels were measured in 32 patients with alumina-on-alumina implants (group A), in 16 subjects with metal-on-metal implants (group B), and in 47 healthy subjects (group C). Group B results were compared with medium-term findings. Cobalt and chromium levels were significantly higher in metal-on-metal implants than in ceramic-on-ceramic ones and controls. Nevertheless, ion levels showed a tendency to decrease in comparison with medium-term content. In ceramic-on-ceramic implants, ion values were not significantly different from controls. Both in groups A and B, aluminum and titanium release were not significantly different from controls. In conclusion, negligible serum metal ion content was revealed in ceramic-on-ceramic patients. On the contrary, due to the higher ion release, metal-on-metal coupling must be prudently considered, especially in young patients, in order to obtain definitive conclusions.
Collapse
Affiliation(s)
- Lucia Savarino
- Laboratory for Pathophysiology of Orthopaedic Implants, Istituti Ortopedici Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Keegan GM, Learmonth ID, Case C. A Systematic Comparison of the Actual, Potential, and Theoretical Health Effects of Cobalt and Chromium Exposures from Industry and Surgical Implants. Crit Rev Toxicol 2008; 38:645-74. [DOI: 10.1080/10408440701845534] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Dunstan E, Ladon D, Whittingham-Jones P, Carrington R, Briggs TWR. Chromosomal aberrations in the peripheral blood of patients with metal-on-metal hip bearings. J Bone Joint Surg Am 2008; 90:517-22. [PMID: 18310701 DOI: 10.2106/jbjs.f.01435] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Approximately one-third of patients undergoing joint replacement are under sixty years of age. Many of these patients may be exposed to wear debris from the orthopaedic implant for several decades. Clinical follow-up of this group of patients has been short compared with the lifetimes of the patients, and the long-term effects of this chronic exposure are unknown. METHODS By using cytogenetic biomarkers (twenty-four-color fluorescent in situ hybridization [FISH]), we analyzed the peripheral blood leukocytes for chromosomal aberrations in three groups of subjects: (1) six age and sex-matched control subjects who had no implant and did not smoke (control group), (2) five subjects in whom an implant with a metal-on-metal articulation had been in situ for an average of thirty-five years (metal-on-metal group), and (3) four subjects in whom a metal-on-metal implant had been revised to a metal-on-polyethylene articulation at an average of twenty-two years (revised group). RESULTS The number of chromosomal aberrations in the metal-on-metal group was greater than that in the control group. Specifically, the percentage of aneuploidy gain was three times greater (p = 0.01) in the metal-on-metal group. Structural aberrations were not seen in the control group, and this difference was highly significant (p = 0.003). Also, the number of chromosomal aberrations in the metal-on-metal group was greater than that in the revised group. Specifically, the percentage of structural aberrations was thirty-one-fold higher (p = 0.013). The percentage of aneuploidy gain in the metal-on-metal group was about twice that in the revised group, although this difference was not significant (p = 0.37). The percentage of aneuploidy gain in the revised group was about double that in the control group, although this difference was also not significant (p = 0.41). Translocations were seen only in subjects with a metal-on-metal articulation. CONCLUSIONS The clinical consequences of the chromosomal changes seen in this study are unknown, and it is unknown if the changes are present in other cells in the body. The results emphasize the need for additional investigations into the effect of chronic exposure to elevated levels of metal ions produced by orthopaedic implants.
Collapse
Affiliation(s)
- E Dunstan
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, England.
| | | | | | | | | |
Collapse
|
15
|
Afolaranmi G, Tettey J, Meek R, Grant M. Release of chromium from orthopaedic arthroplasties. Open Orthop J 2008; 2:10-8. [PMID: 19461924 PMCID: PMC2685051 DOI: 10.2174/1874325000802010010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/10/2007] [Accepted: 01/04/2008] [Indexed: 12/12/2022] Open
Abstract
Many orthopaedic implants are composed of alloys containing chromium. Of particular relevance is the increasing number of Cobalt Chromium bearing arthroplasies being inserted into young patients with osteoarthritis. Such implants will release chromium ions. These patients will be exposed to the released chromium for over 50 years in some cases. The subsequent chromium ion metabolism and redistribution in fluid and tissue compartments is complex. In addition, the potential biological effects of chromium are also controversial, including DNA and chromosomal damage, reduction in CD8 lymphocyte levels and possible hypersensitivity reactions (ALVAL). The establishment of these issues and the measurement of chromium in biological fluids is the subject of this review.
Collapse
Affiliation(s)
| | - J Tettey
- Strathclyde Institute of Pharmacy and Biomedical Sciences
| | - R.M.D Meek
- Department of Orthopaedic Surgery, Southern General Hospital, Glasgow, UK
| | - M.H Grant
- Bioengineering Unit, University of Strathclyde, UK
| |
Collapse
|
16
|
Keegan GM, Learmonth ID, Case CP. Orthopaedic metals and their potential toxicity in the arthroplasty patient. ACTA ACUST UNITED AC 2007; 89:567-73. [PMID: 17540737 DOI: 10.1302/0301-620x.89b5.18903] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-term effects of metal-on-metal arthroplasty are currently under scrutiny because of the potential biological effects of metal wear debris. This review summarises data describing the release, dissemination, uptake, biological activity, and potential toxicity of metal wear debris released from alloys currently used in modern orthopaedics. The introduction of risk assessment for the evaluation of metal alloys and their use in arthroplasty patients is discussed and this should include potential harmful effects on immunity, reproduction, the kidney, developmental toxicity, the nervous system and carcinogenesis.
Collapse
Affiliation(s)
- G M Keegan
- University of Bristol, Bristol Implant Research Centre, Avon Orthopaedic Centre (lower level), Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK.
| | | | | |
Collapse
|
17
|
Abstract
For over 40 years, the metal-on-polyethylene bearing has dominated the field of total hip replacement. Problems of wear, osteolysis (dissolution of bone), and ultimately failure of prostheses have led to the development of alternative bearing surfaces. Metal-on-metal hip resurfacing has taken current orthopaedic surgery almost by storm. However, metal ion release following metal-on-metal hip resurfacing remains a major cause for concern. This article looks into the development and examines problems and issues surrounding metal-on-metal resurfacing arthroplasty.
Collapse
Affiliation(s)
- V D Shetty
- Cambridge Hip and Knee Unit, Cambridge Lea Hospital, 30 New Road, Impington, Cambridge CB4 9EL, UK
| | | |
Collapse
|
18
|
Pilger A, Rüdiger HW. 8-Hydroxy-2'-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 2006; 80:1-15. [PMID: 16685565 DOI: 10.1007/s00420-006-0106-7] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 03/23/2006] [Indexed: 11/26/2022]
Abstract
Oxidative DNA damage is considered to play an important role in pathophysiological processes, ageing and cancer. So far major interest has been on measuring 8-hydroxy-2'-deoxyguanosine (8-OHdG), the preferred methods relying on HPLC or GC-mass spectrometry. The high biological relevance of 8-OHdG is due to its ability to induce G-->T transversions, which are among the most frequent somatic mutations found in human cancers. Effects of workplace exposures on the level of white blood cell 8-OHdG or urinary 8-OHdG have been reported with controversial results. Exposures examined include asbestos, azo-dyes, benzene, fine particulate matter (PM(2.5)), glassworks, polycyclic aromatic hydrocarbons (PAHs), rubber manufacturing, silica, metals, styrene, toluene and xylenes. The available data indicate that there is still a lack of well established dose-response relations between occupational or environmental exposures and the induction of 8-OHdG. Smoking has been most consistently identified as a confounder for 8-OHdG, but various occupational studies did not reveal higher levels of 8-OHdG in smokers. Despite the conflicting results, the reported studies show promise for 8-OHdG as a biomarker of oxidative stress associated with chemical exposure. However, there are critical aspects related to the analytical challenge, artifactual production of 8-OHdG, inter- and intra-individual variation, confounding factors and inter-laboratory differences, implying that further work is needed to reach a consensus on the background level of 8-OHdG.
Collapse
Affiliation(s)
- A Pilger
- Division of Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | | |
Collapse
|